XadA2 Adhesin Decreases Biofilm Formation and Transmission of Xylella fastidiosa subsp. pauca
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Xylella fastidiosa Strains
2.3. Expression and Purification of XadA2
2.4. XadA2 Affinity for Chitin and Cellulose
2.5. Cell Aggregation Assay
2.6. Biofilm Formation on Sharpshooter Wings
2.7. Use of Chitin as a Carbon Source
2.8. Saturation of Insect Wing Binding Sites with XadA2
2.9. Blocking of X. fastidiosa Adhesion on Insect Wings by Anti-XadA2 Antibody
2.10. Blocking of Vector Acquisition and Transmission of X. fastidiosa by Anti-XadA2 Antibody
2.11. Toxicity Assay with Anti-XadA2 Antibody
2.12. Statistical Analysis
3. Results
3.1. XadA2 Has Affinity for Cellulose and Chitin, and No Influence on X. fastidiosa Aggregation
3.2. X. fastidiosa Biofilm Formation on Wings is Insect Species Dependent
3.3. Insect Wings Support X. fastidiosa Population Growth
3.4. XadA2 Blocks X. fastidiosa Adhesion to Insect Wings
3.5. X. fastidiosa Adhesion is Blocked by a XadA2 Antibody
3.6. XadA2 Reduces Vector Transmission of X. fastidiosa
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Orlovskis, Z.; Canale, M.C.; Thole, V.; Pecher, P.; Lopes, J.R.S.; Hogenhout, S.A. Insect-borne plant pathogenic bacteria: Getting a ride goes beyond physical contact. Curr. Opin. Insect Sci. 2015, 9, 16–23. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Purcell, A.H. Xylella fastidiosa: Cause of Pierce’s Disease of grapevine and other emergent diseases. Plant. Dis. 2002, 86, 1056–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saponari, M.; Loconsole, G.; Cornara, D.; Yokomi, R.K.; De Stradis, A.; Boscia, D.; Bosco, D.; Martelli, G.P.; Krugner, R.; Porcelli, F. Infectivity and transmission of Xylella fastidiosa by Phylaenus spumarius (Hemiptera: Aphrophoridae) in Apulia Italy. J. Econ. Entomol. 2014, 107, 1316–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redak, R.A.; Purcell, A.H.; Lopes, J.R.; Blua, M.J.; Mizell, R.F.; Andersen, P.C. The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Ann. Rev. Entomol. 2004, 49, 243–270. [Google Scholar] [CrossRef]
- Killiny, N.; Almeida, R.P.P. Xylella fastidiosa Afimbrial Adhesins Mediate Cell transmission to plants by leafhopper vectors. Appl. Environ. Microbiol. 2009, 75, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Killiny, N.; Almeida, R.P.P. Factors affecting the initial adhesion and retention of the plant pathogen Xylella fastidiosa in the foregut of an insect vector. Appl. Environ. Microbiol. 2014, 80, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Labroussaa, F.; Zeilinger, A.R.; Almeida, R.P.P. Blocking the Transmission of a Noncirculative Vector-Borne Plant Pathogenic Bacterium. Mol. Plant. Microbe. Interact. 2016, 29, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Killiny, N.; Rashed, A.; Almeida, R.P.P. Disrupting the transmission of a vector-borne plant pathogen. Appl. Environ. Microbiol. 2012, 78, 638–643. [Google Scholar] [CrossRef]
- Caserta, R.; Takita, M.A.; Targon, M.L.; Rosselli-Murai, L.K.; De Souza, A.P.; Peroni, L.; Stach-Machado, D.R.; Andrade, A.; Labate, C.A.; Kitajima, E.W.; et al. Expression of Xylella fastidiosa fimbrial and afimbrial proteins during biofilm formation. Appl. Environ. Microbiol. 2010, 76, 4250–4259. [Google Scholar] [CrossRef] [Green Version]
- Cotter, S.E.; Yeo, H.J.; Juehne, T.; Geme, J.W.S., III. Architecture and Adhesive Activity of the Haemophilus influenzae Hsf Adhesin. J. Bacteriol. 2005, 187, 4656–4664. [Google Scholar] [CrossRef] [Green Version]
