Comparative Efficiency of Native Insect Pollinators in Reproductive Performance of Medicago sativa L. in Pakistan
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Experiment Design
2.2. Study Plant Species
2.3. Diurnal Abundance of Insect Pollinators
2.4. Foraging Behavior of Insect Pollinators
2.5. Single-Visit Seed Set Efficiency
2.6. Data Analysis
3. Results
3.1. Pollinator Community/Floral Visitor Census
3.2. Pollination Effectiveness
3.3. Foraging Behavior
3.4. Single Visit Effectiveness of Pollinators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Klein, A.-M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J. Safeguarding pollinators and their values to human well-being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef]
- Ollerton, J. Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 353–376. [Google Scholar] [CrossRef] [Green Version]
- Breazeale, D.; Fernandez, G.; Narayanan, R. Modeling pollination factors that influence alfalfa seed yield in north-central Nevada. J. Cent. Eur. Agric. 2008, 9, 107–116. Available online: https://hrcak.srce.hr/24896 (accessed on 10 November 2021).
- Klein, A.-M.; Boreux, V.; Fornoff, F.; Mupepele, A.-C.; Pufal, G. Relevance of wild and managed bees for human well-being. Curr. Opin. Insect Sci. 2018, 26, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Iannucci, A.; Di Fonzo, N.; Martiniello, P. Alfalfa (Medicago sativa L.) seed yield and quality under different forage management systems and irrigation treatments in a Mediterranean environment. Field Crop. Res. 2002, 78, 65–74. [Google Scholar] [CrossRef]
- Abusuwar, A.O.; Elhassan, B. Effect of Water Quality and Weeding on Yield and Quality of Three Alfalfa (‘Medicago sativa L.’) Cultivars. Aust. J. Crop Sci. 2009, 3, 315. [Google Scholar] [CrossRef]
- Keivani, M.; Ramezanpour, S.s.; Soltanloo, H.; Choukan, R.; Naghavi, M.; Ranjbar, M. Genetic Diversity Assessment of Alfalfa (‘Medicago sativa’ L.) Populations Using AFLP Markers. Aust. J. Crop Sci. 2010, 4, 491. [Google Scholar] [CrossRef]
- Wang, X.; Yang, X.; Chen, L.; Feng, G.; Zhang, J.; Jin, L. Genetic diversity among alfalfa (Medicago sativa L.) cultivars in Northwest China. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2011, 61, 60–66. [Google Scholar] [CrossRef]
- Hua, J.; Yufen, B.; Jun, Z. A study on alfalfa pollinating mechanism and relationship of pollinating insects. Cao Ye Ke Xue Pratacultural Sci. Caoye Kexue 2003, 20, 1–6. [Google Scholar]
- Radović, J.; Sokolović, D.; Marković, J. Alfalfa-most important perennial forage legume in animal husbandry. Biotechnol. Anim. Husb. 2009, 25, 465–475. Available online: https://scindeks.ceon.rs/article.aspx?artid=1450-91560906465R (accessed on 10 November 2021). [CrossRef]
- Russelle, M.P. Alfalfa: After an 8000-year journey, the “Queen of Forages” stands poised to enjoy renewed popularity. Am. Sci. 2001, 89, 252–261. Available online: http://www.jstor.org/stable/27857472 (accessed on 10 November 2021). [CrossRef]
- Pedersen, M.W. Lucerne Pollination. Bee World 2002, 42, 145–149. [Google Scholar] [CrossRef]
- Cane, J.H. Pollinating bees (Hymenoptera: Apiformes) of U.S. alfalfa compared for rates of pod and seed set. J. Econ. Entomol. 2002, 95, 22–27. [Google Scholar] [CrossRef]
- Brunet, J.; Zhao, Y.; Clayton, M.K. Linking the foraging behavior of three bee species to pollen dispersal and gene flow. PLoS ONE 2019, 14, e0212561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambaw, M.; Workiye, M. Evaluation and demonstration of the roll of honey bees on seed yield of alfalfa (Medicago sativa FL77) in Kulumsa, Ethiopia. J. Entomol. Zool. Stud. 2020, 8, 2269–2272, ISSN 2349-6800. [Google Scholar]
- Kumar, N.K.S.V. Studies on insect fauna of lucerne Medicago sativa and their impact on seed and forage yield in lucerne Medicago sativa. In Proceedings of the International Grassland Congress Proceedings, New Delhi, India, 20–24 November 2015; Available online: https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1651&context=igc (accessed on 12 March 2021).
