Biological Control of Aedes albopictus: Obtained from the New Bacterial Candidates with Insecticidal Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Bacterial Isolation
2.3. Strains Identification
2.4. Fractions Preparation
2.5. Release of Inclusions and the Main Cell Components
2.6. Fractions Used in Larval Assays
2.7. Screening for Insecticidal Activity
2.8. Data Analysis
3. Results
3.1. Isolated Strains
3.2. Screening for Insecticidal Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Availability of Data and Materials
References
- Caraballo, H.; King, K. Emergency Department Management of Mosquito-Borne Illness: Malaria, Dengue, and West Nile Virus. Emerg. Med. Pract. 2014, 16, 1–23. [Google Scholar] [PubMed]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- WHO. A Global Brief on Vector-Borne Diseases; World Health Organisation: Geneva, Switzerland, 2014. Available online: https://apps.who.int/iris/handle/10665/111008 (accessed on 1 September 2019).
- Stanaway, J.D.; Shepard, D.S.; Undurraga, E.A.; Halasa, Y.A.; Coffeng, L.E.; Brady, O.J.; Hay, S.I.; Bedi, N.; Bensenor, I.M.; Castañeda-Orjuela, C.A.; et al. The global burden of dengue: An analysis from the Global Burden of Disease Study 2013. Lancet Infect. Dis. 2016, 16, 712–723. [Google Scholar] [CrossRef] [Green Version]
- Weiss, D.J.; Lucas, T.C.D.; Nguyen, M.; Nandi, A.K.; Bisanzio, D.; Battle, K.E.; Cameron, E.; Twohig, K.A.; Pfeffer, D.A.; Rozier, J.A.; et al. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–2017: A spatial and temporal modelling study. Lancet 2019, 394, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Bartlow, A.W.; Manore, C.; Xu, C.; Kaufeld, K.A.; Del Valle, S.; Ziemann, A.; Fairchild, G.; Fair, J.M. Forecasting Zoonotic Infectious Disease Response to Climate Change: Mosquito Vectors and a Changing Environment. Vet. Sci. 2019, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Flores, H.A.; O’Neill, S.L. Controlling vector-borne diseases by releasing modified mosquitoes. Nat. Rev. Microbiol. 2018, 16, 508–518. [Google Scholar] [CrossRef]
- Dahmana, H.; Mediannikov, O. Mosquito-Borne Diseases Emergence/Resurgence and How to Effectively Control It Biologically. Pathogens 2020, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Trevors, J.T.; Barkay, T.; Bourquin, A.W. Gene transfer among bacteria in soil and aquatic environments: A review. Can. J. Microbiol. 1987, 33, 191–198. [Google Scholar] [CrossRef]
- Wagman, J.M.; Achee, N.L.; Grieco, J.P. Insensitivity to the Spatial Repellent Action of Transfluthrin in Aedes aegypti: A Heritable Trait Associated with Decreased Insecticide Susceptibility. PLoS Negl. Trop. Dis. 2015, 9, e0003726. [Google Scholar] [CrossRef]
- Mishra, S.K.; Keller, J.E.; Miller, J.R.; Heisey, R.M.; Nair, M.G.; Putnam, A.R. Insecticidal and nematicidal properties of microbial metabolites. J. Ind. Microbiol. 1987, 2, 267–276. [Google Scholar] [CrossRef]
- Dhanasekaran, D.; Thangaraj, R. Microbial secondary metabolites are an alternative approaches against insect vector to prevent zoonotic diseases. Asian Pac. J. Trop. Dis. 2014, 4, 253–261. [Google Scholar] [CrossRef]
