Sylvatic Mosquito Diversity in Kenya—Considering Enzootic Ecology of Arboviruses in an Era of Deforestation
Abstract
:1. Introduction
2. Materials and Methods
Mosquitoes
Virus Detection and Identification
Statistical Analysis
3. Results
3.1. Mosquito Species
3.2. Virus Detection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lwande, O.W.; Irura, Z.; Tigoi, C.; Chepkorir, E.; Orindi, B.O.; Musila, L.; Venter, M.; Fischer, A.; Sang, R. Seroprevalence of Crimean Congo hemorrhagic fever virus in Ijara District, Kenya. Vector Borne Zoonotic Dis. 2012, 12, 727–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conn, J.E.; Norris, U.E.; Donnelly, M.J.; Beebe, N.W.; Burkot, T.R.; Coulibaly, M.B.; Chery, L.; Eapen, A.; Keven, J.B.; Kilama, M.; et al. Entomological monitoring and evaluation: Diverse transmission settings of ICEMR Projects will require local and regional malaria elimination strategies. Am. J. Trop. Med. Hyg. 2015, 93, 28–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gachohi, J.; Skilton, R.A.; Hansen, F.; Ngumi, P.; Kitala, P.M. Epidemiology of East Coast fever (Theileria parva infection) in Kenya: Past, present and the future. Parasites Vectors 2012, 5, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwandawiro, C.S.; Fujimaki, Y.; Mitsui, Y.; Katsivo, M. Mosquito vectors of bancroftian filariasis in Kwale District, Kenya. East. Afr. Med. J. 1997, 74, 288–293. [Google Scholar]
- Himeidan, Y.E.S.; Kweka, E.J.; Mahgoub, M.M.; El Rayah, E.A.; Ouma, J.O. Recent outbreaks of Rift Valley Fever in East Africa and the Middle East. Front. Public Health 2014, 2, 169. [Google Scholar] [CrossRef] [Green Version]
- Nyamwaya, D.K.; Wang’Ondu, V.; Amimo, J.O.; Michuki, G.; Ogugo, M.; Ontiri, E.; Sang, R.; Lindahl, J.F.; Grace, D.; Bett, B. Detection of West Nile virus in wild birds in Tana River and Garissa Counties, Kenya. BMC Infect. Dis. 2016, 16, 696. [Google Scholar] [CrossRef] [Green Version]
- Kwagonza, L.; Masiira, B.; Kyobe-Bosa, H.; Kadobera, D.; Atuheire, E.B.; Lubwama, B.; Kagirita, A.; Katushabe, E.; Kayiwa, J.; Lutwama, J.J.; et al. Outbreak of yellow fever in central and southwestern Uganda, February 2016. BMC Infect. Dis. 2018, 18, 548. [Google Scholar] [CrossRef]
- LaBeaud, A.D.; Banda, T.; Brichard, J.; Muchiri, E.M.; Mungai, P.L.; Mutuku, F.M.; Borland, E.; Gildengorin, G.; Pfeil, S.; Teng, C.Y.; et al. High rates of o’nyong nyong and chikungunya virus transmission in Coastal Kenya. PLoS Negl. Trop. Dis. 2015, 9, e0003436. [Google Scholar] [CrossRef]
- Powers, A.M.; Brault, A.C.; Tesh, R.B.; Weaver, S.C. Re-emergence of chikungunya and o’nyong-nyong viruses: Evidence for distinct geographical lineages and distant evolutionary relationships. J. Gen. Virol. 2000, 81, 471–479. [Google Scholar] [CrossRef]
- Diallo, M.; Traore-Lamizana, M.; Fontenille, D.; Thonnon, J. Vectors of Chikungunya virus in Senegal: Current data and transmission cycles. Am. J. Trop. Med. Hyg. 1999, 60, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Vasilakis, N.; Cardosa, J.; Hanley, K.A.; Holmes, E.C.; Weaver, S.C. Fever from the forest: Prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat. Rev. Genet. 2011, 9, 532–541. [Google Scholar] [CrossRef]
