Hemp Pest Spectrum and Potential Relationship between Helicoverpa zea Infestation and Hemp Production in the United States in the Face of Climate Change
Abstract
:Simple Summary
Abstract
1. Introduction
2. Industrial Hemp Pests
3. Corn Earworm and Hemp: Potential Effects of Climate Change
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahzad, A. Hemp fiber and its composites—A review. J. Compos. Mater. 2012, 46, 973–986. [Google Scholar] [CrossRef]
- Tang, K.; Struik, P.C.; Yin, X.; Thouminot, C.; Bjelková, M.; Stramkale, V.; Amaducci, S. Comparing hemp (Cannabis sativa L.) cultivars for dual-purpose production under contrasting environments. Ind. Crop. Prod. 2016, 87, 33–44. [Google Scholar] [CrossRef]
- Fortenbery, T.R.; Bennett, M. Opportunities for commercial hemp production. Rev. Agr. Econ. 2004, 26, 97–117. [Google Scholar] [CrossRef]
- Salentijn, E.M.J.; Zhang, Q.; Amaducci, S.; Yang, M.; Trindade, L.M. New developments in fiber hemp (Cannabis sativa L.) breeding. Ind. Crop. Prod. 2015, 68, 32–41. [Google Scholar] [CrossRef]
- Small, E.; Cronquist, A. A practical and natural taxonomy for Cannabis. Taxon 1976, 25, 405–435. [Google Scholar] [CrossRef]
- Johnson, N. American Weed: A History of Cannabis Cultivation in the United States. EchoGéo 2019, 48, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Tyler, M.; Shepherd, J.; Olson, D.; Snell, W.; Proper, S.; Thornsbury, S. Economic Viability of Industrial Hemp in the United States: A Review of State Pilot Programs; EIB-217; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2020.
- Agriculture Improvement Act of 2018: Public Law Number 115-334, United States of America. 2018. Available online: https://www.govinfo.gov/app/details/PLAW-115publ334 (accessed on 10 October 2021).
- Witkowski, T.H. Cannabis marketing systems and social change in the United States. In Proceedings of the 40th Annual Macromarketing Conference, Chicago, IL, USA, 25–28 June 2015. [Google Scholar]
- Cui, X.; Smith, S.A. University of Tennessee Extension’s 2020 Hemp Industry Survey. 2000. Available online: www.utia.tennessee.edu (accessed on 4 January 2021).
- Fike, J. Industrial hemp: Renewed opportunities for an ancient crop. Crit. Rev. Plant Sci. 2016, 35, 406–424. [Google Scholar] [CrossRef]
- Cranshaw, W.; Schreiner, M.; Britt, K.; Kuhar, T.P.; McPartland, J.; Grant, J. Developing Insect Pest Management Systems for Hemp in the United States: A Work in Progress. J. Integr. Pest Manag. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Ellison, S. Hemp (Cannabis sativa L.) research priorities: Opinions from United States hemp stakeholders. Glob. Change Biol. Bioenergy 2021, 13, 562–569. [Google Scholar] [CrossRef]
- Adesina, I.; Bhowmik, A.; Sharma, H.; Shahbazi, A. A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the United States. Agriculture 2020, 10, 129. [Google Scholar] [CrossRef] [Green Version]
- McPartland, J.M.; Clarke, R.C.; Watson, D.P. Hemp Diseases and Pests: Management and Biological Control; CABI: Wallingford, UK, 2000. [Google Scholar]
- Ladányi, M.; Horváth, L. A review of the potential climate change impact on insect populations–General and agricultural aspects. Appl. Ecol. Environ. Res. 2010, 8, 143–152. [Google Scholar] [CrossRef]
- Ajayi, O.S.; Appel, A.G.; Chen, L.; Fadamiro, H.Y. Comparative cutaneous water loss and desiccation tolerance of four Solenopsis spp. (Hymenoptera: Formicidae) in the Southeastern United States. Insects 2020, 11, 418. [Google Scholar] [CrossRef] [PubMed]
