Environmental and Sex Effects on Bacterial Carriage by Adult House Flies (Musca domestica L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. House Fly Collection
2.2. Fly Processing for Bacterial Culture and Enumeration
2.3. Selection and Identification of Morphotypes from VRBA Cultures of Dairy Farm Flies
2.4. Antimicrobial Susceptibility Testing
2.5. Statistical Analysis
3. Results
3.1. Effect of Sex and Site on Culturable Bacterial Abundance in House Flies
3.2. Effect of Sex and Site on Coliform Abundance in House Flies
3.3. Relationships of House Fly Body Mass, Sex, Site and Bacterial Abundance
3.4. Bacterial Isolates and Antimicrobial Susceptibility
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schmidtmann, E.T.; Martin, P.A.W. Relationship between selected bacteria and the growth of immature house flies, Musca domestica, in an axenic test system. J. Med. Entomol. 1992, 29, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Zurek, L.; Schal, C.; Watson, D.W. Diversity and contribution of the intestinal bacterial community to the development of Musca domestica (Diptera: Muscidae) larvae. J. Med. Entomol. 2000, 37, 924–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, L.S. The Housefly: Its Natural History, Medical Importance, and Control; Comstock Publishing Co. Inc.: Ithaca, NY, USA, 1951. [Google Scholar]
- Mullen, G.R.; Durden, L.A. Medical and Veterinary Entomology; Academic Press: San Diego, CA, USA, 2009. [Google Scholar]
- Moon, R.D.; Hinton, J.L.; O’Rourke, S.D.; Schmidt, D.R. Nutritional value of fresh and composted poultry manure for house fly (Diptera: Muscidae) larvae. J. Econ. Entomol. 2001, 94, 1308–1317. [Google Scholar] [CrossRef]
- Nayduch, D.; Burrus, R.G. Flourishing in filth: House fly–microbe interactions across life history. Ann. Entomol. Soc. Am. 2017, 110, 6–18. [Google Scholar] [CrossRef]
- Greenberg, B. Flies and Disease: II. Biology and Disease Transmission; Princeton University Press: Princeton, NJ, USA, 1973. [Google Scholar]
- Gupta, A.K.; Nayduch, D.; Verma, P.; Shah, B.; Ghate, H.V.; Patole, M.S.; Shouche, Y.S. Phylogenetic characterization of bacteria in the gut of house flies (M usca domestica L.). Fems Microbiol. Ecol. 2012, 79, 581–593. [Google Scholar] [CrossRef]
- Khamesipour, F.; Lankarani, K.B.; Honarvar, B.; Kwenti, T.E. A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health 2018, 18, 1049. [Google Scholar] [CrossRef]
- Onwugamba, F.C.; Fitzgerald, J.R.; Rochon, K.; Guardabassi, L.; Alabi, A.; Kühne, S.; Grobusch, M.P.; Schaumburg, F. The role of “filth flies” in the spread of antimicrobial resistance. Travel Med. Inf. Dis. 2018, 22, 8–17. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Kambhampati, S.; Zurek, L. Assessment of house fly dispersal between rural and urban habitats in Kansas, USA. J. Kan. Entomol. Soc. 2010, 83, 172–188. [Google Scholar] [CrossRef]
- Park, R.; Dzialo, M.C.; Spaepen, S.; Nsabimana, D.; Gielens, K.; Devriese, H.; Crauwels, S.; Tito, R.Y.; Raes, J.; Lievens, B.; et al. Microbial communities of the house fly Musca domestica vary with geographical location and habitat. Microbiome 2019, 7, 147. [Google Scholar] [CrossRef]
- Glaser, R.W. The effect of food on longevity and reproduction in flies. J. Exp. Zool. 1923, 38, 383–412. [Google Scholar] [CrossRef]
- Shah, R.M.; Azhar, F.; Shad, S.A.; Walker, W.B.; Azeem, M.; Binyameen, M. Effects of different animal manures on attraction and reproductive behaviors of common house fly, Musca domestica L. Parasitol. Res. 2016, 115, 3585–3598. [Google Scholar] [CrossRef] [PubMed]
- Silbergeld, E.K.; Graham, J.; Price, L.B. Industrial food animal production, antimicrobial resistance, and human health. Ann. Rev. Public Health 2008, 29, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R.; Lenth, M.R. Package “lsmeans”. Am. Stat. 2018, 34, 216–221. [Google Scholar]
