Inheritance, Fitness Cost, and Management of Lambda-Cyhalothrin Resistance in a Laboratory-Selected Strain of Ceratitis capitata (Wiedemann)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Laboratory Strains of C. capitata
2.2. Crosses for Inheritance Study
2.3. Generation of a Multi-Resistant Strain of C. capitata
2.4. Bioassays
2.5. Assessment of Life History Traits
2.5.1. Adults’ Weight and Longevity
2.5.2. Fecundity
2.5.3. Embryo to Pupal Viability and Developmental Time to Pupation
2.6. Enzymatic Activities
2.7. Statistics
3. Results
3.1. Inheritance of Lambda-Cyhalothrin Resistance
3.2. Fitness Cost Associated to Lambda-Cyhalothrin Resistance in W-1Kλ
3.3. Impact of Different Treatment Scenarios in the Progression of Resistance in the Multi-Resistant Laboratory Strain MR of C. capitata
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EPPO. European and Mediterranean Plant Protection Organitzation. EPPO Global Database. 2020. Available online: https://gd.eppo.int/taxon/CERTCA/distribution (accessed on 10 August 2020).
- Magaña, C.; Hernandez-Crespo, P.; Ortego, F.; Castañera, P. Resistance to malathion in field populations of Ceratitis capitata. J. Econ. Entomol. 2007, 100, 1836–1843. [Google Scholar] [CrossRef]
- Arouri, R.; Le Goff, G.; Hemden, H.; Navarro-Llopis, V.; M’saad, M.; Castañera, P.; Feyereisen, R.; Hernández-Crespo, P.; Ortego, F. Resistance to lambda-Cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain. Pest. Manag. Sci. 2015, 71, 1281–1291. [Google Scholar] [CrossRef]
- Guillem-Amat, A.; Sánchez, L.; López-Errasquín, E.; Ureña, E.; Hernández-Crespo, P.; Ortego, F. Field detection and predicted evolution of spinosad resistance in Ceratitis capitata. Pest Manag. Sci. 2020. [Google Scholar] [CrossRef]
- Devine, G.J.; Denholm, I. Insecticide and Acaricide Resistance. In Encyclopedia of Insects; Resh, V.H., Cardé, R.T., Eds.; Academic Press: New York, NY, USA, 2009; pp. 505–511. [Google Scholar]
- Sparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Comission. Sustainable Use of Pesticides. 2020. Available online: https://ec.europa.eu/food/plant/pesticides/sustainable_use_pesticides_en (accessed on 10 August 2020).
- Feyereisen, R.; Dermauw, W.; Van Leeuwen, T. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pestic. Biochem. Physiol. 2015, 121, 61–77. [Google Scholar] [CrossRef] [PubMed]
- Gassmann, A.J.; Onstad, D.W.; Pittendrigh, B.R. Evolutionary analysis of herbivorous insects in natural and agricultural environments. Pest Manag. Sci. 2009, 65, 1174–1181. [Google Scholar] [CrossRef]
- Kliot, A.; Ghanim, M. Fitness costs associated with insecticide resistance. Pest. Manag. Sci. 2012, 68, 1431–1437. [Google Scholar] [CrossRef]
- Tsakireli, D.; Riga, M.; Kounadi, S.; Douris, V.; Vontas, J. Functional characterization of CYP6A51, a cytochrome P450 associated with pyrethroid resistance in the Mediterranean fruit fly Ceratitis capitata. Pestic. Biochem. Physiol. 2019, 157, 196–203. [Google Scholar] [CrossRef]
- Voudouris, C.C.; Mavridis, K.; Kalaitzaki, A.; Skouras, P.J.; Kati, A.N.; Eliopoulos, P.A.; Vontas, J.; Margaritopoulos, J.T. Susceptibility of Ceratitis capitata to deltamethrin and spinosad in Greece. J. Pest. Sci. 2018, 91, 861–871. [Google Scholar] [CrossRef]