- Leach, K.; Montgomery, W.I.; Reid, N. Modelling the influence of biotic factors on species distribution patterns. Ecol. Model. 2016, 337, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, A.R.; Messenger, P.S. Insects and mites associated with plants of the genera, Argemone, Cannabis, Glaucium, Erythroxylum, Eschscholtzia, Humulus and Papaver. Unpublished work. 1972. [Google Scholar]
- Anderson, R.; Zaric, M.; Rilakovic, A.; Kruger, G.; Peterson, J. Diversity and Abundance of Arthropods in Industrial Hemp Fields of Nebraska. In Proceedings of the Entomological Society of America Annual Meeting, Online, 15–18 November 2020. [Google Scholar]
- Lewins, S.; Darby, H. Insect pests of industrial hemp in the Northeastern US. In Proceedings of the Entomological Society of America Annual Meeting, Online, 15–18 November 2020. [Google Scholar]
- Villa, E.; Pitt, W.J.; Nachappa, P. Cannabis aphid (Hemiptera: Aphididae), a New Vector of Potato Virus Y Infecting Hemp. In Proceedings of the Entomological Society of America Annual Meeting, Online, 15–18 November 2020. [Google Scholar]
- Nixon, J.; Samuel-Foo, M.; Kesheimer, K. Insect Pests of Industrial Hemp. In Proceedings of the Entomological Society of America Annual Meeting, Online, 15–18 November 2020. [Google Scholar]
- Villanueva, R.T.; Viloria, Z.J.; Klueppel, R.; Bradley, C. Biology, Damage, Suitability as Prey of Ladybugs, and Chemical Control of the Cannabis Aphid. In Proceedings of the Entomological Society of America Annual Meeting, Online, 15–18 November 2020. [Google Scholar]
- Lemay, J.; Scott-Dupree, C. Biological Control in Odour Space: The Next Frontier. In Proceedings of the Entomological Society of America Annual Meeting, Online, 15–18 November 2020. [Google Scholar]
- Zobel, E.; Fiorellino, N.M.; Ristvey, A. An Overview of the Insect Community Found in Fiber and Grain Industrial Hemp Grown on the Eastern Shore of Maryland in 2020. In Proceedings of the Entomological Society of America Annual Meeting, Online, 15–18 November 2020. [Google Scholar]
- Chiginsky, J.; Langemeier, K.; White, S.; Cranshaw, W.S.; Fulladolsa, A.C.; Stenglein, M.; Nachappa, P. Hemp Virome Revealed, and the Ecology of Beet Curly Top Virus in Hemp in Colorado. In Proceedings of the Entomological Society of America Annual Meeting, Online, 15–18 November 2020. [Google Scholar]
- Burrack, H.J.; Ganji, N.; Pulkoski, M. Arthropod Pest Management of Hemp in North Carolina. In Proceedings of the Entomological Society of America Annual Meeting, Online, 15–18 November 2020. [Google Scholar]
- Pulkoski, M.; Burrack, H.J. Method Development for Plant Response to Insect Feeding Modes Study in Industrial Hemp (Cannabis sativa). In Proceedings of the Entomological Society of America Annual Meeting, Online, 15–18 November 2020. [Google Scholar]
- Cosner, J.; Grant, J.F.; Kelly, H. Influence of Hemp Variety and Fertilizer Rate on Populations of Corn Earworm, Helicoverpa zea, and Plant Characteristics. In Proceedings of the Entomological Society of America Annual Meeting, Online, 15–18 November 2020. [Google Scholar]
- Fritz, B. Progress in Biopesticides for Hemp IPM. In Proceedings of the Entomological Society of America Annual Meeting, Online, 15–18 November 2020. [Google Scholar]
- Zebelo, S.; Jackson, B.; Gilbert, L.; Tolosa, T.; Volkis, V. Impact of Insect Herbivores on the Δ9THC and CBD Levels in Hemp. In Proceedings of the Entomological Society of America Annual Meeting, Online, 15–18 November 2020. [Google Scholar]
- Grant, J.; Hale, F. Beneficials on Hemp: What You Need to Know. In Proceedings of the Entomological Society of America Annual Meeting, Online, 15–18 November 2020. [Google Scholar]
