Fermented Edible Insects for Promoting Food Security in Africa
Abstract
:1. Introduction
2. Common Edible Food Insects in Africa
3. Nutritional Composition and Health Benefits of Edible Insects
4. Fermentation of Edible Insect
5. Incorporation of Edible Insects into Generally Acceptable Fermented Foods
6. Consumer Acceptance of Edible Insects
7. Future Prospects and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ayieko, M.A.; Ogola, H.J.; Ayieko, I.A. Introducing rearing crickets (Gryllids) at household levels: Adoption, processing and nutritional values. J. Insects Food Feed. 2016, 2, 203–211. [Google Scholar] [CrossRef]
- Kouřimská, L.; Adámková, A. Nutritional and sensory quality of edible insects. Nutr. Food Sci. J. 2016, 4, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. Are edible insects more or less ‘healthy’ than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over- and undernutrition. Eur. J. Clin. Nutr. 2016, 70, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Jongema, Y. List of Edible Insects of the World. Available online: https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm (accessed on 25 October 2019).
- Kelemu, S.; Niassy, S.; Torto, B.; Fiaboe, K.; Affognon, H.; Tonnang, H.; Maniania, N.K.; Ekesi, S. African edible insects for food and feed: Inventory, diversity, commonalities and contribution to food security. J. Insects Food Feed 2015, 1, 103–119. [Google Scholar] [CrossRef] [Green Version]
- Teffo, L.S.; Toms, R.B.; Eloff, J.N. Preliminary data on the nutritional composition of the edible stinkbug, Encosternum delegorguei, consumed in Limpopo province, South Africa. S. Afr. J. Sci. 2007, 103, 434–436. [Google Scholar]
- Melgar-Lalanne, G.; Hernández-Álvarez, A.-J.; Salinas-Castro, A. Edible insects processing: Traditional and innovative technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1166–1191. [Google Scholar] [CrossRef] [Green Version]
- Meyer-Rochow, V.B. Can insects help to ease the problem of world food shortage? Search 1975, 6, 261–262. [Google Scholar]
- FAO. The State of Food Security and Nutrition in the World; Safeguarding Against Economic Slowdowns and Downturns; FAO: Rome, Italy, 2019. [Google Scholar]
- Food and Agriculture Organization of the United Nations. World Food Prices Jump in November. Available online: http://www.fao.org/news/story/en/item/1253889/icode/ (accessed on 11 December 2019).
- Adebo, O.A.; Medina-Meza, I.E. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 2020, 25, 927. [Google Scholar] [CrossRef] [Green Version]
- Oibiokpa, F.I.; Akanya, H.O.; Jigam, A.A.; Saidu, A.N. Nutrient and antinutrient compositions of some edible insect species in Northern Nigeria. FUJNAS 2017, 6, 9–24. [Google Scholar]
- Oibiokpa, F.I.; Akanya, H.O.; Jigam, A.A.; Saidu, A.N.; Egwim, E.C. Protein quality of four indigenous edible insect species in Nigeria. Food Sci. Hum. Wellness 2018, 7, 175–183. [Google Scholar] [CrossRef]
- Omotoso, O.T.; Adesola, A.A. Comparative studies of the nutritional composition of some insect orders. Int. J. Entomol. Nematol. Res. 2018, 2, 1–9. [Google Scholar]
- Kwiri, R.; Winini, C.; Muredzi, P.; Tongonya, J.; Gwala, W.; Mujuru, F.; Gwala, S.T. Mopane worm (Gonimbrasia belina) utilisation, a potential source of protein in fortified blended foods in Zimbabwe: A Review. GJSFR D. 2014, 14, 55–67. [Google Scholar]
- Adeyeye, E.I. The composition of the winged termites, Macrotermes bellicosus. JCSN 2005, 30, 145–149. [Google Scholar]
- Adepoju, O.T.; Omotayo, O.A. Nutrient composition and potential contribution of winged termites (Marcrotermes bellicosus) to micronutrient intake of consumers in Nigeria. Br. J. Appl. Sci. Technol. 2014, 4, 1149–1158. [Google Scholar] [CrossRef]
- Omotoso, O.T. Nutrient composition, mineral analysis and anti-nutrient factors of Oryctes rhinoceros and winged termites, Marcrotermes nigeriensis. Br. J. Appl. Sci. Technol. 2015, 8, 97–106. [Google Scholar] [CrossRef]
- Elemo, B.O.; Elemo, G.N.; Makinde, M.A.; Erukainure, O.L. Chemical evaluation of African palm weevil, Rhychophorus phoenicis, larvae as a food source. J. Insect Sci. 2011, 11, 146. [Google Scholar] [CrossRef]
- Kinyuru, J.N. Nutrient composition and utilization of edible termites (Macrotermes subhylanus) and grasshoppers (Ruspolia differenes) from Lake Victoria Region of Kenya. Master’s Thesis, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya, 2009. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Composition of Meat. Available online: http://www.fao.org/ag/againfo/themes/en/meat/backgr_composition.html (accessed on 19 February 2020).