- Greenberg, B. House fly nutrition. 1. Quantitative study of the protein and sugar requirements of males and females. J. Cell Comp. Physiol. 1959, 53, 169–177. [Google Scholar] [CrossRef]
- Nazari, M.; Mehrabi, T.; Hosseini, S.M.; Alikhani, M.Y. Bacterial contamination of adult house flies (Musca domestica) and sensitivity of these bacteria to various antibiotics, captured from Hamadan City, Iran. J. Clin. Diag Res. JCDR 2017, 11, DC04. [Google Scholar] [CrossRef]
- Adams, T.S.; Nelson, D.R. Effect of corpus allatum and ovaries on amount of pupal and adult fat body in the housefly, Musca domestica. J. Insect Physiol. 1969, 15, 1729–1747. [Google Scholar] [CrossRef]
- Sepehrnia, N.; Memarianfard, L.; Moosavi, A.A.; Bachmann, J.; Rezanezhad, F.; Sepehri, M. Retention modes of manure-fecal coliforms in soil under saturated hydraulic condition. J. Environ. Manag. 2018, 227, 209–215. [Google Scholar] [CrossRef]
- Larraín, P.; Salas, C. House fly (Musca domestica L.) (Diptera: Muscidae) development in different types of manure. Chil. J. Agric. Res. 2008. [Google Scholar]
- Khan, H.A.A.; Shad, S.A.; Akram, W. Effect of livestock manures on the fitness of house fly, Musca domestica L. (Diptera: Muscidae). Parasitol. Res. 2012, 111, 1165–1171. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Z. Antimicrobial Resistance Arising from Food-Animal Productions and Its Mitigation; IntechOpen: London, UK, 2012. [Google Scholar]
- Shin, S.W.; Shin, M.K.; Jung, M.; Belaynehe, K.M.; Yoo, H.S. Prevalence of antimicrobial resistance and transfer of tetracycline resistance genes in Escherichia coli isolates from beef cattle. Appl. Environ. Microbiol. 2015, 81, 5560–5566. [Google Scholar] [CrossRef] [Green Version]
- Dahshan, H.; Abd-Elall, A.M.M.; Megahed, A.M.; Abd-El-Kader, M.A.; Nabawy, E.E. Veterinary antibiotic resistance, residues, and ecological risks in environmental samples obtained from poultry farms, Egypt. Environ. Monit. Assess. 2015, 187, 2. [Google Scholar] [CrossRef] [PubMed]
- Noyes, N.R.; Yang, X.; Linke, L.M.; Magnuson, R.J.; Cook, S.R.; Zaheer, R.; Yang, H.; Woerner, D.R.; Geornaras, I.; McArt, J.A. Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Granados-Chinchilla, F.; Rodríguez, C. Tetracyclines in food and feedingstuffs: From regulation to analytical methods, bacterial resistance, and environmental and health implications. J. Anal. Methods Chem. 2017, 2017. [Google Scholar] [CrossRef]
- Nmorsi, O.P.G.; Agbozele, G.; Ukwandu, N.C.D. Some aspects of epidemiology of filth flies: Musca domestica, Musca domestica vicina, Drosophilia melanogaster and associated bacteria pathogens in Ekpoma, Nigeria. Vector Borne Zoonotic Dis. 2007, 7, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Zurek, L.; Ghosh, A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl. Environ. Microbiol. 2014, 80, 3562–3567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, T.; Miyanaga, K.; Tanji, Y. Persistence of antibiotic-resistant and -sensitive Proteus mirabilis strains in the digestive tract of the housefly (Musca domestica) and green bottle flies (Calliphoridae). Appl. Microbiol. Biotechnol. 2014, 98, 8357–8366. [Google Scholar] [CrossRef]
- Usui, M.; Shirakawa, T.; Fukuda, A.; Tamura, Y. The role of flies in disseminating plasmids with antimicrobial-resistance genes between farms. Microb. Drug Resist. 2015, 21, 562–569. [Google Scholar] [CrossRef]
- Food and Drug Administration, U.S. Animal Medicinal Drug Use Clarification Act of 1994. Available online: https://www.fda.gov/animal-veterinary/acts-rules-regulations/animal-medicinal-drug-use-clarification-act-1994-amduca (accessed on 14 May 2020).