- Cranshaw, W.; Shetlar, D. Garden Insects of North America: The Ultimate Guide to Backyard Bugs; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Hardwick, D.F. The corn earworm complex. Mem. Entomol. Soc. Can. 1965, 40, 1–247. [Google Scholar] [CrossRef]
- Reay-Jones, F.P.F. Pest status and management of corn earworm (Lepidoptera: Noctuidae) in field corn in the United States. J. Integr. Pest Manag. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Akkawi, M.M.; Scott, D.R. The effect of age of parents on the progeny of diapaused and non-diapaused Heliothis zea. Entomol. Exp. Appl. 1984, 35, 235–239. [Google Scholar] [CrossRef]
- Fitt, G.P. The ecology of Heliothis species in relation to agroecosystems. Annu. Rev. Entomol. 1989, 34, 17–53. [Google Scholar] [CrossRef]
- Britt, K.E.; Kuhar, T.P.; Cranshaw, W.; McCullough, C.T.; Taylor, S.V.; Arends, B.R.; Burrack, H.; Pulkoski, M.; Owens, D.; Tolosa, T.A.; et al. Pest management needs and limitations for corn earworm (Lepidoptera: Noctuidae), an emergent key pest of hemp in the United States. J. Integr. Pest Manag. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Quaintance, A.L.; Brues, C.T. The cotton bollworm. USDA Bur. Ent. Bul. 1905, 50, 98–99. [Google Scholar]
- Brazzel, J.R.; Newsom, L.D.; Roussel, J.S.; Lincoln, C.; Williams, F.J.; Barnes, G. Bollworm and tobacco budworm as cotton pests in Louisiana and Arkansas. La. Agric. Exp. Stn. Tech. Bull. 1953, 482, 47. [Google Scholar]
- Neunzig, H.H. Biology of the Tobacco Budworm and the Corn Earworm in North Carolina; North Carolina Agricultural Experiment Station: Raleigh, NC, USA, 1969; p. 196. [Google Scholar]
- Hoffmann, M.P.; Wilson, L.T.; Zalom, F.G. Area-wide pheromone trapping of Helicoverpa zea and Heliothis phloxiphaga (Lepidoptera: Noctuidae) in the Sacramento and San Joaquin valleys of California. J. Econ. Entomol. 1991, 84, 902–911. [Google Scholar] [CrossRef]
- Coop, L.B.; Drapek, R.J.; Croft, B.A.; Fisher, G.C. Relationship of corn earworm (Lepidoptera: Noctuidae) pheromone catch and silking to infestation levels in Oregon sweet corn. J. Econ. Entomol. 1992, 85, 240–245. [Google Scholar] [CrossRef]
- Tobin, P.C.; Nagarkatti, S.; Loeb, G.; Saunders, M.C. Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Global Change Biol. 2008, 14, 951–957. [Google Scholar] [CrossRef]
- Morey, A.C.; Hutchison, W.D.; Venette, R.C.; Burkness, E.C. Cold hardiness of Helicoverpa zea (Lepidoptera: Noctuidae) pupae. Environ. Entomol. 2012, 41, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Ditman, L.P.; Weiland, G.S.; Guill, J.H. The metabolism in the corn earworm. J. Econ. Entomol. 1940, 33, 282–295. [Google Scholar] [CrossRef]
- Eger, J.E.; Witz, J.A.; Hartstack, W.; Sterling, W.L. Survival of pupae of Heliothis virescens and Heliothis zea (Lepidoptera: Noctuidae) at low temperatures. Can. Entomol. 1982, 114, 289–301. [Google Scholar] [CrossRef]
- Ziter, C.; Robinson, E.A.; Newman, J.A. Climate change and voltinism in Californian insect pest species: Sensitivity to location, scenario and climate model choice. Glob. Chang. Biol. 2012, 18, 2771–2780. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; In press. [Google Scholar]
- Coley, P.D. Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Clim. Chang. 1998, 39, 455–472. [Google Scholar] [CrossRef]
- Cannon, R.J.C. The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Glob. Chang. Biol. 1998, 4, 785–796. [Google Scholar] [CrossRef]
- IPCC Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Ockendon, N.; Baker, D.J.; Carr, J.A.; White, E.C.; Almond, R.E.A.; Amano, T.; Bertram, E.; Bradbury, R.B.; Bradley, C.; Butchart, S.H.M.; et al. Mechanisms underpinning climatic impacts on natural populations: Altered species interactions are more important than direct effects. Glob. Chang. Biol. 2014, 20, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C.; Hanley, M.E. Plants and climate change: Complexities and surprises. Ann. Bot-Lond. 2015, 116, 849–864. [Google Scholar] [CrossRef]