- Tang, C.; Yang, D.; Liao, H.; Sun, H.; Liu, C.; Wei, L.; Li, F. Edible insects as a food source: A review. Food Prod. Process. Nutr. 2019, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- WHO. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation; WHO Technical Report Series; no. 935; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- van Huis, A. Insects as food in sub-Saharan Africa. Insect Sci. Applic. 2003, 23, 163–185. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B. Food taboos: Their origins and purposes. J. Ethnobiol. Ethnomed. 2009, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Jung, C.; Meyer-Rochow, V.B.; Dekebo, A. Perception of entomophagy by residents of Korea and Ethiopia revealed through structured questionnaire. J. Insects Food Feed 2020, 6, 59–64. [Google Scholar] [CrossRef]
- Fasoranti, J.O.; Ajiboye, D.O. Some edible insects of Kwara State, Nigeria. Am. Entomol. 1993, 39, 113–116. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B. Insects (and other non-crustacean arthropods) as human food. Ency. Food Secur. Sustain. 2019, 1, 416–421. [Google Scholar] [CrossRef]
- Teffo, L.S. Nutritional and medicinal value of the edible stinkbug, Encosternum delegorguei consumed in the Limpopo province of South Africa and its host plant Dodonaea viscosa Jacq. var. angustifolia. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2006. [Google Scholar]
- iNaturalist. Mopane Worm (Gonimbrasia belina). Available online: http://www.inaturalist.org/photos/4195884 (accessed on 5 December 2019).
- Lautenschläger, T.; Neinhuis, C.; Monizi, M.; Lau Mandombe, J.; Förster, A.; Henle, T.; Nuss, M. Edible insects of Northern Angola. Afr. Invertebr. 2017, 58, 55–82. [Google Scholar] [CrossRef] [Green Version]
- Coconut Pests and Diseases Toolkit (CPDT). Coconut Rhinoceros Beetle—Oryctes rhinoceros. Available online: http://coconutpests.org/pests-and-diseases-of-coconut/coconut-rhinoceros-beetle-oryctes (accessed on 15 November 2019).
- Félix, M. Edible insects diversity and their importance in Cameroon. In Edible Insects; Hueda, H.J., Ed.; IntechOpen: London, UK, 2019; pp. 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wikpedia. Macrotemes. Available online: https://en.m.wikipedia.org/wiki/Macrotermes (accessed on 16 November 2019).
- Wikipedia. Gryllus assimilis. Available online: https://en.m.wikipedia.org/wiki/Gryllus_assimilis. (accessed on 15 November 2019).
- Bruinsma, J. World Agriculture: Towards 2015/2030: An FAO Perspective; Earthscan: London, UK, 2003. [Google Scholar]
- da Silva Lucas, A.J.; de Oliveira, L.M.; da Rocha, M.; Prentice, C. Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chem. 2020, 311, 126022. [Google Scholar] [CrossRef]
- Chakravorty, J.; Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of Chondacris rosea and Brachytrupes orientalis: Two common insects used as food by tribes of Arunachal Pradesh, India. J. Asia-Pac. Entomol. 2014, 17, 407–415. [Google Scholar] [CrossRef]
- Ghosh, S.; Lee, S.-M.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia-Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Paul, A.; Frederich, M.; Megido, R.C.; Alabi, T.; Malik, P.; Uyttenbroeck, R.; Francis, F.; Blecker, C.; Haubruge, E.; Lognay, G.; et al. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. Larvae. J. Asia-Pac. Entomol. 2017, 20, 337–340. [Google Scholar] [CrossRef]
- De Smet, J.; Lenaerts, S.; Borremans, A.; Scholliers, J.; Van Der Borght, M.; Van Campenhout, L. Stability assessment and laboratory scale fermentation of pastes produced on a pilot scale from mealworms (Tenebrio molitor). LWT-Food Sci. Technol. 2019, 102, 113–121. [Google Scholar] [CrossRef]
- Jeong, K.Y.; Park, J.-W. Insect allergens on the dining table. Curr. Protein Pept. Sci. 2020, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
- FAO. Edible Insects: Future Prospects for Food and Feed Security; FAO: Rome, Italy, 2013. [Google Scholar]
- Latunde-Dada, G.O.; Yang, W.; Vera Aviles, M. In vitro iron availability from insects and sirloin beef. J. Agric. Food Chem. 2016, 64, 8420–8424. [Google Scholar] [CrossRef]