- Ciprián, A.; Palacios, J.M.; Quintanar, D.; Batista, L.; Colmenares, G.; Cruz, T.; Romero, A.; Schnitzlein, W.; Mendoza, S. Florfenicol feed supplemented decrease the clinical effects of Mycoplasma hyopneumoniae experimental infection in swine in México. Res. Vet. Sci. 2012, 92, 191–196. [Google Scholar] [CrossRef]
- Skogerboe, T.L.; Rooney, K.A.; Nutsch, R.G.; Weigel, D.J.; Gajewski, K.; Kilgore, W.R. Comparative efficacy of tulathromycin versus florfenicol and tilmicosin against undifferentiated bovine respiratory disease in feedlot cattle. Vet Ther. 2005, 6, 180. [Google Scholar] [PubMed]
- Frank, G.H.; Briggs, R.E.; Duff, G.C.; Loan, R.W.; Purdy, C.W. Effects of vaccination prior to transit and administration of florfenicol at time of arrival in a feedlot on the health of transported calves and detection of Mannheimia haemolytica in nasal secretions. J. Am. Vet. Med. Assoc. 2002, 63, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Catry, B.; Duchateau, L.; Van de Ven, J.; Laevens, H.; Opsomer, G.; Haesebrouck, F.; de Kruif, A. Efficacy of metaphylactic florfenicol therapy during natural outbreaks of bovine respiratory disease. J. Vet. Pharm. 2008, 31, 479–487. [Google Scholar] [CrossRef]
- Rattanapanadda, P.; Kuo, H.-C.; Vickroy, T.W.; Sung, C.-H.; Rairat, T.; Lin, T.-L.; Yeh, S.-Y.; Chou, C.-C. In vitro and in vivo synergistic effects of florfenicol and thiamphenicol in combination against swine Actinobacillus pleuropneumoniae and Pasteurella multocida. Front. Microbiol. 2019, 10, 2430. [Google Scholar] [CrossRef]
- Gonzalez-Martin, J.V.; Elvira, L.; Lopez, M.C.; Villalobos, N.P.; Lopez-Guerrero, E.C.; Astiz, S. Reducing antibiotic use: Selective metaphylaxis with florfenicol in commercial feedlots. Livest. Sci. 2011, 141, 173–181. [Google Scholar] [CrossRef]
- White, D.G.; Hudson, C.; Maurer, J.J.; Ayers, S.; Zhao, S.; Lee, M.D.; Bolton, L.; Foley, T.; Sherwood, J. Characterization of chloramphenicol and florfenicol resistance in Escherichia coli associated with bovine diarrhea. J. Clin. Microbiol. 2000, 38, 4593–4598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischoff, K.M.; White, D.G.; Hume, M.E.; Poole, T.L.; Nisbet, D.J. The chloramphenicol resistance gene cmlA is disseminated on transferable plasmids that confer multiple-drug resistance in swine Escherichia coli. Fems Microbiol. Lett. 2005, 243, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirza, S.H.; Hart, C.A. Plasmid encoded multi-drug resistance in Salmonella typhi from Pakistan. Ann. Trop Med. Parasitol. 1993, 87, 373–377. [Google Scholar] [CrossRef]
- Fernández-Alarcón, C.; Singer, R.S.; Johnson, T.J. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources. PLoS ONE 2011, 6, e23415. [Google Scholar] [CrossRef]
- Leverstein-van Hall, M.A.; Blok, H.E.M.; Donders, A.R.T.; Paauw, A.; Fluit, A.C.; Verhoef, J. Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. J. Infect. Dis. 2003, 187, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Carraro, N.; Rivard, N.; Burrus, V.; Ceccarelli, D. Mobilizable genomic islands, different strategies for the dissemination of multidrug resistance and other adaptive traits. Mob. Gen. Elem. 2017, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Meunier, D.; Jouy, E.; Lazizzera, C.; Doublet, B.; Kobisch, M.; Cloeckaert, A.; Madec, J.-Y. Plasmid-borne florfenicol and ceftiofur resistance encoded by the floR and blaCMY-2 genes in Escherichia coli isolates from diseased cattle in France. J. Med. Microbiol. 2010, 59, 467–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barza, M. Potential mechanisms of increased disease in humans from antimicrobial resistance in food animals. Clin. Infect. Dis. 2002, 34, S123–S125. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.; Shelley, J.C.; Walton, J.R.; Hart, C.A.; Bennett, M. Apramycin resistance plasmids in Escherichia coli: Possible transfer to Salmonella typhimurium in calves. Epidemiol. Infect. 1992, 108, 271–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, A.; Usui, M.; Okubo, T.; Tamura, Y. Horizontal transfer of plasmid-mediated cephalosporin resistance genes in the intestine of houseflies (Musca domestica). Microbol. Drug Resist. 2016, 22, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Petridis, M.; Bagdasarian, M.; Waldor, M.K.; Walker, E. Horizontal transfer of shiga toxin and antibiotic resistance genes among Escherichia coli strains in house fly (Diptera: Muscidae) gut. J. Med. Entomol. 2006, 43, 288–295. [Google Scholar] [CrossRef]