- Stange, E.E.; Ayres, M.P. Climate change impacts: Insects. In Encyclopedia of Life Sciences (ELS); John Wiley & Sons: Chichester, UK, 2010. [Google Scholar]
- Mattson, W.J.; Haack, R.A. Role of drought in outbreaks of plant-eating insects. Bioscience 1987, 37, 110–118. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.T.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.I.L. Influence of global warming on forest coleopteran communities with special reference to ambrosia and bark beetles. J. Asia Pac. Entomol. 2011, 14, 227–231. [Google Scholar] [CrossRef]
- Sallé, A.; Nageleisen, L.; Lieutier, F. Bark and wood boring insects involved in oak declines in Europe: Current knowledge and future prospects in a context of climate change. For. Ecol. Manag. 2014, 328, 79–93. [Google Scholar] [CrossRef]
- Stireman, J.O.; Dyer, L.A.; Janzen, D.H.; Singer, M.S.; Lill, J.T.; Marquis, R.J.; Ricklefs, R.E.; Gentry, G.L.; Hallwachs, W.; Coley, P.D.; et al. Climatic unpredictability and parasitism of caterpillars: Implications of global warming. Proc. Natl. Acad. Sci. USA 2005, 102, 17384–17387. [Google Scholar] [CrossRef] [Green Version]
- Hance, T.; van Baaren, J.; Vernon, P.; Boivin, G. Impact of extreme temperatures on parasitoids in a climate change perspective. Annu. Rev. Entomol. 2007, 52, 107–126. [Google Scholar] [CrossRef] [PubMed]
- Klapwijk, M.J.; Ayres, M.P.; Battisti, A.; Larsson, S. Assessing the impact of climate change on groundwater quality in Turkey. In Insect Outbreaks Revisited; Barbosa, P., Letourneau, D.K., Agrawal, A.A., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2012; pp. 429–450. [Google Scholar]
- Skelly, D.K.; Joseph, L.N.; Possingham, H.P.; Freidenburg, L.K.; Farrugia, T.J.; Kinnison, M.T.; Hendry, A.P. Evolutionary responses to climate change. Conserv. Biol. 2007, 21, 1353–1355. [Google Scholar] [CrossRef] [PubMed]
- Tiberi, R.; Branco, M.; Bracalini, M.; Croci, F.; Panzavolta, T. Cork oak pests: A review of insect damage and management. Ann. For. Sci. 2016, 73, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.W.; Morelli, T.L.; Morisette, J.T.; Muñoz, R.C.; et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar] [CrossRef]
- Paul, M.; Dangol, S.; Kholodovsky, V.; Sapkota, A.R.; Negahban-Azar, M.; Lansing, S. Modeling the Impacts of Climate Change on Crop Yield and Irrigation in the Monocacy River Watershed, USA. Climate 2020, 8, 139. [Google Scholar] [CrossRef]
- Amaducci, S.; Zatta, A.; Pelatti, F.; Venturi, G. Influence of agronomic factors on yield and quality of hemp (Cannabis sativa L.) fibre and implication for an innovative production system. Field Crop. Res. 2008, 107, 161–169. [Google Scholar] [CrossRef]
- Overpeck, J.T.; Udall, B. Climate change and the aridification of North America. Proc. Natl. Acad. Sci. USA 2020, 117, 11856–11858. [Google Scholar] [CrossRef]
- Williams, A.P.; Cook, E.R.; Smerdon, J.E.; Cook, B.I.; Abatzoglou, J.T.; Bolles, K.; Baek, S.H.; Badger, A.M.; Livneh, B. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 2020, 368, 314–318. [Google Scholar] [CrossRef]
- Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M.L.; Belnap, J.; et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. USA 2005, 102, 15144–15148. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Citterio, S.; Santagostino, A.; Fumagalli, P.; Prato, N.; Ranalli, P.; Sgorbati, S. Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 2003, 256, 243–252. [Google Scholar] [CrossRef]