- Adebo, O.A.; Njobeh, P.B.; Adebiyi, J.A.; Gbashi, S.; Phoku, J.Z.; Kayitesi, E. Fermented pulse-based food products in developing nations as functional foods and ingredients. In Functional Food—Improve Health Through Adequate Food; Hueda, M.C., Ed.; InTech: Rijeka, Croatia, 2017; pp. 77–109. [Google Scholar]
- Popova, A.; Mihaylova, D. Antinutrients in plant-based foods: A review. Open Biotechnol. J. 2019, 13, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Ahn, M.Y.; Hwang, J.S.; Yun, E.Y.; Kim, M.-J.; Park, K.-K. Anti-aging effect and gene expression profiling of aged rats treated with G. bimaculatus extract. Toxicol. Res. 2015, 31, 173–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer-Rochow, V.B. Therapeutic arthropods and other, largely terrestrial, folk-medicinally important invertebrates: A comparative survey and review. J. Ethnobiol. Ethnomed. 2017, 13, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samodien, E.; Johnson, R.; Pheiffer, C.; Mabasa, L.; Erasmus, M.; Louw, J.; Chellan, N. Diet-induced hypothalamic dysfunction and metabolic disease, and the therapeutic potential of polyphenols. Mol. Metab. 2019, 27, 1–10. [Google Scholar] [CrossRef]
- Shantibala, T.; Lokeshwari, R.K.; Debaraj, H. Nutritional and antinutritional composition of the five species of aquatic edible insects consumed in Manipur, India. J. Insect Sci. 2014, 14, 14. [Google Scholar] [CrossRef]
- Di Mattia, C.; Battista, N.; Sacchetti, G.; Serafini, M. Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates. Front. Nutr. 2019, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Haber, M.; Mishyna, M.; Itzhak Martinez, J.J.; Benjamin, O. Edible larvae and pupae of honey bee (Apis mellifera): Odor and nutritional characterization as a function of diet. Food Chem. 2019, 292, 197–203. [Google Scholar] [CrossRef]
- Son, Y.-J.; Choi, S.Y.; Hwang, L.-K.; Nho, C.W.; Kim, S.H. Could defatted mealworm (Tenebrio molitor) and mealworm oil be used as food ingredients? Foods 2020, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Navarro del Hierro, J.; Gutiérrez-Docio, A.; Otero, P.; Reglero, G.; Martin, D. Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor. Food Chem. 2020, 309, 125742. [Google Scholar] [CrossRef]
- de Carvalho, N.M.; Walton, G.E.; Poveda, C.G.; Silva, S.N.; Amorim, M.; Madureira, A.R.; Pintado, M.E.; Gibson, G.R.; Jauregi, P. Study of in vitro digestion of Tenebrio molitor flour for evaluation of its impact on the human gut microbiota. J. Funct. Foods. 2019, 59, 101–109. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Hwang, B.B.; Chang, M.H.; Lee, J.H.; Heo, W.; Kim, J.K.; Pan, J.H.; Kim, Y.J.; Kim, J.H. The edible insect Gryllus bimaculatus protects against gut-derived inflammatory responses and liver damage in mice after acute alcohol exposure. Nutrients 2019, 11, 857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, M.Y.; Han, J.W.; Hwang, J.S.; Yun, E.Y.; Lee, B.M. Anti-inflammatory effect of glycosaminoglycan derived from Gryllus bimaculatus (a type of cricket, insect) on adjuvant-treated chronic arthritis rat model. J. Toxicol. Environ. Health A 2014, 77, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
- Goodman, W.G. Chitin: A magic bullet? Food Insects Newsl. 1989, 2, 6–7. [Google Scholar]
- Adebiyi, J.A.; Obadina, A.O.; Adebo, O.A.; Kayitesi, E. Fermented and malted millet products in Africa: Expedition from traditional/ethnic foods to industrial value-added products. Crit. Rev. Food Sci. Nutr. 2018, 58, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Adebo, O.A. African sorghum based fermented foods: Past, current and future prospects. Nutrients 2020, 12, 1111. [Google Scholar] [CrossRef]
- Klunder, H.C.; Wolkers-Rooijackers, J.; Korpela, J.M.; Nout, M.J.R. Microbiological aspects of processing and storage of edible insects. Food Control 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Borremans, A.; Lenaerts, S.; Crauwels, S.; Lievens, B.; Van Campenhout, L. Marination and fermentation of yellow mealworm larvae (Tenebrio molitor). Food Control 2018, 92, 47–52. [Google Scholar] [CrossRef]