- Baccari, C.; Killiny, N.; Ionescu, M.; Almeida, R.P.P.; Lindow, S.E. Diffusible signal factor-repressed extracellular traits enable attachment of Xylella fastidiosa to insect vectors and transmission. Phytopathology 2014, 104, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Esteves, M.B.; Kleina, H.T.; Sales, T.M.; Oliveira, T.P.; de Lara, I.A.R.; Almeida, R.P.P.; Coletta-Filho, H.D.; Lopes, J.R.S. Transmission efficiency of Xylella fastidiosa subsp. pauca sequence types by sharpshooter vectors after in vitro acquisition. Phytopathology 2019, 109, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Simpson, A.J.; Reinach, F.C.; Arruda, P.; Abreu, F.A.; Acencio, M.; Alvarenga, R.; Alves, L.M.; Araya, J.E.; Baia, G.S.; Baptista, C.S.; et al. The genome sequence of the plant pathogen Xylella fastidiosa. Nature 2000, 406, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niza, B.; Coletta-Filho, H.D.; Merfa, M.V.; Takita, M.A.; de Souza, A.A. Differential colonization patterns of Xylella fastidiosa infecting citrus genotypes. Plant Pathol. 2015, 64, 1258–1269. [Google Scholar] [CrossRef]
- Hill, B.L.; Purcell, A.H. Acquisition and retention of Xylella fastidiosa by an efficient vector, Graphocephala atropunctata. Phytopathology 1995, 85, 209–212. [Google Scholar] [CrossRef]
- Almeida, R.P.P.; Mann, R.; Purcell, A.H. Xylella fastidiosa cultivation on a Minimal Solid Defined Medium. Curr. Microbiol. 2004, 48, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Software QUANT v.1.0.0.22—Quantificação de Doenças de Plantas; Universidade Federal de Viçosa: Vicosa, Brazil, 2002.
- Killiny, N.; Almeida, R.P.P. Host structural carbohydrate induces vector transmission of a bacterial pathogen. Proc. Natl. Acad. Sci. USA 2009, 106, 22416–22420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labroussaa, F.; Ionescu, M.; Zeilinger, A.R.; Lindow, S.E.; Almeida, R.P.P. A chitinase is required for Xylella fastidiosa colonization of its insects and plant host. Microbiology 2017, 163, 505–509. [Google Scholar] [CrossRef]
- Rogers, S.O.; Bendich, A.J. Extraction of DNA from plant tissues. Plant Mol. Biol. 1988, 5, 69–76. [Google Scholar] [CrossRef]
- Li, W.; Teixeira, D.C.; Hartung, J.S.; Huang, Q.; Duan, Y.; Zhou, L.; Chen, J.; Lin, H.; Lopes, S.; Ayres, A.J.; et al. Development and systematic validation of qPCR assays for rapid and reliable differentiation of Xylella fastidiosa strains causing citrus variegated chlorosis. J. Microbiol. Methods 2013, 92, 79–89. [Google Scholar] [CrossRef]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minsavage, G.V.; Thompson, C.M.; Hopkins, D.L.; Leite, R.M.V.B.C.; Stall, R.E. Development of a polymerase chain reaction protocol for detection of Xylella fastidiosa in plant tissue. Phytopathology 1994, 84, 456–461. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, M.A. Ez: Easy Analysis and Visualization of Factorial Experiments (R Package Version 4.4-0). Available online: https://CRAN.R-project.org/package=ez (accessed on 28 May 2020).
- Harrington, D.P.; Fleming, T.R. A class of rank test procedures for censored survival data. Biometrika 1982, 69, 553–566. [Google Scholar] [CrossRef]
- Therneau, T.M. A Package for Survival Analysis in S (R Package Version 2.41-3). Available online: http://CRAN.R-project.org/package=survival (accessed on 6 June 2019).
- R Core Team. R: A Language and Environment for Statistical Computing. 2018. Available online: https://www.R-project.org (accessed on 6 June 2019).
- R Studio Team. R Studio: Integrated Development for R. 2019. Available online: https://www.rstudio.com/ (accessed on 6 June 2019).