- Burrows, W.J.; Carr, D.J. Effects of flooding the root system of sunflower plants on the cytokinin content in xylem sap. Physiol. Plant. 1969, 22, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Itai, C.; Ben-Zioni, A. Regulations of plant response to high temperature. In Mechanisms of Regulation of Plant Growth; Bieleski, R.L., Ferguson, A.R., Cresswell, M.M., Eds.; The Royal Society of: Wellington, New Zealand, 1974; pp. 477–482. [Google Scholar]
- Itai, C.; Richmond, A.; Vaadia, Y. The role of root cytokinins during water and salinity stress. Israel J. Bot. 1968, 17, 187–195. [Google Scholar]
- Itai, C.; Ben-Zioni, A.; Ordin, L. Correlative changes in endogenous hormone levels and shoot growth induced by short heat treatments to the root. Physiol. Plant. 1973, 29, 355–360. [Google Scholar] [CrossRef]
- Freeman, D.C.; Harper, K.T.; Charnov, E.L. Sex change in plants: Old and new observations and new hypotheses. Oecologia 1980, 47, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Itai, C.; Vaadia, Y. Kinetin-like activity in root exudate of water-stressed sunflower plants. Physiol. PIant. 1965, 18, 941–944. [Google Scholar] [CrossRef]
- Itai, C.; Vaadia, Y. Cytokinin activity in water-stressed shoots. Plant Physiol. 1970, 47, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Chailakhyan, M.K. Genetic and hormonal regulation of growth, flowering, and sex expression in plants. Am. J. Bot. 1979, 66, 717–736. [Google Scholar] [CrossRef]
- Parker, L.; Abatzoglou, J. Warming Winters Reduce Chill Accumulation for Peach Production in the Southeastern United States. Climate 2019, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Petersen, L. Impact of Climate Change on Twenty-First Century Crop Yields in the U.S. Climate 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Watson, D.P.; Clarke, R.C. Genetic Future of Hemp. 2014. Available online: http://www.internationalhempassociation.org/jiha/jiha4111.html (accessed on 4 January 2021).
- Huberty, A.F.; Denno, R.F. Plant water stress and its consequences for herbivorous insects: A new synthesis. Ecology 2004, 85, 1383–1398. [Google Scholar] [CrossRef]
- Netherer, S.; Schopf, A. Potential effects of climate change on insect herbivores in European forests—General aspects and the pine processionary moth as specific example. For. Ecol. Manag. 2010, 259, 831–838. [Google Scholar] [CrossRef]
- Bi, J.L.; Murphy, J.B.; Felton, G.W. Antinutritive and oxidative components as mechanisms of induced resistance in cotton to Helicoverpa zea. J. Chem. Ecol. 1997, 23, 97–117. [Google Scholar] [CrossRef]
- Bi, J.L.; Felton, G.W.; Mueller, A.J. Induced resistance in soybean to Helicoverpa zea: Role of plant protein quality. J. Chem. Ecol. 1994, 20, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Felton, G.W.; Summers, C.B.; Mueller, A.J. Oxidative responses in soybean foliage to herbivory by bean leaf beetle and three-cornered alfalfa hopper. J. Chem. Ecol. 1994, 20, 639–650. [Google Scholar] [CrossRef]
- Felton, G.W.; Bi, J.L.; Mueller, A.J.; Duffey, S.S. Potential role of lipoxygenases in defense against insect herbivory. J. Chem. Ecol. 1994, 20, 651–666. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.L.; Felton, G.W. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 1995, 21, 1511–1530. [Google Scholar] [CrossRef]
- Jackson, B.; Gilbert, L.; Tolosa, T.; Henry, S.; Volkis, V.; Zebelo, S. The impact of insect herbivory in the level of cannabinoids in CBD hemp varieties. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Bengtsson, M.; Karpati, Z.; Szöcs, G.; Reuveny, H.; Yang, Z.; Witzgall, P. Flight tunnel responses of Z strain European corn borer females to corn and hemp plants. Environ. Entomol. 2006, 35, 1238–1243. [Google Scholar] [CrossRef]