- Abbas, N.; Khan, H.A.A.; Shad, S.A. Resistance of the house fly Musca domestica (Diptera: Muscidae) to lambda-cyhalothrin: Mode of inheritance, realized heritability, and cross-resistance to other insecticides. Ecotoxicology 2014, 23, 791–801. [Google Scholar] [CrossRef]
- Li, T.; Liu, N. Inheritance of permethrin resistance in Culex quinquefasciatus. J. Med. Entomol. 2010, 47, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.A.A.; Akram, W.; Haider, M.S. Genetics and mechanism of resistance to deltamethrin in the house fly, Musca domestica L., from Pakistan. Ecotoxicology 2015, 24, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.G. Evolution of resistance to pyrethroid insecticides in Musca domestica. Pest Manag. Sci. 2017, 73, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Pedra, J.H.F.; McIntyre, L.M.; Scharf, M.E.; Pittendrigh, B.R. Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proc. Natl. Acad. Sci. USA 2004, 101, 7034–7039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, X.; Sun, W.; Mcdonnell, C.M.; Li-Byarlay, H.; Steele, L.D.; Wu, J.; Xie, J.; Muir, W.M.; Pittendrigh, B.R. Genome-wide analysis of genes associated with moderate and high DDT resistance in Drosophila melanogaster. Pest. Manag. Sci. 2013, 69, 930–937. [Google Scholar] [CrossRef]
- Alvarez-Gonzalez, L.C.; Briceño, A.; Ponce-Garcia, G.; Villanueva-Segura, O.K.; Davila-Barboza, J.A.; Lopez-Monroy, B.; Gutierrez-Rodriguez, S.M.; Contreras-Perera, Y.; Rodriguez-Sanchez, I.P.; Flores, A.E. Assessing the effect of selection with deltamethrin on biological parameters and detoxifying enzymes in Aedes aegypti (L.). Pest. Manag. Sci. 2017, 73, 2287–2293. [Google Scholar] [CrossRef]
- Martins, A.J.; Ribeiro, C.D.; Bellinato, D.F.; Peixoto, A.A.; Valle, D.; Lima, J.B.P. Effect of insecticide resistance on development, longevity and reproduction of field or laboratory selected Aedes aegypti populations. PLoS ONE 2012, 7, e31889. [Google Scholar] [CrossRef] [Green Version]
- Saingamsook, J.; Yanola, J.; Lumjuan, N.; Walton, C.; Somboon, P. Investigation of relative development and reproductivity fitness cost in three insecticide-resistant strains of Aedes aegypti from Thailand. Insects 2019, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Abbas, N.; Shah, R.M.; Shad, S.A.; Iqbal, N.; Razaq, M. Biological trait analysis and stability of lambda-cyhalothrin resistance in the house fly, Musca domestica L. (Diptera: Muscidae). Parasitol. Res. 2016, 115, 2073–2080. [Google Scholar] [CrossRef]
- Ffrench-Constant, R.H.; Bass, C. Does resistance really carry a fitness cost? Curr. Opin. Insect Sci. 2017, 21, 39–46. [Google Scholar] [CrossRef]
- Hardstone, M.C.; Huang, X.; Harrington, L.C.; Scott, J.G. Differences in development, glycogen, and lipid content associated with cytochrome P450-mediated permethrin resistance in Culex pipiens quinquefasciatus (Diptera: Culicidae). J. Med. Entomol. 2010, 47, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.Q.; Shen, B.; Gu, Y.; Tian, H.S.; Ma, L.; Li, X.; Yang, M.; Hu, Y.; Sun, Y.; Hu, X.; et al. Serine proteinase over-Expression in relation to deltamethrin resistance in Culex pipiens pallens. Arch. Biochem. Biophys. 2005, 438, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Bourguet, D.; Delmotte, F.; Franck, P.; Guillemaud, T.; Reboud, X.; Vacher, C. Heterogeneity of selection and the evolution of resistance. Trends Ecol. Evol. 2013, 28, 110–118. [Google Scholar]