- Adebo, O.A.; Njobeh, P.B.; Adeboye, A.S.; Adebiyi, J.A.; Sobowale, S.S.; Ogundele, O.M.; Kayitesi, E. Advances in fermentation technology for novel food products. In Innovations in Technologies for Fermented Food and Beverage Industries; Panda, S.K., Shetty, P.H., Eds.; Springer: Cham, Switzerland, 2018; pp. 71–87. [Google Scholar]
- Mouritsen, O.G.; Duelund, L.; Calleja, G.; Frøst, M.B. Flavour of fermented fish, insect, game, and pea sauces: Garum revisited. Int. J. Gastron. Food Sci. 2017, 9, 16–28. [Google Scholar] [CrossRef]
- Cho, H.-D.; Min, H.-J.; Won, Y.-S.; Ahn, H.-Y.; Cho, Y.-S.; Kwon-ll, S. Solid state fermentation process with Aspergillus kawachii enhances the cancer-suppressive potential of silkworm larva in hepatocellular carcinoma cells. BMC Complement. Altern. Med. 2019, 19, 1–15. [Google Scholar] [CrossRef]
- Cho, J.-H.; Zhao, H.-L.; Kim, J.-S.; Kim, S.-H.; Chung, C.-H. Characteristics of fermented seasoning sauces using Tenebrio molitor larvae. Innov. Food Sci. Emerg. Technol. 2018, 45, 186–195. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Cardinali, F.; Roncolini, A.; Garofalo, C.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; Raffaelli, N.; et al. Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. Innov. Food Sci. Emerg. Technol. 2018, 48, 150–163. [Google Scholar] [CrossRef]
- González, C.M.; Garzón, R.; Rosell, C.M. Insects as ingredients for bakery goods. a comparison study of H. illucens, Acheta domestica and Tenebrio molitor flours. Innov. Food Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- da Rosa Machado, C.; Thys, R.C.S. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads. Innov. Food Sci. Emerg. Technol. 2019, 56, 1–7. [Google Scholar] [CrossRef]
- de Oliveira, L.M.; da Silva Lucas, A.J.; Cadaval, C.L.; Mellado, M.S. Bread enriched with flour from cinereous cockroach (Nauphoeta cinerea). Innov. Food Sci. Emerg. Technol. 2017, 44, 30–35. [Google Scholar] [CrossRef]
- Haber, M.; Mishyna, M.; Itzhak Martinez, J.J.; Benjamin, O. The influence of grasshopper (schistocerca gregaria) powder enrichment on bread nutritional and sensorial properties. LWT-Food Sci. Technol. 2019, 115, 108395. [Google Scholar] [CrossRef]
- Wang, W.; Wang, N.; Liu, C.; Jin, J. Effect of silkworm pupae peptide on the fermentation and quality of yogurt. J. Food Process. Pres. 2017, 41, 1–7. [Google Scholar] [CrossRef]
- Roncolini, A.; Milanović, V.; Cardinali, F.; Osimani, A.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; et al. Protein fortification with mealworm (Tenebrio molitor) powder: Effect on textural, microbiological, nutritional and sensory features of bread. PLoS ONE 2019, 14, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Kinyuru, J.N.; Kenji, G.M.; Njoroge, M.S. Process development, nutrition and sensory qualities of wheat buns enriched with edible termites (Macrotermes subhylanus) from Lake Victoria region, Kenya. Afr. J. Food Agric. Nutr. Dev. 2009, 9, 1739–1750. [Google Scholar] [CrossRef] [Green Version]
- Ogunlakin, G.O.; Oni, V.T.; Olaniyan, S.A. Quality evaluation of biscuit fortified with edible termite (Macrotermes nigeriensis). AJB2T 2018, 4, 1–7. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Hakko, H. Can edible grasshoppers and silkworm pupae be tasted by humans when prevented to see and smell these insects? J. Asia-Pac. Entomol. 2018, 21, 616–619. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Garofalo, C.; Cardinali, F.; Roncolini, A.; Sabbatini, R.; De Filippis, F.; Ercolini, D.; Gabucci, C.; Petruzzelli, A.; et al. Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR. Int. J. Food Microbiol. 2018, 276, 54–62. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA) Scientific Committee. Scientific opinion on a risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef] [Green Version]
- Meticulous Market Research Pvt. Ltd. Edible Insects Market Worth $7.96 Billion by 2030- Exclusive Report by Meticulous Research®. Available online: https://www.globenewswire.com/news-release/2019/09/24/1919753/0/en/Edible-Insects-Market-Worth-7-96-Billion-by-2030-Exclusive-Report-by-Meticulous-Research.html (accessed on 9 December 2019).