- Sudbrink, D.L.; Grant, J.F. Wild host plants of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) in Eastern Tennessee. Environ. Entomol. 1995, 24, 1080–1085. [Google Scholar] [CrossRef]
- Britt, K.E.; Reed, D.; Kuhar, T.P. Evaluation of biological insecticides to manage corn earworm in CBD hemp, 2020. Arthropod Manag. Tests 2021, 46, tsab108. [Google Scholar] [CrossRef]
- Doughty, H.B.; Britt, K.E.; Kuhar, T.P. Evaluation of biological insecticides to control corn earworm in hemp, 2019. Arthropod Manag. Tests 2020, 45, tsaa081. [Google Scholar] [CrossRef]
- Britt, K.E.; Kuhar, T.P. Laboratory bioassays of biological/organic insecticides to control corn earworm on hemp in Virginia, 2019. Arthropod Manag. Tests 2020, 45, tsaa102. [Google Scholar] [CrossRef]
- White, T.C.R. An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia. Ecology 1969, 50, 905–909. [Google Scholar] [CrossRef]
- Stamp, N. Out of the quagmire of plant defense hypotheses. Q. Rev. Biol. 2003, 78, 23–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haber, A.I.; Sustache, J.R.; Carr, D.E. A generalist and a specialist herbivore are differentially affected by inbreeding and trichomes in Mimulus guttatus. Ecosphere 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Inbar, M.; Doostdar, H.; Mayer, R.T. Suitability of stressed and vigorous plants to various insect herbivores. Oikos 2001, 94, 228–235. [Google Scholar] [CrossRef] [Green Version]
Family | Common Name | Scientific Name (for Those Identified to Species) | Damage Type | Location Found | References |
---|---|---|---|---|---|
Acrididae | Grasshopper | Pest | Field | [20] | |
Aeolothripidae | Thrips | Pest | Field | [20,21] | |
Aphididae | Cannabis aphid | Phorodon cannabis | Field & greenhouse | [20,21,22,23,24,25] | |
Cercopidae | Spittlebug | Pest | Field | [20] | |
Chrysomelidae | e.g., Spotted cucumber beetle, Leaf beetle | Diabrotica undecimpunctata; Diabrotica v. virgifera; | Herbaceous pest | Field | [20,21,26] |
Cicadellidae | Leafhoppers, e.g., Beet leafhopper | e.g., Circulifer tenellus | Pest (some transmits beet curly top virus) | Field | [20,21,27,28] |
Coreidae | Leaf-footed bug | Sucking-piercing pest | Field | [26] | |
Crambidae | European corn borer | Ostrinia nubilalis | Pest | Field | [21] |
Curculionidae | Weevil | Herbaceous pest | Field | [20,26] | |
Elateridae | Click beetle | Pest | Field | [20] | |
Formicidae | Fire ant | Solenopsis invicta | Pest | Field | [20,23] |
Meloidae | Blister beetle | Herbaceous pest | Field | [26] | |
Membracidae | Treehopper | Pest | Field | [20] | |
Miridae | Tarnished plant bug | Lygus lineolaris | Sucking-piercing pest | Field | [20,26] |
Noctuidae | Corn earworm | Helicoverpa zea | Primarily, laceration of reproductive branch tip | Field | [23,26,28,29,30,31,32] |
Pentatomidae | Stink bug | Sucking-piercing pest | Field | [20,26,28] | |
Rhopalidae | Hibiscus scentless plant bug | Niesthrea louisianica | Sucking-piercing pest | Field | [26] |
Rhyparochromidae | Seed bug | Pest | Field | [20] | |
Scarabaeidae | Scarabs, e.g., Japanese beetle, Green June beetle | e.g., Popillia japonica | Herbaceous pest | Field | [20,21,26] |
Tarsonemidae | Broad mites | Polyphagotarsonemus latus | Pest | Greenhouse | [28] |
Tetranychidae | Two-spotted spider mite | Tetranychus urticae | Pest | Greenhouse | [29,31] |
Tortricidae | Euroasian hemp borer (adults & larvae) | Grapholita delineana | Pest | Field | [20,23] |