- Bell, A.M.C.; Haigh, A.M. Pollination of Greenhouse Tomatoes by the Australian Bluebanded Bee Amegilla (Zonamegilla) holmesi (Hymenoptera: Apidae). J. Econ. Entomol. 2006, 99, 437–442. [Google Scholar] [CrossRef]
- Stephen, W.P. Solitary bees in North America: A perspective. In For Non-Native Crops, Whence Pollinators of the Future? Entomological Society of America; The National Academies Press: Washington, DC, USA, 2003; pp. 41–66. [Google Scholar] [CrossRef]
- Cecen, S.; Gurel, F.; Karaca, A. Impact of honeybee and bumblebee pollination on alfalfa seed yield. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2008, 58, 77–81. [Google Scholar] [CrossRef]
- Bosch, J.; Kemp, W.P. Alfalfa leafcutting bee population dynamics, flower availability, and pollination rates in two Oregon alfalfa fields. J. Econ. Entomol. 2005, 98, 1077–1086. [Google Scholar] [CrossRef]
- Losey, J.E.; Vaughan, M. The economic value of ecological services provided by insects. Bioscience 2006, 56, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Brunet, J.; Stewart, C.M. Impact of bee species and plant density on alfalfa pollination and potential for gene flow. Psyche 2010, 2010, 201858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogendoorn, K.; Keller, M. Native Australian Bees as Potential Pollinators of Lucerne; RIRDC Publication: Canberra, Australia, 2012; ISSN 1440-6845. Available online: https://www.agrifutures.com.au/wp-content/uploads/publications/12-048.pdf (accessed on 5 May 2021).
- Chen, M.; Zhao, X.Y.; Zuo, X.A. Pollinator activity and pollination success of Medicago sativa L. in a natural and a managed population. Ecol. Evol. 2018, 8, 9007–9016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donovan, S.E.; Hall, M.J.R.; Turner, B.D.; Moncrieff, C.B. Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures. Med. Vet. Entomol. 2006, 20, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Howlett, B.G.; Donovan, B.J. A review of New Zealand’s deliberately introduced bee fauna: Current status and potential impacts. N. Z. Entomol. 2010, 33, 92–101. [Google Scholar] [CrossRef]
- Phillips, B.B.; Williams, A.; Osborne, J.L.; Shaw, R.F. Shared traits make flies and bees effective pollinators of oilseed rape (Brassica napus L.). Basic Appl. Ecol. 2018, 32, 66–76. [Google Scholar] [CrossRef]
- Pitts-Singer, T.L.; Cane, J.H. The alfalfa leafcutting bee, Megachile rotundata: The world’s most intensively managed solitary bee. Annu. Rev. Entomol. 2011, 56, 221–237. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, M. Pollination of crops in Australia and New Zealand. In Rural Industries Research and Development Corporation (Australia); Plant & Food Research: Ruakura, New Zealand, 2012; ISBN 9781742544021. Available online: https://www.agrifutures.com.au/wp-content/uploads/publications/12-059.pdf (accessed on 25 May 2021).