- Imathiu, S. Benefits and food safety concerns associated with consumption of edible insects. NFS J. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Tan, H.S.G.; Fischer, A.R.; Tinchan, P.; Stieger, M.; Steenbekkers, L.; Van Trijp, H.C. Insects as food: Exploring cultural exposure and individual experience as determinants of acceptance. Food Qual. Prefer. 2015, 42, 78–89. [Google Scholar] [CrossRef]
- Gmuer, A.; Guth, J.N.; Hartmann, C.; Siegrist, M. Effects of the degree of processing of insect ingredients in snacks on expected emotional experiences and willingness to eat. Food Qual. Prefer. 2016, 54, 117–127. [Google Scholar] [CrossRef]
- Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. What governs selection and acceptance of edible insect species. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer: Berlin, Germany, 2018; pp. 331–351. [Google Scholar]
- Severini, C.; Azzollini, D.; Albenzio, M.; Derossi, A. On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Res. Int. 2018, 106, 666–676. [Google Scholar] [CrossRef]
- You, D.; Anthony, D. Generation 2025 and beyond. The ciritical importance of understanding demographic trends for children of the 21st century. Available online: https://www.unicef.org/media/files/Generation_2025_and_beyond_7_Dec_2012_e_version.pdf (accessed on 15 April 2020).
- Gahukar, R.T. Edible insects collected from forests for family livelihood and wellness of rural communities: A review. Glob. Food Secur. 2020, 100348, in press. [Google Scholar] [CrossRef]
Nutritional Components | Cirina Forda (Moth Caterpillar: Lepidoptera) | Encosternum Delegorguei (Stink-Bug: Hemiptera) | Gonimbrasia Belina (mopane Worm/Caterpillar: Lepidoptera) | Gryllus Assimilis (Cricket: Orthoptera) | Macrotermes Bellicosus (Termite: Isoptera) | Oryctes Rhinoceros (Palm Beetle: Coleoptera) | Rhynchophorus Phoenicis (Palm Weevils: Coleoptera) | Ruspolia Differens (Grasshopper: Orthoptera) | Beef | Chicken | Pork | Recommended Daily Intakes (mg/kg Body Mass of Adult/Day) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Proximate composition (%) | ||||||||||||
Protein | 69.31 | 35.20 | 55.41 | 71.04 | 31.06 | 52.00 | 45.44 | 44.30 | 22.30 | 22.80 | 22.80 | |
Fat | 10.64 | 50.50 | 16.37 | 7.00 | 39.82 | 10.84 | 41.84 | 46.20 | 1.80 | 0.90 | 1.20 | |
Energy (kcal/100 g) | 406.84 | 625.82 | 401.61 | 397.00 | 496.50 | 313.44 | 584.68 | - | 115.92 | 104.92 | 112.09 | |
Fiber | 5.97 | - | - | 8.28 | 1.69 | 17.94 | 7.55 | 4.90 | - | - | - | |
Dry matter | - | 95.10 | - | - | - | - | - | - | - | - | - | |
Carbohydrate | 8.48 | 7.63 | 8.16 | 12.46 | 3.48 | 1.97 | 6.59 | - | - | - | - | |
Moisture | 4.02 | 4.90 | - | 3.50 | 22.79 | 5.42 | 26.00 | - | 75.00 | 75.00 | 75.10 | |
Ash | 6.16 | 1.70 | 8.26 | 6.00 | 1.18 | 11.83 | 5.71 | 2.60 | 1.20 | 1.20 | 1.00 | |
Essential amino acid (g/100 g) | ||||||||||||
Histidine | 2.08 | - | - | 2.52 | 29.60 | - | 1.10 | - | 2.90 | 4.40 | 3.20 | 10 |
Isoleucine | 3.68 | 0.83 | - | 3.36 | 49.00 | - | 2.40 | - | 5.10 | 4.20 | 4.90 | 20 |
Leucine | 5.91 | 1.05 | - | 6.62 | 62.10 | - | 4.70 | - | 8.40 | 6.90 | 7.50 | 39 |
Lysine | 4.59 | 0.85 | - | 5.29 | 40.80 | - | 4.20 | - | 8.40 | 7.80 | 7.90 | 30 |
Methionine | 0.62 | 0.40 | - | 2.29 | 30.30 | - | 2.10 | - | 2.30 | 2.10 | 2.50 | 10 |
Phenylalanine | 4.64 | 0.81 | - | 3.37 | 40.50 | - | 6.50 | - | 4.00 | 2.50 | 4.10 | 25 |
Threonine | 5.19 | 0.82 | - | 3.09 | 17.10 | - | 2.90 | - | 4.00 | 3.70 | 5.10 | 15 |