- Hemingway, J. Resistance: A problem without an easy solution. Pestic. Biochem. Physiol. 2018, 151, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Ureña, E.; Guillem-Amat, A.; Couso-Ferrer, F.; Beroiz, B.; Perera, N.; López-Errasquín, E.; Castañera, P.; Ortego, F.; Hernández-Crespo, P. Multiple mutations in the nicotinic acetylcholine receptor Ccα6 gene associated with resistance to spinosad in medfly. Sci. Rep. 2019, 9, 2961. [Google Scholar] [CrossRef]
- Bourguet, D.; Genissel, A.; Raymond, M. Insecticide resistance and dominance levels. J. Econmic Entomol. 2000, 93, 1588–1595. [Google Scholar] [CrossRef]
- Stone, B.F. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bull. World Health Organ. 1968, 38, 325–326. [Google Scholar]
- San Andres, V.; Ortego, F.; Castañera, P. Effects of gamma-Irradiation on midgut proteolytic activity of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Arch. Insect Biochem. Physiol. 2007, 65, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Valencia, A.; Bustillo, A.E.; Ossa, G.E.; Chrispeels, M. α-Amilases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two amylase inhibitors. Insect Biochem. Mol. Biol. 2000, 30, 207–213. [Google Scholar] [CrossRef]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Robertson, J.L.; Preisler, H.K. Pesticide Bioassays with Arthropods; CRC Press: Boca Ratón, FL, USA, 1992; p. 199. [Google Scholar]
- Darvishzadeh, A.; Hosseininaveh, V.; Ghamari, M. Identification and biochemical characterisation of α-amylase in the alimentary tract of Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Arch. Phytopathol. Plant. Prot. 2013, 46, 1061–1069. [Google Scholar] [CrossRef]
- Farnham, A.W. Genetics of resistance of houseflies (Musca domestica L.) to pyrethroids. I. Knock-down resistance. Pestic. Sci. 1977, 8, 631–636. [Google Scholar] [CrossRef]
- Scott, J.G. Life and death at the voltage-Sensitive sodium channel: Evolution in response to insecticide use. Annu. Rev. Entomol. 2019, 64, 243–257. [Google Scholar] [CrossRef]
- Dong, K.; Du, Y.; Rinkevich, F.; Nomura, Y.; Xu, P.; Wang, L.; Silver, K.; Zhorov, B.S. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem. Mol. Biol. 2014, 50, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Prasad, T.P.N.H.; Shetty, N.J. Autosomal inheritance of alphamethrin, a synthetic pyrethroid, resistance in Anopheles stephensi—Liston, a malaria mosquito. Bull. Entomol. Res. 2013, 103, 547–554. [Google Scholar] [CrossRef]
- Magaña, C.; Hernández-Crespo, P.; Brun-Barale, A.; Couso-Ferrer, F.; Bride, J.M.; Castañera, P.; Feyereisen, R.; Ortego, F. Mechanisms of resistance to malathion in the medfly Ceratitis capitata. Insect Biochem. Mol. Biol. 2008, 38, 756–762. [Google Scholar] [CrossRef] [Green Version]
- David, M.R.; Garcia, G.A.; Valle, D.; Maciel-de-Freitas, R. Insecticide resistance and fitness: The case of four Aedes aegypti populations from different Brazilian regions. BioMed Res. Int. 2018, 2018, 6257860. [Google Scholar] [CrossRef] [Green Version]