- Kanesa-Thasan, N.; Chang, G.J.; Smoak, B.L.; Magill, A.; Burrous, M.J.; Hoke, C.H. Molecular and epidemiologic analysis of dengue virus isolates from Somalia. Emerg. Infect. Dis. 1998, 4, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Mboera, L.E.G.; Mweya, C.; Rumisha, S.F.; Tungu, P.K.; Stanley, G.; Makange, M.R.; Misinzo, G.; De Nardo, P.; Vairo, F.; Oriyo, N.M. The risk of dengue virus transmission in Dar es Salaam, Tanzania during an epidemic period of 2014. PLoS Negl. Trop. Dis. 2016, 10, e0004313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eastwood, G.; Taracha, E.L.N.; Weaver, S.C.; Sang, R.C.; Guerbois, M. Enzootic circulation of chikungunya Virus in East Africa: Serological evidence in non-human Kenyan primates. Am. J. Trop. Med. Hyg. 2017, 97, 1399–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, S.C. Evolutionary influences in arboviral disease. Mol. Asp. Myeloid Stem Cell Dev. 2006, 299, 285–314. [Google Scholar] [CrossRef]
- Holland, J.; Domingo, E. Origin and evolution of viruses. Virus Genes 1998, 16, 13–21. [Google Scholar] [CrossRef]
- Daszak, P. Emerging Infectious Diseases of Wildlife—Threats to biodiversity and human health. Science 2000, 287, 443–449. [Google Scholar] [CrossRef]
- Gerrard, S.R.; Li, L.; Barrett, A.D.; Nichol, S.T. Ngari virus is a Bunyamwera Virus reassortant that can be associated with large outbreaks of Hemorrhagic Fever in Africa. J. Virol. 2004, 78, 8922–8926. [Google Scholar] [CrossRef] [Green Version]
- Wijers, D.J.; Kiilu, G. Studies on the vector of kala-azar in Kenya, VIII. The outbreak in Machakos District; epidemiological features and a possible way of control. Ann. Trop. Med. Parasitol. 1984, 78, 597–604. [Google Scholar] [CrossRef]
- Reiter, P.; Cordellier, R.; Ouma, J.O.; Cropp, C.B.; Savage, H.M.; Sanders, E.J.; Marfin, A.A.; Tukei, P.M.; Agata, N.N.; Gitau, L.G.; et al. First recorded outbreak of yellow fever in Kenya, 1992–1993. II. Entomologic investigations. Am. J. Trop. Med. Hyg. 1998, 59, 650–656. [Google Scholar] [CrossRef] [Green Version]
- Ochieng, C.; Lutomiah, J.; Makio, A.; Koka, H.; Chepkorir, E.; Yalwala, S.; Mutisya, J.; Musila, L.; Khamadi, S.; Richardson, J.; et al. Mosquito-borne arbovirus surveillance at selected sites in diverse ecological zones of Kenya; 2007–2012. Virol. J. 2013, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- LaBeaud, A.D.; Sutherland, L.J.; Muiruri, S.; Muchiri, E.M.; Gray, L.R.; Zimmerman, P.A.; Hise, A.; King, C.H. Arbovirus prevalence in mosquitoes, Kenya. Emerg. Infect. Dis. 2011, 17, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Lutomiah, J.; Bast, J.; Clark, J.; Richardson, J.; Yalwala, S.; Oullo, D.; Mutisya, J.; Mulwa, F.; Musila, L.; Khamadi, S.; et al. Abundance, diversity, and distribution of mosquito vectors in selected ecological regions of Kenya: Public health implications. J. Vector Ecol. 2013, 38, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Iwashita, H.; Higa, Y.; Futami, K.; Lutiali, P.A.; Njenga, S.M.; Nabeshima, T.; Minakawa, N. Mosquito arbovirus survey in selected areas of Kenya: Detection of insect-specific virus. Trop. Med. Health 2018, 46, 19. [Google Scholar] [CrossRef] [PubMed]
- Mwangangi, J.M.; Midega, J.; Kahindi, S.; Njoroge, L.; Nzovu, J.; Githure, J.; Mbogo, C.M.; Beier, J.C. Mosquito species abundance and diversity in Malindi, Kenya and their potential implication in pathogen transmission. Parasitol. Res. 2011, 110, 61–71. [Google Scholar] [CrossRef]
- Agha, S.B.; Tchouassi, D.P.; Bastos, A.D.S.; Sang, R. Dengue and yellow fever virus vectors: Seasonal abundance, diversity and resting preferences in three Kenyan cities. Parasites Vectors 2017, 10, 628. [Google Scholar] [CrossRef] [Green Version]
- Ajamma, Y.; Villinger, J.; Omondi, D.; Salifu, D.; Onchuru, T.O.; Njoroge, L.; Muigai, A.W.T.; Masiga, D.K. Composition and genetic diversity of mosquitoes (Diptera: Culicidae) on islands and mainland shores of Kenya’s lakes Victoria and Baringo. J. Med. Èntomol. 2016, 53, 1348–1363. [Google Scholar] [CrossRef] [Green Version]