Tryptophan | 1.84 | 0.16 | - | 2.53 | - | - | - | - | - | - | - | 4 |
Valine | 5.10 | 1.32 | - | 4.63 | 41.50 | - | 4.10 | - | 5.70 | 4.60 | 5.00 | 26 |
Total EAA | 33.65 | 6.24 | - | 33.70 | 310.90 | - | 28.00 | - | 40.80 | 36.20 | 40.20 | 179 |
Non-essential amino acid (g/100 g) | ||||||||||||
Alanine | 3.80 | - | - | 6.23 | 48.60 | - | 7.60 | - | - | - | - | |
Arginine | 5.35 | - | - | 4.14 | 39.40 | - | 2.40 | - | 6.60 | 6.40 | 6.40 | |
Aspartic acid | 7.82 | - | - | 8.25 | 69.60 | - | - | - | - | - | - | |
Cystine | 0.66 | - | - | 1.14 | 17.30 | - | 2.50 | - | - | - | - | |
Glutamic acid | 8.94 | - | - | 10.60 | 179.20 | - | - | - | - | - | - | |
Glycine | 5.29 | - | - | 4.03 | 53.80 | - | 4.80 | - | - | - | - | |
Proline | 3.26 | - | - | 5.09 | 19.10 | - | 10.20 | - | - | - | - | |
Serine | 3.80 | - | - | 3.80 | 38.70 | - | 3.30 | - | - | - | - | |
Tyrosine | 3.81 | - | - | 4.23 | 25.70 | - | 6.00 | - | 3.20 | 3.50 | 3.00 | |
Total NEAA | 42.73 | - | - | 47.51 | 491.40 | - | 36.80 | - | 9.80 | 9.90 | 9.40 | |
Mineral composition (mg/100 g) | ||||||||||||
Calcium | 22.43 | 91.00 | 16.00 | 0.09 | 18.40 | 12.54 | 59.65 | 24.50 | - | - | - | 1300.00 |
Chlorine | - | 85.40 | - | - | - | - | - | - | - | - | - | - |
Cadmium | - | - | - | - | 8.40 | - | - | - | - | - | - | - |
Chromium | 0.01 | - | - | 0.01 | 3.70 | - | - | - | - | - | - | |
Copper | 0.03 | 4.40 | - | 0.02 | 89.95 | 0.01 | - | 0.47 | - | - | - | 1.10 |
Iron | 3.61 | 20.20 | 12.70 | 0.15 | 42.38 | 8.57 | 20.03 | 13.01 | - | - | - | 33.00 |
Magnesium | 40.88 | 109.00 | 4.10 | 8.92 | 185.50 | 10.13 | 101.62 | 33.06 | - | - | - | 240.00 |
Manganese | 0.64 | 0.80 | - | 0.00 | 119.13 | 0.39 | 2.92 | 2.46 | - | - | - | 2.20 |
Phosphorus | 108.57 | 575.00 | 14.70 | - | 385.15 | 75.57 | 417.60 | 121.00 | - | - | - | 700.00 |
Potassium | 223.34 | 275.00 | 35.20 | 367.13 | 229.00 | 25.44 | 546.78 | 259.70 | - | - | - | 4700.00 |
Selenium | - | 0.20 | - | - | 0.01 | - | - | - | - | - | - | 0.03 |
Sodium | 25.79 | 55.30 | 33.30 | 0.42 | 396.10 | 21.37 | 56.18 | 229.70 | - | - | - | 1500.00 |
Sulfate | - | 66.70 | - | - | - | - | - | - | - | - | - | - |
Zinc | 1.99 | 46.00 | 1.90 | 0.24 | 7.65 | 10.10 | 10.15 | 12.38 | - | - | - | 8.50 |
Vitamins (mg/100 g) | ||||||||||||
Vitamin A | 0.24 | 0.23 | - | 2.90 | 11.37 | - | - | 2.75 | - | - | - | |
Vitamin B1 | - | 0.63 | - | - | 0.87 | - | - | - | - | - | - | |
Vitamin B2 | - | 0.86 | - | 0.23 | 0.32 | - | - | 1.36 | - | - | - | |
Vitamin B3 | - | - | - | - | 1.59 | - | - | 2.36 | - | - | - | |
Vitamin B6 | - | - | - | - | 1.09 | - | - | 0.16 | - | - | - | |
Vitamin B9 | - | - | - | - | - | - | - | 0.92 | - | - | - | |
Vitamin B12 (g/100 g) | 0.00 | - | - | 0.01 | - | - | - | - | - | - | - | |
Vitamin C | 1.01 | - | - | 1.01 | 3.58 | - | - | 0.14 | - | - | - | |
Vitamin D | - | - | - | - | 2.22 | - | - | - | - | - | - | |
Vitamin E (g/100 g) | 0.36 | 2.17 | - | 0.33 | 3.60 | - | - | 0.15 | - | - | - | |
Vitamin K (g/100 g) | 0.02 | - | - | 0.04 | - | - | - | - | - | - | - | |
Anti-nutritional composition (mg/100 g) | ||||||||||||
Alkaloids | 8.33 | - | - | - | - | 190.00 | 15.76 | - | - | - | - | |
Cyanogenic glycosides/hydrogen cyanide | 11.75 | - | - | 3.76 | - | - | - | - | - | - | - | |
Flavonoids | 3.44 | - | - | - | - | 240.00 | 5.39 | - | - | - | - | |
Oxalate | 13.50 | - | - | 20.93 | - | 1.09 | 9.74 | - | - | - | - | |
Phytate | 12.77 | - | - | 0.10 | - | 16.10 | 19.39 | - | - | - | - | |