- Chen, M.; Zuo, X.-A. Pollen limitation and resource limitation affect the reproductive success of Medicago. BMC Ecol. 2018, 18, 28. [Google Scholar] [CrossRef] [Green Version]
- Varassinl, I.G.; Trigj, J.R.; Sazimai, M. The role of nectar production, flower pigments and odour in the pollination of four species of Passiflora (Passifloraceae) in south-eastern Brazil. Bot. J. Linn. Soc. 2001, 136, 139–152. [Google Scholar] [CrossRef]
- Sinu, P.A.; Shivanna, K.R. Pollination ecology of cardamom (Elettaria cardamomum) in the Western Ghats, India. J. Trop. Ecol. 2007, 23, 493–496. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Cabal, M.A.; Aizen, M.A.; Novaro, A.J. Habitat fragmentation disrupts a plant-disperser mutualism in the temperate forest of South America. Biol. Conserv. 2007, 139, 195–202. [Google Scholar] [CrossRef]
- Nayak, K.G.; Davidar, P. Pollinator limitation and the effect of breeding systems on plant reproduction in forest fragments. Acta Oecologica 2010, 36, 191–196. [Google Scholar] [CrossRef]
- O’Neill, K.M.; O’Neill, R.P.; Blodgett, S.; Fultz, J. Composition of pollen loads of Megachile rotundata in relation to flower diversity (Hymenoptera: Megachilidae). J. Kansas Entomol. Soc. 2004, 77, 619–625. [Google Scholar] [CrossRef]
- Ne’eman, G.; Jürgens, A.; Newstrom-Lloyd, L.; Potts, S.G.; Dafni, A. A framework for comparing pollinator performance: Effectiveness and efficiency. Biol. Rev. 2010, 85, 435–451. [Google Scholar] [CrossRef]
- Rader, R.; Howlett, B.G.; Cunningham, S.A.; Westcott, D.A.; Edwards, W. Spatial and temporal variation in pollinator effectiveness: Do unmanaged insects provide consistent pollination services to mass flowering crops? J. Appl. Ecol. 2012, 49, 126–134. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M.A.; Bommarco, R.; Cunningham, S.A.; Kremen, C.; Carvalheiro, L.G.; Harder, L.D.; Afik, O. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 2013, 339, 1608–1611. [Google Scholar] [CrossRef]
- Ballantyne, G.; Baldock, K.C.R.; Willmer, P.G. Constructing more informative plant–pollinator networks: Visitation and pollen deposition networks in a heathland plant community. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, C.; Ballantyne, G.; Willmer, P.G. Why flower visitation is a poor proxy for pollination: Measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol. Evol. 2013, 4, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Bruckman, D.; Campbell, D.R. Floral neighborhood influences pollinator assemblages and effective pollination in a native plant. Oecologia 2014, 176, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Barrios, B.; Pena, S.R.; Salas, A.; Koptur, S. Butterflies visit more frequently, but bees are better pollinators: The importance of mouthpart dimensions in effective pollen removal and deposition. AoB Plants 2016, 8, plw001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Liu, H.; Huang, L.; Zhang, S.; Deng, Z.; Li, J. Biodiversity of wild alfalfa pollinators and their temporal foraging characters in Hexi Corridor, Northwest China. Entomol. Fenn. 2012, 23, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Umer, A.; Ali, M.A.; Iqbal, J.; Mubashir, M. Micronutrients status of mango (Mangifera indica) orchards in Multan region, Punjab, Pakistan, and relationship with soil properties. Open Agric. 2020, 5, 271–279. [Google Scholar] [CrossRef]
- Abbas, F.; Ahmad, A.; Safeeq, M.; Ali, S.; Saleem, F.; Hammad, H.M.; Farhad, W. Changes in precipitation extremes over arid to semiarid and subhumid Punjab, Pakistan. Theor. Appl. Climatol. 2014, 116, 671–680. [Google Scholar] [CrossRef]
- Abbas, F. Analysis of a historical (1981–2010) temperature record of the Punjab province of Pakistan. Earth Interact. 2013, 17, 1–23. [Google Scholar] [CrossRef]
- Ahmad, I.; Bibi, F.; Ullah, H.; Munir, T.M. Mango fruit yield and critical quality parameters respond to foliar and soil applications of zinc and boron. Plants 2018, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Undersander, D.; Cosgrove, D.; Cullen, E.; Rice, M.E.; Renz, M.; Sheaffer, C.; Shewmaker, G.; Sulc, M. Alfalfa Management Guide; American Society of Agronomy, Wiley Online Library: Madison, WC, USA, 2011; ISBN 0891181997. Available online: https://www.agronomy.org/files/publications/alfalfa-management-guide.pdf (accessed on 24 April 2021).