- Sergon, K.; Onyango, C.; Breiman, R.F.; Ofula, V.; Bedno, S.; Konongoi, L.S.; Burke, H.; Konde, J.; Sang, R.; Dumilla, A.M.; et al. Seroprevalence of chikungunya virus (CHIKV) infection on Lamu Island, Kenya, October 2004. Am. J. Trop. Med. Hyg. 2008, 78, 333–337. [Google Scholar] [CrossRef]
- Tsetsarkin, K.A.; VanLandingham, D.L.; McGee, C.E.; Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007, 3, e201. [Google Scholar] [CrossRef]
- Tsetsarkin, K.A.; Chen, R.; Yun, R.; Rossi, S.L.; Plante, K.S.; Guerbois, M.; Forrester, N.; Perng, G.C.; Sreekumar, E.; Leal, G.; et al. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat. Commun. 2014, 5, 4084. [Google Scholar] [CrossRef]
- Edwards, F. Mosquitoes of the Ethiopian Region; Oxford University Press: Oxford, UK, 1941. [Google Scholar]
- Eastwood, G.; Sanjur, O.I.; Pecor, J.E.; Loaiza, J.R.; Pongsiri, M.J.; Auguste, A.J.; Kramer, L.D. Enzootic arbovirus surveillance in forest habitat and phylogenetic characterization of novel isolates of Gamboa virus in Panama. Am. J. Trop. Med. Hyg. 2016, 94, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Willott, S. Species accumulation curves and the measure of sampling effort. J. Appl. Ecol. 2001, 38, 484–486. [Google Scholar] [CrossRef]
- Willott, S.J. The effects of selective logging on the distribution of moths in a Bornean rainforest. Philos. Trans. R. Soc. B Boil. Sci. 1999, 354, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Colwell, R.K.; Elsensohn, J.E. EstimateS turns 20: Statistical estimation of species richness and shared species from samples, with non-parametric extrapolation. Ecography 2014, 37, 609–613. [Google Scholar] [CrossRef]
- Biggerstaff, B.J. PooledInfRate, Version 4.0: A Microsoft® Office Excel© Add-In to Compute Prevalence Estimates from Pooled Samples; Centers for Disease Control and Prevention: Fort Collins, CO, USA, 2009.
- Contigiani, M.S.; Diaz, L.A.; Tauro, L.B. Bunyaviruses. In Arthropod Borne Diseases; Marcondes, C.B., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 137–154. [Google Scholar] [CrossRef]
- Shope, R. Bunyaviruses. In Medical Microbiology, 4th ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Odhiambo, C.; Venter, M.; Lwande, O.; Swanepoel, R.; Sang, R. Phylogenetic analysis of Bunyamwera and Ngari viruses (family Bunyaviridae, genus Orthobunyavirus) isolated in Kenya. Epidemiol. Infect. 2015, 144, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Davies, F.G.; Jessett, D.M. A study of the host range and distribution of antibody to Akabane virus (genus bunyavirus, family Bunyaviridae) in Kenya. J. Hyg. 1985, 95, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Crabtree, M.; Sang, R.; Lutomiah, J.; Richardson, J.; Miller, B. Arbovirus surveillance of mosquitoes collected at sites of active Rift Valley fever virus transmission: Kenya, 2006–2007. J. Med. Èntomol. 2009, 46, 961–964. [Google Scholar] [CrossRef]
- Chancey, C.; Grinev, A.; Volkova, E.; Rios, M. The global ecology and epidemiology of West Nile virus. BioMed Res. Int. 2015, 2015, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Diagne, C.T.; Weaver, S.C.; Dia, I.; Knight, R.; Guerbois, M.; Diallo, D.; Faye, O.; Sall, A.A.; Diallo, M.; Faye, O.; et al. Vector Competence of Aedes aegypti and Aedes vittatus (Diptera: Culicidae) from Senegal and Cape Verde Archipelago for West African Lineages of Chikungunya Virus. Am. J. Trop. Med. Hyg. 2014, 91, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Díez-Fernández, A.; La Puente, J.M.; Ruíz, S.; Gutiérrez-López, R.; Soriguer, R.C.; Figuerola, J. Aedes vittatus in Spain: Current distribution, barcoding characterization and potential role as a vector of human diseases. Parasites Vectors 2018, 11, 297. [Google Scholar] [CrossRef] [Green Version]