- Almeida, R.P.P.; Purcell, A.H. Patterns of Xylella fastidiosa colonization on the precibarium of sharpshooter vectors relative to transmission to plants. Ann. Entomol. Soc. Am. 2006, 99, 884–890. [Google Scholar] [CrossRef] [Green Version]
- Koiwai, K.; Hartmann, M.D.; Linke, D.; Lupas, A.N.; Hori, K. Structural Basis for Toughness and Flexibility in the C-terminal Passenger Domain of an Acinetobacter Trimeric Autotransporter Adhesin. J. Biol. Chem. 2016, 291, 3705–3724. [Google Scholar] [CrossRef] [Green Version]
- El Tahir, Y.; Skurnik, M. YadA, the multifaceted Yersinia adhesin. Int. J. Med. Microbiol. 2001, 291, 209–218. [Google Scholar] [CrossRef]
- Leo, J.C.; Skurnik, M. Adhesins of human pathogens from the genus Yersinia. Adv. Exp. Med. Biol. 2011, 715, 1–15. [Google Scholar]
- De Souza, A.A.; Takita, M.A.; Pereira, E.O.; Coletta-Filho, H.D.; Machado, M.A. Expression of pathogenicity-related genes of Xylella fastidiosa in vitro and in planta. Curr. Microbiol. 2005, 50, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.O. Biochemistry of insect cuticle. Annu. Rev. Entomol. 1979, 24, 29–59. [Google Scholar] [CrossRef]
- Lopes, J.R.S.; Krugner, R. Transmission Ecology and Epidemiology of the Citrus Variegated Chlorosis Strain of Xylella fastidiosa; Phytopathological Society Press: St. Paul, MN, USA, 2016; pp. 195–208. [Google Scholar]
- Sicard, A.; Zeilinger, A.R.; Vanhove, M.; Schartel, T.E.; Beal, D.J.; Daugherty, M.P.; Almeida, R.P.P. Xylella fastidiosa: Insights into an Emerging Plant Pathogen. Annu. Rev. Phytopathol. 2018, 56, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Killiny, N.; Prado, S.S.; Almeida, R.P. Chitin utilization by the insect transmitted bacterium Xylella fastidiosa. Appl. Environ. Microbiol. 2010, 76, 6134–6140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koide, T.; Zaini, P.A.; Moreira, L.M.; Vêncio, R.Z.N.; Matsukuma, A.Y.; Durham, A.M.; Teixeira, D.C.; El-Dorry, H.; Monteiro, P.B.; Da Silva, A.C.R.; et al. DNA microarray-based genome comparison of a pathogenic and a nonpathogenic strain of Xylella fastidiosa delineates genes important for bacterial virulence. J. Bacteriol. 2004, 106, 5442–5449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bossi Esteves, M.; Lopes Nalin, J.; Kudlawiec, K.; Caserta Salviatto, R.; de Melo Sales, T.; Sicard, A.; Piacentini Paes de Almeida, R.; Alves de Souza, A.; Roberto Spotti Lopes, J. XadA2 Adhesin Decreases Biofilm Formation and Transmission of Xylella fastidiosa subsp. pauca. Insects 2020, 11, 473. https://doi.org/10.3390/insects11080473
Bossi Esteves M, Lopes Nalin J, Kudlawiec K, Caserta Salviatto R, de Melo Sales T, Sicard A, Piacentini Paes de Almeida R, Alves de Souza A, Roberto Spotti Lopes J. XadA2 Adhesin Decreases Biofilm Formation and Transmission of Xylella fastidiosa subsp. pauca. Insects. 2020; 11(8):473. https://doi.org/10.3390/insects11080473
Chicago/Turabian StyleBossi Esteves, Mariana, Julia Lopes Nalin, Karla Kudlawiec, Raquel Caserta Salviatto, Tiago de Melo Sales, Anne Sicard, Rodrigo Piacentini Paes de Almeida, Alessandra Alves de Souza, and João Roberto Spotti Lopes. 2020. "XadA2 Adhesin Decreases Biofilm Formation and Transmission of Xylella fastidiosa subsp. pauca" Insects 11, no. 8: 473. https://doi.org/10.3390/insects11080473
APA StyleBossi Esteves, M., Lopes Nalin, J., Kudlawiec, K., Caserta Salviatto, R., de Melo Sales, T., Sicard, A., Piacentini Paes de Almeida, R., Alves de Souza, A., & Roberto Spotti Lopes, J. (2020). XadA2 Adhesin Decreases Biofilm Formation and Transmission of Xylella fastidiosa subsp. pauca. Insects, 11(8), 473. https://doi.org/10.3390/insects11080473