- Bauer, A.A.; Clayton, M.K.; Brunet, J. Floral traits influencing plant attractiveness to three bee species: Consequences for plant reproductive success. Am. J. Bot. 2017, 104, 772–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karar, H.; Bashir, M.A.; Khaliq, A.; Ali, M.J.; Atalla Alajmi, R.; Metwally, D.M. Stink bug Agonoscelis spp. (Heteroptera: Pentatomidae)—An emerging threat for seed production in alfalfa crop (Medicago sativa L.) and their successful management. Saudi J. Biol. Sci. 2021, 28, 3477–3482. [Google Scholar] [CrossRef] [PubMed]
- Mazeed, A.; Zidan, E.; Abd El-latif, A. Role of Pollinators on Egyptian Clover Pollination with Special Reference To Honeybee At Sohag Governorate, Egypt. Arab Univ. J. Agric. Sci. 2019, 27, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, A.C.; Maria Parra Tabla, V. Importance of conserving alternative pollinators: Assessing the pollination efficiency of the squash bee, Peponapis limitaris in Cucurbita moschata (Cucurbitaceae). J. Insect Conserv. 2000, 4, 203–210. [Google Scholar] [CrossRef]
- Tidke, J.A.; Thorat, S.B. Observations on reproductive biology of Madhuca longifolia (Koen) Maccbr. Int. J. Reprod. Biol. 2011, 3, 1–8. [Google Scholar]
- Saeed, S.; Malik, S.A.; Dad, K.; Sajjad, A.; Ali, M. In search of the best native pollinators for bitter gourd (Momordica charantia L.) pollination in Multan, Pakistan. Pak. J. Zool. 2012, 44, 1633–1641. [Google Scholar]
- Rader, R.; Howlett, B.G.; Cunningham, S.A.; Westcott, D.A.; Newstrom-Lloyd, L.E.; Walker, M.K.; Teulon, D.A.J.; Edwards, W. Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. J. Appl. Ecol. 2009, 46, 1080–1087. [Google Scholar] [CrossRef]
- Ali, M.; Saeed, S.; Sajjad, A.; Whittington, A. In search of the best pollinators for canola (Brassica napus L.) production in Pakistan. Appl. Entomol. Zool. 2011, 46, 353–361. [Google Scholar] [CrossRef]
- Islam, M.M.; Ahmed, I.; Akter, N.; Rahman, M.M.; Rahman, M.L.; Sultana, N. Seed viability and vigour tests in Jute (Corchorus spp.). J. Agron. 2002, 1, 44–46, ISSN 1812-5417. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Li, X.; Song, Y.; Chen, L.; Jin, L. Correlations between environmental factors and wild bee behavior on alfalfa (Medicago sativa) in Northwestern China. Environ. Entomol. 2009, 38, 1480–1484. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Saeed, S.; Sajjad, A.; Bashir, M.A. Exploring the best native pollinators for pumpkin (Cucurbita pepo) production in Punjab, Pakistan. Pak. J. Zool. 2014, 46, 531–539. [Google Scholar]
- Ali, M.; Saeed, S.; Sajjad, A. Pollen Deposition Is More Important than Species Richness for Seed Set in Luffa Gourd. Neotrop. Entomol. 2016, 45, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Zameer, S.U.; Bilal, M.; Fazal, M.I.; Sajjad, A. Foraging behavior of pollinators leads to effective pollination in radish Raphanus sativus L. Asian J. Agric. Biol. 2017, 5, 221–227. [Google Scholar]
- Darrach, M.; Page, S. Statistical Overview of the Canadian Honey and Bee Industry and the Economic Contribution of Honey Bee Pollination 2013–2014. Horticulture and Cross Sectoral Division Report. 2016. Available online: https://agriculture.canada.ca/sites/default/files/legacy/resources/prod/doc/pdf/honey_2016-eng.pdf (accessed on 20 September 2021).