- Braack, L.; Almeida, A.; Cornel, A.J.; Swanepoel, R.; De Jager, C. Mosquito-borne arboviruses of African origin: Review of key viruses and vectors. Parasites Vectors 2018, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Lutomiah, J.L.; Koka, H.; Mutisya, J.; Yalwala, S.; Muthoni, M.; Makio, A.; Limbaso, S.; Musila, L.; Clark, J.W.; Turell, M.J.; et al. Ability of selected Kenyan mosquito (Diptera: Culicidae) species to transmit West Nile virus under laboratory conditions. J. Med. Èntomol. 2011, 48, 1197–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mossel, E.C.; Crabtree, M.B.; Mutebi, J.-P.; Lutwama, J.J.; Borland, E.; Powers, A.M.; Miller, B.R. Arboviruses isolated from mosquitoes collected in Uganda, 2008–2012. J. Med. Èntomol. 2017, 54, 1403–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diallo, D.; Diagne, C.T.; Buenemann, M.; Ba, Y.; Dia, I.; Faye, O.; A Sall, A.; Faye, O.; Watts, D.M.; Weaver, S.C.; et al. Biodiversity pattern of mosquitoes in southeastern Senegal, epidemiological implication in arbovirus and malaria transmission. J. Med. Èntomol. 2018, 56, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.; Samudio, R.; Carrera, J.P.; Young, J.; Marquez, R.; Hurtado, L.; Weaver, S.; Chaves, L.F.; Tesh, R.; Carrera, L.C. Enzootic mosquito vector species at equine encephalitis transmission foci in the República de Panamá. PLoS ONE 2017, 12, e0185491. [Google Scholar] [CrossRef] [Green Version]
- McMillan, J.R.; Armstrong, P.M.; Andreadis, T.G. Patterns of mosquito and arbovirus community composition and ecological indexes of arboviral risk in the northeast United States. PLoS Negl. Trop. Dis. 2020, 14, e0008066. [Google Scholar] [CrossRef]
- Tchetgna, H.D.S.; Nakoune, E.; Selekon, B.; Gessain, A.; Manuguerra, J.-C.; Kazanji, M.; Berthet, N. Molecular characterization of the Kamese virus, an unassigned Rhabdovirus, isolated from Culex pruina in the Central African Republic. Vector Borne Zoonotic Dis. 2017, 17, 447–451. [Google Scholar] [CrossRef]
- Wagner, P.; Köhler, J.; Schmitz, A.; Böhme, W. The biogeographical assignment of a west Kenyan rain forest remnant: Further evidence from analysis of its reptile fauna. J. Biogeogr. 2008, 35, 1349–1361. [Google Scholar] [CrossRef]
- Faust, C.L.; McCallum, H.; Bloomfield, L.S.P.; Gottdenker, N.L.; Gillespie, T.R.; Torney, C.J.; Dobson, A.P.; Plowright, R.K. Pathogen spillover during land conversion. Ecol. Lett. 2018, 21, 471–483. [Google Scholar] [CrossRef] [Green Version]
- Loaiza, J.R.; Dutari, L.C.; Rovira, J.R.; Sanjur, O.I.; LaPorta, G.; Pecor, J.; Foley, D.H.; Eastwood, G.; Kramer, L.D.; Radtke, M.; et al. Disturbance and mosquito diversity in the lowland tropical rainforest of central Panama. Sci. Rep. 2017, 7, 7248. [Google Scholar] [CrossRef] [Green Version]
- Vittor, A.Y.; Pan, W.; Gilman, R.H.; Tielsch, J.; Glass, G.; Shields, T.; Sánchez-Lozano, W.; Pinedo, V.V.; Salas-Cobos, E.; Flores, S.; et al. Linking deforestation to malaria in the Amazon: Characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am. J. Trop. Med. Hyg. 2009, 81, 5–12. [Google Scholar]
- Macdonald, A.J.; Mordecai, E.A. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl. Acad. Sci. USA 2019, 116, 22212–22218. [Google Scholar] [CrossRef]
- Afrane, Y.A.; Githeko, A.K.; Yan, G. The ecology of Anopheles mosquitoes under climate change: Case studies from the effects of deforestation in East African highlands. Ann. N. Y. Acad. Sci. 2012, 1249, 204–210. [Google Scholar] [CrossRef]