- Lacey, L.A. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J. Am. Mosq. Control Assoc. 2007, 23, 93–109. [Google Scholar] [CrossRef]
- Paris, M.; Tetreau, G.; Laurent, F.; Lelu, M.; Despres, L.; David, J.-P. Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. Pest Manag. Sci. 2011, 67, 122–128. [Google Scholar] [CrossRef]
- Su, T. Resistance and Its Management to Microbial and Insect Growth Regulator Larvicides in Mosquitoes. InTech2016. pp. 135–154. Available online: https://cdn.intechopen.com/pdfs/49420.pdf (accessed on 18 June 2020). [CrossRef] [Green Version]
- Dahmana, H.; Raoult, D.; Fenollar, F.; Mediannikov, O. Insecticidal Activity of Bacteria from Larvae Breeding Site with Natural Larvae Mortality: Screening of Separated Supernatant and Pellet Fractions. Pathogens 2020, 9, 486. [Google Scholar] [CrossRef] [PubMed]
- Kekuda, T.R.P.; Shobha, K.S.; Onkarappa, R. Potent insecticidal activity of two Streptomyces species isolated from the soils of the Western ghats of Agumbe, Karnataka. J. Nat. Pharm. 2010, 1, 30–32. [Google Scholar] [CrossRef]
- Pinphanichakarn, P.; Tantithanagorngul, W.; Sujitwanit, A.; Piluk, J.; Tolieng, V.; Petsom, A.; Sangvanich, P.; Palaga, T.; Puthong, S.; Thamchaipenet, A.; et al. Screening for Brine Shrimp Larvicidal Activity of Streptomyces Isolated from Soil and Anti-Tumor Activity of the Active Isolates. Aust. J. Basic Appl. Sci. 2011, 5, 15–22. [Google Scholar]
- Anwar, S.; Ali, B.; Qamar, F.; Sajid, I. Insecticidal Activity of Actinomycetes Isolated from Salt Range, Pakistan against Mosquitoes and Red Flour Beetle. Pak. J. Zool. 2014, 46, 83–92. [Google Scholar]
- Amin, M.; Rakhisi, Z.; Amanollah Ahmady, Z. Isolation and Identification of Bacillus Species From Soil and Evaluation of Their Antibacterial Properties. Avicenna J. Clin. Microb. Infect. 2015, 2, 23233. [Google Scholar] [CrossRef]
- Galarza-Seeber, R.; Latorre, J.D.; Hernandez-Velasco, X.; Wolfenden, A.D.; Bielke, L.R.; Menconi, A.; Hargis, B.M.; Tellez, G. Isolation, screening and identification of Bacillus spp. as direct-fed microbial candidates for aflatoxin B1 biodegradation. Asian Pac. J. Trop. Biomed. 2015, 5, 702–706. [Google Scholar] [CrossRef] [Green Version]
- Tariq, A.L.; Sudha, S.; Reyaz, A.L. Isolation and Screening of Bacillus Species from Sediments and Application in Bioremediation. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 916–924. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Shafi, J.; Li, M.; Fu, D.; Ji, M. Insecticidal activity of endophytic actinomycetes isolated from Azadirachta indica against Myzus persicae. Arch. Biol. Sci. 2018, 70, 349–357. [Google Scholar] [CrossRef]
- Nair, K.; Al-Thani, R.; Al-Thani, D.; Al-Yafei, F.; Ahmed, T.; Jaoua, S. Diversity of Bacillus thuringiensis Strains From Qatar as Shown by Crystal Morphology, δ-Endotoxins and Cry Gene Content. Front. Microbiol. 2018, 9, 708. [Google Scholar] [CrossRef] [PubMed]
- Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P.; Rolain, J.M.; Raoult, D. Ongoing Revolution in Bacteriology: Routine Identification of Bacteria by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar] [CrossRef]