- Araújo, R.A.; Guedes, R.N.C.; Oliveira, M.G.A.; Ferreira, G.H. Enhanced proteolytic and cellulolytic activity in insecticide-Resistant strains of the maize weevil, Sitophilus zeamais. J. Stored Prod. Res. 2008, 4, 354–359. [Google Scholar] [CrossRef]
Mortality (%) ± SE (n1) to Lambda-Cyhalothrin (ppm) | |||||||
---|---|---|---|---|---|---|---|
Generation | 3 | 10 | 30 | 100 | 300 | 1000 | Non-Treated |
Parents | |||||||
C | 2 ± 2 (60) | 35 ± 12 (58) | 84 ± 4 (57) | 98 ± 2 (59) | 96 ± 2 (55) | 16 ± 8 (55) | |
W-1Kλ | 3 ± 2 (60) | 14 ± 5 (59) | 0 (60) | ||||
F1-crosses | |||||||
F1A (♂W-1Kλ × ♀C) | 0 (30) | 0 (30) | 0 (30) | 0 (30) | 30 ± 12 (30) | 0 (30) | |
F1B (♀W-1Kλ × ♂C) | 0 (30) | 0 (30) | 0 (30) | 3 ± 3 (40) | 27 ± 3 (30) | 3 ± 3 (30) | |
F2-crosses | |||||||
(F1A and F1B interbred) | 10 ± 6 (60) | 22 ± 11 (60) | 42 ± 5 (60) | 65 ± 10 (60) | 77 ± 4 (60) | 8 ± 6 (60) | |
Backcrosses | |||||||
BC2 | 2 ± 2 (59) | 42 ± 6 (60) | 73 ± 3 (60) | 84 ± 3 (120) | 92 ± 4 (60) | 7 ± 5 (59) | |
Estimation of LC50, resistance ratio (RR), and dominance value (DLC) | |||||||
Generation | n3 | Slope ± SE | LC504 (95% FL) | χ2 | df | RR5 (95% FL) | DLC6 |
Parents | |||||||
C | 344 | 2.34 ± 0.24 | 17 (7−35) | 116.4 * | 18 | 1 | |
W-1Kλ | 239 | >1000 | >59 | ||||
F1-crosses | |||||||
F1A (♂W-1Kλ × ♀C) | 180 | >1000 | >59 | ̴1 | |||
F1B (♀W-1Kλ × ♂C) | 190 | >1000 | >59 | ̴1 | |||
F2-crosses | |||||||
(F1A and F1B interbred) | 360 | 1.41 ± 0.18 | 205 (115−348) | 35.0 * | 18 | 12.0 (7.4−19.4) # | |
Backcrosses | |||||||
BC2 | 418 | 1.57 ± 0.18 | 63 (38−98) | 38.0 * | 18 | 3.7 (2.4−5.7) # | |
Fit of the inheritance segregation to a monogenic model | |||||||
Generation | Mortality observed7 | Mortality expected8 | χ2 | df | |||
F2 | 39/60 (65%) | 25% | 51.2 + | 1 | |||
BC | 101/120 (84%) | 50% | 56.0 + | 1 |
Biological Parameters | C | W-1Kλ | W-4Km |
---|---|---|---|
Adults’ weight (g) | |||
Males | 6.24 ± 0.060 a | 8.37 ± 0.090 b | 6.94 ± 0.087 c |
Females | 7.52 ± 0.062 a | 9.61 ± 0.089 b | 7.93 ± 0.012 c |
Fecundity | |||
Daily (Nᵒ eggs/20 females) Day 1 | 515 ± 37 a,b | 372 ± 52 a | 598 ± 24 b |
Day 2 | 765 ± 23 a | 645 ± 26 b | 551 ± 34 b |
Day 3 | 716 ± 20 a | 661 ± 43 a | 617 ± 35 a |
Days 1–3 | 1996 ± 48 a | 1678 ± 93 b | 1767 ± 41 a,b |
Lifetime (cm3 eggs/30 females) | 1.50 ± 0.18 a | 0.98 ± 0.08 b | 1.10 ± 0.12 ab |
Embryo to pupal viability (Number of pupae) | 772 ± 38 a | 278 ± 56 b | 537 ± 63 c |
Developmental time (Days from egg to pupae) | 8.54 ± 0.15 a | 9.63 ± 0.16 b | 9.04 ± 0.02 a |
Enzymatic Activity | C | W-1Kλ | W-4Km | |||
---|---|---|---|---|---|---|
Males | Females | Males | Females | Males | Females | |
Total protein | 341 ± 18 a,b | 361 ± 38 a,b | 285 ± 20 a | 381 ± 43 a,b | 321 ± 35 a,b | 433 ± 46 b |
Trypsin | 0.42 ± 0.07 a | 0.46 ± 0.1 a | 0.41 ± 0.13 a | 0.38 ± 0.06 a | 0.26 ± 0.06 a | 0.19 ± 0.03 a |
Cathepsin D | 17.1 ± 0.7 a,b | 17.7 ± 1.7 a,b | 21.2 ± 2 a | 18 ± 2.7 a,b | 18.5 ± 1.5 a,b | 13.3 ± 1 b |
Leucine aminopeptidase | 28.7 ± 3.7 a | 29.1 ± 5.4 a,b | 12.5 ± 1.3 b | 12.8 ± 1.1 a,b | 13.5 ± 1.6 a,b | 11.9 ± 1.6 b |
α-Amylase | 69.4 ± 4.2 a | 70.6 ± 8.7 a | 178.6 ± 23 c | 139.1 ± 11 c | 123 ± 11 b,c | 80.6 ± 8.1 a,b |
Scenario | Generation | N † | Slope ± SE | LC50 ‡ | 95% FL | χ2 | df | Significance | RR § | 95% FL | Significance |
---|---|---|---|---|---|---|---|---|---|---|---|
Initial MR | G1 | 285 | 0.80 ± 0.15 | 50.63 | 3.89–129.87 | 36.63 | 13 | 1 | |||