- Kovalev, S.; Mukhacheva, T.A. Tick-borne encephalitis virus subtypes emerged through rapid vector switches rather than gradual evolution. Ecol. Evol. 2014, 4, 4307–4316. [Google Scholar] [CrossRef]
Virus | Primer | Primer Sequence | Cycling Conditions | |||
---|---|---|---|---|---|---|
Alphavirus | Vir2052F | TGG CGC TAT GAT GAA ATC TGG AAT GTT | 95 °C (10 min) | 95 °C (30 s) 49 °C (30 s) 72 °C (30 s) for 35 cycles | 72 °C (10 min) | 4 °C (hold) |
Vir2052R | TAC GAT GTT GTC GTC GCC GAT GAA | |||||
Flavivirus | Fu1 | TAC AAC ATG ATG GGA AAG AGA GAG AA | 95 °C (10 min) | 95 °C (30 s) 55 °C (30 s) 68 °C (45 s) for 35 cycles | 72 °C (7 min) | 4 °C (hold) |
CDF2 | GTG TCC CAG CCG GCG GTG TCA TCA GC | |||||
Ortho-bunyavirus | BCS82c | ATG ACT GAG TTG GAG TTT CAT GAT GTC GC | ||||
BCS332v | TGT TCC TGT TGC CAG GAA AAT |
Region | Site | Effort (Nights) | Month Sampled | No. Individual Mosquitoes Collected | Species Richness | Predominant Species at the Site | Species Diversity | ||
---|---|---|---|---|---|---|---|---|---|
Western | Isecheno | 7 | August | 427 | 17 | Culex vansomereni | Coquillettidia fuscopennata | Culex annulioris | 1.652 |
Kakamega | 6 | Aug/Sept | 1363 | 26 | Culex vansomereni | Coquillettidia fuscopennata | Culex pipiens | 1.936 | |
Kisere | 1 | March | 112 | 8 | Culex vansomereni | Coquillettidia fuscopennata | Culex pipiens | 1.354 | |
Malava | 2 | March | 454 | 21 | Culex vansomereni | Aedes aegypti | Culex annulioris | 1.914 | |
Kitale | 2 | March | 340 | 16 | Aedes cumminsi | Culex pipiens | Culex vansomereni | 2.011 | |
Rift Valley | Teresia | 1 | March | 375 | 5 | Culex vansomereni | Culex annulioris | Anopheles funestus | 0.239 |
Kimonde | 2 | March | 2203 | 8 | Culex vansomereni | Culex univittatus | Culex bitaeniorhynchus | 0.248 | |
Lugari | 1 | March | 20 | 3 | Culex vansomereni | Aedes cumminsi | - | - | |
Nandi | 1 | March | 4927 | 5 | Culex vansomereni | Culex univittatus | Culex pipiens | 0.852 | |
Central | Ololua | 9 | Feb/March | 3066 | 23 | Culex vansomereni | Aedes tricholabis | Aedes dentatus | 0.609 |
Coastal | Shimba | 4 | December | 98 | 13 | Culex pipiens | Culex vansomereni | Culex zombaensis | 1.650 |
Sokoke | 10 | July/August | 697 | 22 | Culex annulioris | Culex vansomereni | Aedes chaussieri | 1.915 |
Virus Type | Mosquito Species | Pool Size (No. of Mosquitoes) | Cell Line |
---|---|---|---|
Orthobunyavirus | Culex annulioris | 1 | Vero |
Culex vansomereni | 1 | Vero | |
Anopheles funestus | 1 [male] | Vero | |
Aedes dentatus | 12 | Vero | |
Culex vansomereni | 25 | C6/36 | |
Flavivirus and Orthobunyavirus co-infection | Culex vansomereni | 25 | Vero |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eastwood, G.; Sang, R.C.; Lutomiah, J.; Tunge, P.; Weaver, S.C. Sylvatic Mosquito Diversity in Kenya—Considering Enzootic Ecology of Arboviruses in an Era of Deforestation. Insects 2020, 11, 342. https://doi.org/10.3390/insects11060342
Eastwood G, Sang RC, Lutomiah J, Tunge P, Weaver SC. Sylvatic Mosquito Diversity in Kenya—Considering Enzootic Ecology of Arboviruses in an Era of Deforestation. Insects. 2020; 11(6):342. https://doi.org/10.3390/insects11060342
Chicago/Turabian StyleEastwood, Gillian, Rosemary C. Sang, Joel Lutomiah, Philip Tunge, and Scott C. Weaver. 2020. "Sylvatic Mosquito Diversity in Kenya—Considering Enzootic Ecology of Arboviruses in an Era of Deforestation" Insects 11, no. 6: 342. https://doi.org/10.3390/insects11060342
APA StyleEastwood, G., Sang, R. C., Lutomiah, J., Tunge, P., & Weaver, S. C. (2020). Sylvatic Mosquito Diversity in Kenya—Considering Enzootic Ecology of Arboviruses in an Era of Deforestation. Insects, 11(6), 342. https://doi.org/10.3390/insects11060342