- Dahmana, H.; Granjon, L.; Diagne, C.; Davoust, B.; Fenollar, F.; Mediannikov, O. Rodents as Hosts of Pathogens and Related Zoonotic Disease Risk. Pathogens 2020, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- La Scola, B.; Liang, Z.; Zeaiter, Z.; Houpikian, P.; Grimont, P.A.D.; Raoult, D. Genotypic characteristics of two serotypes of Bartonella henselae. J. Clin. Microbiol. 2002, 40, 2002–2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulthess, B.; Bloemberg, G.V.; Zbinden, R.; Böttger, E.C.; Hombach, M. Evaluation of the bruker MALDI biotyper for identification of gram-positive rods: Development of a diagnostic algorithm for the clinical laboratory. J. Clin. Microbiol. 2014, 52, 1089–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, J.V.; Ojeda, C.P.O.; da Silva, I.R.; de Lima Procopio, R.E. Identification and Phylogeny of Streptomyces Based on Gene Sequences. Res. J. Microbiol. 2017, 13, 13–20. [Google Scholar]
- Laskaris, P.; Sekine, T.; Wellington, E.M.H.; Herrera-Estrella, A. Diversity Analysis of Streptomycetes and Associated Phosphotranspherase Genes in Soil. PLoS ONE 2012, 7, e35756. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Milne, I.; Lindner, D.; Bayer, M.; Husmeier, D.; McGuire, G.; Marshall, D.F.; Wright, F. TOPALi v2: A rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 2009, 25, 126–127. [Google Scholar] [CrossRef] [Green Version]
- WHOCDCPE & WHOPES Guidelines for Laboratory and Field Testing of Mosquito Larvicides. 2005. Available online: https://apps.who.int/iris/bitstream/handle/10665/69101/WHO_CDS_WHOPES_GCDPP_2005.13.pdf?sequence=1&isAllowed=y (accessed on 19 June 2019).
- Yarbrough, M.L.; Lainhart, W.; Burnham, C.A.D. Identification of Nocardia, Streptomyces, and Tsukamurella using MALDI-TOF MS with the Bruker Biotyper. Diagn. Microbiol. Infect. Dis. 2017, 89, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Vachon, V.; Laprade, R.; Schwartz, J.L. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. J. Invertebr. Pathol. 2012, 111, 1–12. [Google Scholar] [CrossRef]
- Gratz, N.G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 2004, 18, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Medlock, J.M.; Hansford, K.M.; Versteirt, V.; Cull, B.; Kampen, H.; Fontenille, D.; Hendrickx, G.; Zeller, H.; Van Bortel, W.; Schaffner, F. An entomological review of invasive mosquitoes in Europe. Bull. Entomol. Res. 2015, 105, 637–663. [Google Scholar] [CrossRef]
- Raoult, D.; Abat, C. Developing new insecticides to prevent chaos: The real future threat. Lancet Infect. Dis. 2017, 17, 804–805. [Google Scholar] [CrossRef] [Green Version]
- Collins, E.; Vaselli, N.M.; Sylla, M.; Beavogui, A.H.; Orsborne, J.; Lawrence, G.; Wiegand, R.E.; Irish, S.R.; Walker, T.; Messenger, L.A. The relationship between insecticide resistance, mosquito age and malaria prevalence in Anopheles gambiae s.l. from Guinea. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Malaria Report Relief Web. Available online: https://reliefweb.int/report/world/world-malaria-report-2017 (accessed on 30 August 2019).