- Akhtar, M.; Hirt, H.; Zurek, L. Horizontal transfer of the tetracycline resistance gene tetM mediated by pCF10 among Enterococcus faecalis in the house fly (Musca domestica L.) alimentary canal. Microbol. Ecol. 2009, 58, 509–518. [Google Scholar] [CrossRef]
- Alam, M.J.; Zurek, L. Association of Escherichia coli O157:H7 with houseflies on a cattle farm. Appl. Environ. Microbiol. 2004, 70, 7578–7580. [Google Scholar] [CrossRef] [Green Version]
- Bahrndorff, S.; Ruiz-González, A.; de Jonge, N.; Nielsen, J.L.; Skovgård, H.; Pertoldi, C. Integrated genome-wide investigations of the housefly, a global vector of diseases reveal unique dispersal patterns and bacterial communities across farms. BMC Genom. 2020, 21, 66. [Google Scholar] [CrossRef]
- Bahrndorff, S.; de Jonge, N.; Skovgård, H.; Nielsen, J.L. Bacterial communities associated with houseflies (Musca domestica L.) sampled within and between farms. PLoS ONE 2017, 12, e0169753. [Google Scholar] [CrossRef] [Green Version]
- Rahuma, N.; Ghenghesh, K.S.; Ben Aissa, R.; Elamaari, A. Carriage by the housefly (Musca domestica) of multiple-antibiotic-resistant bacteria that are potentially pathogenic to humans, in hospital and other urban environments in Misurata, Libya. Ann. Trop. Med. Parasitol. 2005, 99, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Cousins, M.; Sargeant, J.M.; Fisman, D.; Greer, A.L. Modelling the transmission dynamics of Campylobacter in Ontario, Canada, assuming house flies, Musca domestica, are a mechanical vector of disease transmission. R. Soc. Open Sci. 2019, 6, 181394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Collection Date | Site | Fly Sex | N | Culturable Bacterial CFU (Mean ± SEM) | Coliform CFU (Mean ± SEM) |
---|---|---|---|---|---|
13-Jun-17 | URB | F | 6 | 1.39 ± 1.08 × 106 | 2.51 ± 2.50 × 104 |
URB | M | 5 | 3.93 ± 2.48 × 105 | 7.05 ± 5.48 × 104 | |
AGR | F | 7 | 1.63 ± 0.42 × 105 | 6.64 ± 4.38 × 103 | |
AGR | M | 7 | 1.75 ± 0.66× 105 | 2.67 ± 1.10 × 104 | |
13-Jul-17 | URB | F | 9 | 3.26 ± 1.38× 106 | 4.79 ± 3.65 × 105 |
URB | M | 10 | 7.99 ± 6.48 × 105 | 5.74 ± 5.67 × 104 | |
AGR | F | 12 | 5.00 ± 2.24 × 105 | 3.10 ± 1.42 × 104 | |
AGR | M | 10 | 2.75 ± 1.73 × 105 | 7.12 ± 5.12 × 104 | |
31-Jul-17 | URB | F | 10 | 5.14 ± 1.41 × 105 | 1.68 ± 0.71 × 104 |
URB | M | 10 | 1.14 ± 0.51 × 105 | 3.74 ± 2.87 × 104 | |
AGR | F | 10 | 5.72 ± 2.55 × 105 | 3.44 ± 3.07 × 104 | |
AGR | M | 11 | 2.91 ± 1.54 × 105 | 2.34 ± 1.93 × 104 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neupane, S.; White, K.; Thomson, J.L.; Zurek, L.; Nayduch, D. Environmental and Sex Effects on Bacterial Carriage by Adult House Flies (Musca domestica L.). Insects 2020, 11, 401. https://doi.org/10.3390/insects11070401
Neupane S, White K, Thomson JL, Zurek L, Nayduch D. Environmental and Sex Effects on Bacterial Carriage by Adult House Flies (Musca domestica L.). Insects. 2020; 11(7):401. https://doi.org/10.3390/insects11070401
Chicago/Turabian StyleNeupane, Saraswoti, Kotie White, Jessica L. Thomson, Ludek Zurek, and Dana Nayduch. 2020. "Environmental and Sex Effects on Bacterial Carriage by Adult House Flies (Musca domestica L.)" Insects 11, no. 7: 401. https://doi.org/10.3390/insects11070401
APA StyleNeupane, S., White, K., Thomson, J. L., Zurek, L., & Nayduch, D. (2020). Environmental and Sex Effects on Bacterial Carriage by Adult House Flies (Musca domestica L.). Insects, 11(7), 401. https://doi.org/10.3390/insects11070401