Phytin phosphorus | - | - | - | - | - | 4.53 | - | - | - | - | - | |
Polyphenol | 0.37 | - | - | - | - | - | 0.56 | - | - | - | - | |
Tannins | 0.51 | - | - | 0.49 | - | 0.64 | 0.61 | - | - | - | - | |
Saponins (g/100 g) | 1.21 | - | - | 1.00 | - | 1.34 | 0.02 | - | - | - | - | |
[12,13,14] | [6] | [15] | [12,13] | [16,17] | [18] | [14,19] | [20] | [21] | [22] | [22] | [23] |
Insect Species | Administered Form | Health Benefits | References |
---|---|---|---|
Apis mellifera | Powder | High antioxidant activity and beneficial fatty acids linked with reduced blood lipids. | Haber et al. [52] |
Acheta domesticus and Tenebrio molitor | Extract | Demonstrated antioxidant activity and inhibitory effect of pancreatic lipase enzyme. | Navarro del Hierro et al. [54] |
Gryllus assimilis | Powder | Lowered serum low density lipoprotein cholesterol concentration. | Oibiokpa et al. [13] |
Gryllus bimaculatus | Extracts | Potent against gut-derived inflammatory responses in the liver and intestinal permeability to bacteria endotoxin in the small intestine. | Hwang et al. [55] |
Gryllus bimaculatus | Extract | Anti-aging and anti-inflammatory effects. | Ahn et al. [47,58] |
Tenebrio molitor | Flour | Increase in health-promoting bacterial groups and formation of vital end products. | de Carvalho et al. [55] |
Tenebrio molitor and Gryllodes sigillatus | Hydrolysates | Stimulated the growth of human skin fibroblasts. | Zielińska et al. [56] |
Insect Species | Starter Culture | Fermentation Process and Condition | Food Products | Findings | References |
---|---|---|---|---|---|
Galleria mellonella (wax moth larvae), Locusta migratoria (grasshoppers) | Aspergillus oryzae | Submerge 40 °C for 10 weeks | Sauces | High amount of glutamate and aspartate and distinct good flavor characteristics. | Mouritsen et al. [65] |
Bombyx mori (mulberry silkworm larvae) | Aspergillus kawachii | Solid state 30 °C for 3 days | Fermented powder and ethanol extract | Increased fatty acid content and reduction in free amino acid and mineral compositions. In vitro anti-cancer activity revealed characteristics cell death in human liver cancer cells. | Cho et al. [66] |
Tenebrio molitor (yellow mealworm larvae) | Bactoferm F-LC (Pediococcus acidilactici, Lactobacillus curvatus and Staphylococcus xylosus) | Submerge 35 °C for 2 weeks | Fermented paste | Gave fast acidification and effectively inhibiting bacterial endospores and sulfite reducing clostridia. | Borremans et al. [63] |
Tenebrio molitor (mealworm larvae) | Aspergillus oryzae and Bacillus licheniformis | Submerge 25 °C for 20 days | Seasoning sauces | Higher percentage nitrogen degradation rates while essential, non-essential amino acids and amino acid derivatives increased by 1.5–2.0 times. | Cho et al. [67] |
Tenebrio molitor (mealworm larvae) | Bactoferm F-LC (Pediococcus acidilactici, Lactobacillus curvatus and Staphylococcus xylosus) | Submerge 35 °C for 2 weeks | Fermented paste | Mealworm paste was demonstrated to be suited for fermentation. | De Smet et al. [41] |
Insect Species | Fermentation Type and Condition | Form of Addition | Fermented Products | Findings | References |
---|---|---|---|---|---|
Acheta domesticus (cricket) | Starter cultures 30 °C for 2 h | Powder | Composite bread | Composite bread displayed higher fatty acid, protein and essential amino acid contents. Presence of spore-forming bacteria in the substituted loaves was confirmed. 10% inclusion resulted in dough suitable for bread making and loaves with discrete overall liking. | Osimani et al. [68] |