- Kharel, M.K.; Shepherd, M.D.; Nybo, S.E.; Smith, M.L.; Bosserman, M.A.; Rohr, J. Isolation of Streptomyces species from soil. Curr. Protoc. Microbiol. 2010. [Google Scholar] [CrossRef]
- Saadoun, I.; Gharaibeh, R. The Streptomyces flora of Badia region of Jordan and its potential as a source of antibiotics active against antibiotic-resistant bacteria. J. Arid Environ. 2003, 53, 365–371. [Google Scholar] [CrossRef]
- George, M.; George, G.; Hatha, A.A.M. Diversity and antibacterial activity of actinomycetes from wetland soil. S. Pac. J. Nat. Appl. Sci. 2010, 28, 52. [Google Scholar] [CrossRef]
- Dezfully, N.K.; Ramanayaka, J.G. Isolation, Identification and Assessment of the Antimicrobial Activity of Streptomyces flavogriseus, Strain ACTK2, From a Soil Sample From Kodagu, Karnataka State in India. Jundishapur J. Microbiol. 2015, 8, e15107. [Google Scholar]
- Aslim, B.; Beyatli, Y. Determination of Some Properties of Bacillus Isolated from Soil. Turk. J. Biol. 2002, 26, 41–48. [Google Scholar]
- Radhakrishnan, R.; Hashem, A.; Abd Allah, E.F. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 2017, 8, 667. [Google Scholar] [CrossRef] [PubMed]
- Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; Caballero, P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 2014, 6, 3296–3325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aïdara-Kane, A.; Fontenille, D.; Lochouarn, L.; Cosmao-Dumanoir, V.; Lecadet, M. Caractérisation de souches de Bacillus entomopathogènes isolées au Sénégal et étude de leur toxicité pour les vecteurs du paludisme. Dakar-Médical 1998, 43, 170–173. [Google Scholar]
- Cheong, H.; Dhesi, R.K.; Gill, S.S. Marginal cross-resistance to mosquitocidal Bacillus thuringiensis strains in Cry11A-resistant larvae: Presence of Cry11A-like toxins in these strains. FEMS Microbiol. Lett. 2006, 153, 419–424. [Google Scholar] [CrossRef]
- Amorim, L.B.; de Barros, R.A.; de Melo Chalegre, K.D.; de Oliveira, C.M.F.; Narcisa Regis, L.; Silva-Filha, M.H.N.L. Stability of Culex quinquefasciatus resistance to Bacillus sphaericus evaluated by molecular tools. Insect Biochem. Mol. Biol. 2010, 40, 311–316. [Google Scholar] [CrossRef]
- Wirth, M.C. Mosquito Resistance to Bacterial Larvicidal Toxins. Open Toxicol. J. 2010, 3, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Darriet, F.; Hougard, J.-M. An isolate of Bacillus circulans toxic to mosquito larvae. J. Am. Mosq. Control Assoc. 2002, 18, 65–67. [Google Scholar]
- Favret, M.E.; Yousten, A.A. Insecticidal activity of Bacillus laterosporus. J. Invertebr. Pathol. 1985, 45, 195–203. [Google Scholar] [CrossRef]
- Orlova, M.V.; Smirnova, T.A.; Ganushkina, L.A.; Yacubovich, V.Y.; Azizbekyan, R.R. Insecticidal activity of Bacillus laterosporus. Appl. Environ. Microbiol. 1998, 64, 2723–2725. [Google Scholar] [CrossRef] [Green Version]
- Sevim, A.; Demirbağ, Z.; Demir, İ. A new study on the bacteria of Agrotis segetum Schiff. (Lepidoptera: Noctuidae) and their insecticidal activities. Res. Artic. Turk. J. Agric. 2010, 34, 333–342. [Google Scholar]
- Oulebsir-Mohandkaci, H.; Khemili, S. Antagonistic activity of two Bacillus sp. strains isolated from an algerian soil towards the migratory Locust locusta migratoria (linnaeus 1758) Production and characterization of a Lipopeptide Biosurfactant by a some Bacillus sp.strains View project Isol. Agric. For. 2016, 62, 145–154. [Google Scholar]