T1 | G5 | 179 | 1.71 ± 0.25 | 175.87 | 124.96–245.44 | 7.38 | 10 | * | 3.47 | 1.20–10.05 | # |
G7 | 180 | 1.60 ± 0.38 | 27.59 | 11.52–41.30 | 7.17 | 10 | * | 0.54 | 0.16–1.82 | ||
G9 | 199 | 2.06 ± 0.35 | 233.76 | 168.85–345.03 | 15.23 | 13 | * | 4.62 | 1.63–13.10 | # | |
G11 | 225 | 1.06 ± 0.34 | 21.78 | 0.30–62.90 | 7.55 | 10 | * | 0.43 | 0.02–8.66 | ||
T2 | G5 | 149 | 1.87 ± 0.29 | 301.06 | 173.08–579.44 | 18.68 | 10 | 5.95 | 2.02–17.54 | # | |
G7 | 262 | 2.07 ± 0.31 | 130.70 | 91.10–209.64 | 35.05 | 15 | 2.58 | 0.93–7.19 | |||
G9 | 250 | 1.69 ± 0.23 | 272.79 | 159.31–460.66 | 48.07 | 18 | 5.39 | 0.01–1947.02 | |||
G11 | 224 | 1.03 ± 0.34 | 21.97 | 0.19–65.11 | 8.59 | 10 | * | 0.43 | 0.02–11.11 | ||
T3 | G5 | 181 | 1.81 ± 0.32 | 172.74 | 110.12–334.75 | 13.22 | 10 | * | 3.41 | 1.14–10.22 | # |
G7 | 212 | 1.52 ± 0.26 | 23.05 | 8.08–39.78 | 27.21 | 13 | 0.46 | 0.14–1.41 | |||
G9 | 120 | 3.38 ± 0.61 | 32.38 | 22.55–47.18 | 10.44 | 7 | * | 0.64 | 0.23–1.82 | ||
G11 | 300 | 1.25 ± 0.20 | 246.94 | 128.7–913.9 | 37.89 | 14 | 4.88 | 1.55–15.32 | # |
Scenario | Generation | Mortality % ± SE (n) † | ||||
---|---|---|---|---|---|---|
Non-treated | 0.5 ppm | 1 ppm | 10 ppm | 100 ppm | ||
Initial MR | G1 | 2 ± 2 (45) | - | 56 ± 11 (45) | 71 ± 6 (45) | 82 ± 4 (44) |
T1 | G5 | 0 ± 0 (36) | 0 ± 0 (24) | 0 ± 0 (36) | 0 (12) | 0 ± 0 (36) |
G7 | 0 ± 0 (36) | - | - | - | 0 ± 0 (36) | |
G9 | 0 ± 0 (30) | - | - | - | 3 ± 3 (30) | |
G11 | 2 ± 2 (45) | - | - | - | 0 ± 0 (45) | |
T2 | G5 | 0 ± 0 (29) | 0 ± 0 (20) | 0 ± 0 (30) | 0 (10) | 0 ± 0 (30) |
G7 | 0 ± 0 (36) | - | - | - | 3 ± 3 (36) | |
G9 | 0 ± 0 (30) | - | - | - | 3 ± 3 (30) | |
G11 | 2 ± 2 (45) | - | - | - | 0 ± 0 (45) | |
T3 | G5 | 3 ± 3 (36) | 8 ± 8 (24) | 67 ± 25 (36) | 100 (12) | 97 ± 3 (36) |
G7 | 6 ± 3 (36) | 77 ± 3 (35) | 89 ± 3 (36) | 97 ± 3 (36) | 94 ± 6 (36) | |
G9 | 3 ± 3 (30) | 53 ± 3 (30) | 84 ± 3 (31) | 97 ± 3 (30) | 93 ± 3 (30) | |
G11 | 0 ± 0 (45) | 69 ± 4 (45) | 98 ± 2 (45) | 98 ± 2 (45) | 100 ± 0 (45) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillem-Amat, A.; López-Errasquín, E.; Sánchez, L.; González-Guzmán, M.; Ortego, F. Inheritance, Fitness Cost, and Management of Lambda-Cyhalothrin Resistance in a Laboratory-Selected Strain of Ceratitis capitata (Wiedemann). Insects 2020, 11, 551. https://doi.org/10.3390/insects11090551
Guillem-Amat A, López-Errasquín E, Sánchez L, González-Guzmán M, Ortego F. Inheritance, Fitness Cost, and Management of Lambda-Cyhalothrin Resistance in a Laboratory-Selected Strain of Ceratitis capitata (Wiedemann). Insects. 2020; 11(9):551. https://doi.org/10.3390/insects11090551
Chicago/Turabian StyleGuillem-Amat, Ana, Elena López-Errasquín, Lucas Sánchez, Miguel González-Guzmán, and Félix Ortego. 2020. "Inheritance, Fitness Cost, and Management of Lambda-Cyhalothrin Resistance in a Laboratory-Selected Strain of Ceratitis capitata (Wiedemann)" Insects 11, no. 9: 551. https://doi.org/10.3390/insects11090551
APA StyleGuillem-Amat, A., López-Errasquín, E., Sánchez, L., González-Guzmán, M., & Ortego, F. (2020). Inheritance, Fitness Cost, and Management of Lambda-Cyhalothrin Resistance in a Laboratory-Selected Strain of Ceratitis capitata (Wiedemann). Insects, 11(9), 551. https://doi.org/10.3390/insects11090551