Acheta domestica (adult house cricket), Hermetia illucens (black soldier fly larvae), Tenebrio molitor (mealworm beetle) | Starter culture 30 °C for 90 min | Flour | Composite bread | 5% insects’ flour affected dough water absorption and stability, though were suitable for bread making. Bread containing A. domestica presented higher amount of proteins and fibers and similar specific volume and texture indices. | González et al. [69] |
Gryllus assimilis (cricket) | Starter culture 32 °C for 1 h | Powder | Composite-gluten free bread | Inclusion level at 10% and 20% gave gluten-free bread with acceptable reduced hardness and chewiness. 20% substitution ratio resulted in a more than twofold increase in protein and lipid content. | da Rosa Machado and Thys [70] |
Nauphoeta cinerea (cinereous cockroach) | Starter culture 30 °C for 95 min | Flour | Composite bread | 10% roasted insect flour showed satisfactory sanitary conditions. Enriched bread gave a good profile of amino acids and fatty acid contents, no negative alterations in technical characteristics and was moderately liked. | de Oliveira et al. [71] |
Schistocerca gregaria (grasshopper) | Starter culture 1st phase: 35 °C for 45 min 2nd phase: 35 °C for 45 min | Powder | Composite bread | The inclusion level of the powder decreased the specific volume and resulted in composite breads with softer texture. 200g/kg addition showed a 60% increase in protein content. | Haber et al. [72] |
Bombyx mori (silkworm pupae) | Starter culture 43 °C for overnight | Peptide | Yoghurt | Incorporation of the insect peptide increased acidification with a relative reduction in fermentation time. Yoghurt containing 0.5% peptide showed improved ACE inhibitory activity and amino acid content, better firmness and consistency. | Wang et al. [73] |
Tenebrio molitor (mealworm larvae) | Natural starter (backslopping) 30 °C for 2 days | Powder | Composite flour | Successful acidification was achieved with 10 or 20% inclusion of powdered roasted mealworm larvae and thus effectively controlled the growth of Enterobacteriaceae and bacterial spores. | Klunder et al. [62] |
Tenebrio molitor (mealworm) | Starter culture 30 °C for 1 h | Powder | Composite bread | 10% mealworm bread gave the highest protein content and free amino acids while 5% addition revealed the highest specific volume and lowest firmness. Inclusion level did not negatively affect the technological features of doughs or breads, but some sensory parameters were significantly affected. | Roncolini et al. [74] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kewuyemi, Y.O.; Kesa, H.; Chinma, C.E.; Adebo, O.A. Fermented Edible Insects for Promoting Food Security in Africa. Insects 2020, 11, 283. https://doi.org/10.3390/insects11050283
Kewuyemi YO, Kesa H, Chinma CE, Adebo OA. Fermented Edible Insects for Promoting Food Security in Africa. Insects. 2020; 11(5):283. https://doi.org/10.3390/insects11050283
Chicago/Turabian StyleKewuyemi, Yusuf Olamide, Hema Kesa, Chiemela Enyinnaya Chinma, and Oluwafemi Ayodeji Adebo. 2020. "Fermented Edible Insects for Promoting Food Security in Africa" Insects 11, no. 5: 283. https://doi.org/10.3390/insects11050283
APA StyleKewuyemi, Y. O., Kesa, H., Chinma, C. E., & Adebo, O. A. (2020). Fermented Edible Insects for Promoting Food Security in Africa. Insects, 11(5), 283. https://doi.org/10.3390/insects11050283