- Venkateswaran, K.; Kempf, M.; Chen, F.; Satomi, M.; Nicholson, W.; Kern, R. Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are γ-radiation resistant. Int. J. Syst. Evol. Microbiol. 2003, 53, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathani, N.M.; Duggirala, S.M.; Bhatt, V.D.; Kapatel, J.; Joshi, C.G. Genomic analysis of a novel strain of Bacillus nealsonii, isolated from Surti buffalo rumen. Adv. Biosci. Biotechnol. 2014, 5, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Chen, Y. Purification and characterization of a novel neutral and heat-tolerant phytase from a newly isolated strain Bacillus nealsonii ZJ0702. BMC Biotechnol. 2013, 13, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, A.; Singh Chauhan, P.; Kumar, A.; Angural, S.; Kumar, D.; Puri, N.; Gupta, N. Coproduction of protease and mannanase from Bacillus nealsonii PN-11 in solid state fermentation and their combined application as detergent additives. Int. J. Biol. Macromol. 2018, 108, 1176–1184. [Google Scholar] [CrossRef]
- Zizka, Z.; Weiser, J.; Blumauerova, M.; Jizba, J. Ultrastructural effects of macrotetrolides of Streptomyces griseus LKS-1 in tissues of Culex pipiens larvae. Cytobios 1989, 58, 85–91. [Google Scholar]
- Hussain, A.A.; Mostafa, S.A.; Ghazal, S.A.; Ibrahim, S.Y. Studies on antifungal antibiotic and bioinsecticidal activities of some actinomycete isolates. Afr. J. Mycol. Biotechnol. 2002, 10, 63–80. [Google Scholar]
- Box, S.J.; Cole, M.; Yeoman, G.H. Prasinons A and B: Potent Insecticides from Streptomyces prasinus. Appl. Environ. Microbiol. 1973, 26, 699–704. [Google Scholar] [CrossRef] [Green Version]
- Saurav, K.; Rajakumar, G.; Kannabiran, K.; Rahuman, A.A.; Velayutham, K.; Elango, G.; Kamaraj, C.; Zahir, A.A. Larvicidal activity of isolated compound 5-(2,4-dimethylbenzyl) pyrrolidin-2-one from marine Streptomyces VITSVK5 sp. against Rhipicephalus (Boophilus) microplus, Anopheles stephensi, and Culex tritaeniorhynchus. Parasitol. Res. 2013, 112, 215–226. [Google Scholar] [CrossRef]
- El-bendary, M. Larvicidal activity of extracellular secondary metabolites of of Streptomyces microflavus against Culex pipien. Can. J. Pure Appl. Sci. 2014, 4, 1021–1026. [Google Scholar]
- Paulraj, M.G.; Kumar, P.S.; Ignacimuthu, S.; Sukumaran, D. Natural insecticides from actinomycetes and other microbes for vector mosquito control. In Herbal Insecticides, Repellents and Biomedicines: Effectiveness and Commercialization; Springer International Publishing: Cham, Switzerland, 2016; pp. 85–99. ISBN 9788132227045. [Google Scholar]
- Jackson, H.C. Ivermectin as a systemic insecticide. Parasitol. Today 1989, 5, 146–156. [Google Scholar] [CrossRef]
Order | Genus and Species | Strain Code |
---|---|---|
Actinomycetales | Streptomyces sp. | Sen 181 |
Actinomycetales | Streptomyces sp. | Sen 43 |
Actinomycetales | Streptomyces sp. | Sen 154 |
Actinomycetales | Streptomyces sp. | Sen 86 |
Actinomycetales | Streptomyces sp. | Sen 39 |
Bacillales | Brevibacillus brevis | Sen 108 |
Bacillales | Bacillus nealsonii | Sen 132 |
Actinomycetales | Micrococcus luteus | Sen 7 |
Bacillales | Bacillus pumilus | Sen 186 |
Bacillales | Bacillus subtilis | Sen 66 |
Bacillales | Bacillus sp. | Sen 140 |