Family | Common Name (If Any) | Scientific Name (for Those Identified to Species) | Association Type | Location Found | References |
---|---|---|---|---|---|
Anthocoridae | Insidious flower bug | Orius insidiosus | Beneficial | Field | [20] |
Anthicidae | Ant-like beetle | Beneficial | Field | [20] | |
Araneae | Spiders | Natural enemy (predator) | Field | [20,33] | |
Braconidae | Braconids | Cardiochiles spp. | Natural enemy (parasitoid) | Field | [33] |
Carabidae | Tiger beetles | Beneficial | Field | [20] | |
Chrysopidae | Green lacewing | Natural enemy (predator) | Field | [20,26] | |
Coccinellidae | Lady beetle | Hippodamia convergens; Coleomegilla maculata; Hyperaspis lugubris; Cycloneda munda; Cycloneda sanguinea; Harmonia axyridis | Natural enemy (predator) | Field & greenhouse | [20,24,26] |
Dolichopodidae | Long-legged flies | Beneficial | Field | [20] | |
Geocoridae | Big-eyed bug | Geocoris spp. | Natural enemy | Field | [26] |
Hemerobiidae | Brown lacewings | Beneficial | Field | [20] | |
Ichneumonidae | Ichneumonids | Natural enemy (parasitoid) | Field | [33] | |
Nabidae | Damsel bugs | Beneficial | Field | [20] | |
Pentatomidae | Spined soldier bug | Podisus maculiventris | Natural enemy | Field | [26] |
Reduviidae | Assassin bug | Beneficial | Field | [20] | |
Syrphidae | Syrphid larvae | Natural enemy (predator) | Field | [20,33] | |
Tachinidae | Tachinids | Natural enemy (parasitoid) | Field | [33] | |
Vespidae | Paper wasps | Natural enemy (predator) | Field | [33] | |
Opiliones (spider) | Beneficial | Field | [20] |
Family | Common Name (If Any) | Association Type | Location Found | References |
---|---|---|---|---|
Cerambycidae | Longhorn beetle | Other | Field | [20] |
Cleridae | Checkered beetles | Other | Field | [20] |
Gryllidae | Cricket | Other | Field | [20] |
Latridiidae | Minute brown scavenger beetles or fungus beetle | Other | Field | [20] |
Mordellidae | Tumbling flower beetles | Other | Field | [20] |
Nitidulidae | Sap beetle | Other | Field | [20] |
Pieridae | Pierid butterfly | Other | Field | [20] |
Silvanidae | Silvan flat bark beetles | Other | Field | [20] |
Staphylinidae | Rove beetle | Other | Field | [20] |
Tipulidae | Crane fly | Other | Field | [20] |
Caddisflies (in the order Trichoptera) | Other | Field | [20] | |
Centipede (in the class Chilopoda) | Other | Field | [20] | |
Millipede (in the class Diplopoda) | Other | Field | [20] | |
Booklice, barklice or barkflies (in the order Psocoptera) | Other | Field | [20] | |
Leaf mining fly (larvae) | Other | Field | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajayi, O.S.; Samuel-Foo, M. Hemp Pest Spectrum and Potential Relationship between Helicoverpa zea Infestation and Hemp Production in the United States in the Face of Climate Change. Insects 2021, 12, 940. https://doi.org/10.3390/insects12100940
Ajayi OS, Samuel-Foo M. Hemp Pest Spectrum and Potential Relationship between Helicoverpa zea Infestation and Hemp Production in the United States in the Face of Climate Change. Insects. 2021; 12(10):940. https://doi.org/10.3390/insects12100940
Chicago/Turabian StyleAjayi, Olufemi S., and Michelle Samuel-Foo. 2021. "Hemp Pest Spectrum and Potential Relationship between Helicoverpa zea Infestation and Hemp Production in the United States in the Face of Climate Change" Insects 12, no. 10: 940. https://doi.org/10.3390/insects12100940
APA StyleAjayi, O. S., & Samuel-Foo, M. (2021). Hemp Pest Spectrum and Potential Relationship between Helicoverpa zea Infestation and Hemp Production in the United States in the Face of Climate Change. Insects, 12(10), 940. https://doi.org/10.3390/insects12100940