Species | Strain | Negative Control | Pellet | Supernatant | Supernatant + Pellet (6 mg/L) * | Notes | |
---|---|---|---|---|---|---|---|
(2–6 mg/L) | 2 mg/L | 6 mg/L | |||||
Streptomyces sp. | Sen 181 | 0% | 0% | 0% | 18% | 20% | No potential Insecticidal activity |
Streptomyces sp. | Sen 43 | 0% | 0% | 0% | 12% | 8% | No potential Insecticidal activity |
Streptomyces sp. | Sen 154 | 0% | 0% | 29% | 31% | 28% | Potential Insecticidal activity |
Streptomyces sp. | Sen 86 | 0% | 0% | 35% | 41% | 32% | Potential Insecticidal activity |
Streptomyces sp. | Sen 39 | 0% | 0% | 30% | 36% | 40% | Potential Insecticidal activity |
Brevibacillus brevis | Sen 108 | 0% | 0% | 0% | 2% | 4% | No potential Insecticidal activity |
Bacillus nealsonii | Sen 132 | 0% | 0% | 40% | 70% | 84% | Potential Insecticidal activity |
Micrococcus luteus | Sen 7 | 0% | 0% | 4% | 4% | 12% | No potential Insecticidal activity |
Bacillus pumilus | Sen 186 | 0% | 0% | 5% | 6% | 4% | No potential Insecticidal activity |
Bacillus subtilis | Sen 66 | 0% | 0% | 10% | 10% | 12% | No potential Insecticidal activity |
Bacillus sp. | Sen 140 | 0% | 0% | 4% | 6% | 8% | No potential Insecticidal activity |
Bacillus thuringiensis | AM65-52 | 0% | 0% | 15% | 33% | 34% | Insecticidal activity |
Strain | Code | Mortality Rate | Standard Deviation | Groups | Mean Rank | p-Value | Significance |
---|---|---|---|---|---|---|---|
Bti | AM65-52 | 33% | Ref | B-C | Ref | Ref | Ref |
Streptomyces sp. | Sen 181 | 18% | 0.386 | A-B | 90 | 0.011 | Neg. S ** |
Streptomyces sp. | Sen 43 | 12% | 0.302 | A | 138 | ≤0.0001 | Neg. S ** |
Streptomyces sp. | Sen 154 | 31% | 0.461 | B-C | 18 | 0.610 | NS *** |
Streptomyces sp. | Sen 86 | 41% | 0.494 | C | −48 | 0.173 | NS *** |
Streptomyces sp. | Sen 39 | 36% | 0.482 | B-C | −18 | 0.610 | NS *** |
Brevibacillus brevis | Sen 108 | 2% | 0.141 | A | 186 | ≤0.0001 | Neg. S ** |
Bacillus nealsonii | Sen 132 | 70% | 0.461 | D | −222 | ≤0.0001 | Pos. S * |
Micrococcus luteus | Sen 7 | 4% | 0.197 | A | 174 | ≤0.0001 | Neg. S ** |
Bacillus pumilus | Sen 186 | 6% | 0.239 | A | 162 | ≤0.0001 | Neg. S ** |
Bacillus subtilis | Sen 66 | 10% | 0.302 | A | 138 | ≤0.0001 | Neg. S ** |
Bacillus sp. | Sen 140 | 6% | 0.239 | A | 162 | ≤0.0001 | Neg. S ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahmana, H.; Sambou, M.; Raoult, D.; Fenollar, F.; Mediannikov, O. Biological Control of Aedes albopictus: Obtained from the New Bacterial Candidates with Insecticidal Activity. Insects 2020, 11, 403. https://doi.org/10.3390/insects11070403
Dahmana H, Sambou M, Raoult D, Fenollar F, Mediannikov O. Biological Control of Aedes albopictus: Obtained from the New Bacterial Candidates with Insecticidal Activity. Insects. 2020; 11(7):403. https://doi.org/10.3390/insects11070403
Chicago/Turabian StyleDahmana, Handi, Masse Sambou, Didier Raoult, Florence Fenollar, and Oleg Mediannikov. 2020. "Biological Control of Aedes albopictus: Obtained from the New Bacterial Candidates with Insecticidal Activity" Insects 11, no. 7: 403. https://doi.org/10.3390/insects11070403
APA StyleDahmana, H., Sambou, M., Raoult, D., Fenollar, F., & Mediannikov, O. (2020). Biological Control of Aedes albopictus: Obtained from the New Bacterial Candidates with Insecticidal Activity. Insects, 11(7), 403. https://doi.org/10.3390/insects11070403