- Bohart, G.E. Management of wild bees for the pollination of crops. Annu. Rev. Entomol. 1972, 17, 287–312. [Google Scholar] [CrossRef]
- Anderson, D. Improving Lucerne Pollination with Leafcutter Bees Stage 2. Rural Industries Research and Development Corporation. 2006. Available online: https://moam.info/improving-lucerne-pollination-with-leafcutter-bees-agrifutures-australia_5b805610097c47cf768b473a.html (accessed on 30 January 2009).
- Palmer-Jones, T.; Forster, I.W. Observations on the Pollination of Lucerne (Medicago sativa Linn.). N. Z. J. Agric. Res. 1965, 8, 340–349. [Google Scholar] [CrossRef]
- Brodie, B.; Gries, R.; Martins, A.; VanLaerhoven, S.; Gries, G. Bimodal cue complex signifies suitable oviposition sites to gravid females of the common green bottle fly. Entomol. Exp. Appl. 2014, 153, 114–127. [Google Scholar] [CrossRef]
- Mohr, R.M.; Tomberlin, J.K. Development and validation of a new technique for estimating a minimum postmortem interval using adult blow fly (Diptera: Calliphoridae) carcass attendance. Int. J. Legal Med. 2015, 129, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Dylewska, M.; Jablonski, B.; Sowa, S.; Bilinski, M.; Wrona, S. An attempt of determination of the number of bees (Hym., Apoidea) needed for adequate pollination of alfalfa. Pol. Pismo Entomol 1970, 40, 371–398, ISSN 0032-3780. [Google Scholar]
- Juan, A.; Petanidou, T.; Crespo, M.B.; Pe, C. The reproductive ecology of Medicago citrina (Font Quer) Greuter (Leguminosae): A bee-pollinated plant in Mediterranean islands where bees are absent. Plant Syst. Evol. 2003, 241, 29–46. [Google Scholar] [CrossRef]
- Jarlan, A.; De Oliveira, D.; Gingras, J. Pollination by Eristalis tenax (Diptera: Syrphidae) and seed set of greenhouse sweet pepper. J. Econ. Entomol. 1997, 90, 1646–1649. [Google Scholar] [CrossRef]
- Mallinger, R.E.; Bradshaw, J.; Varenhorst, A.J.; Prasifka, J.R. Native solitary bees provide economically significant pollination services to confection sunflowers (Helianthus annuus L.) (Asterales: Asteraceae) grown across the northern Great Plains. J. Econ. Entomol. 2019, 112, 40–48. [Google Scholar] [CrossRef]
- Cook, D.F.; Voss, S.C.; Finch, J.T.D.; Rader, R.C.; Cook, J.M.; Spurr, C.J. The Role of Flies as Pollinators of Horticultural Crops: An Australian Case Study with Worldwide Relevance. Insects 2020, 11, 341. [Google Scholar] [CrossRef] [PubMed]
- Bader, K.L.; Anderson, S.R. Effect of Pollen and Nectar Collecting Honeybees on the Seed Yield of Birdsfoot trefoil, Lotus corniculatus L. 1. Crop Sci. 1962, 2, 148–149. [Google Scholar] [CrossRef]
- Cane, J.H.; Schiffhauer, D. Pollinator genetics and pollination: Do honey bee colonies selected for pollen-hoarding field better pollinators of cranberry Vaccinium macrocarpon? Ecol. Entomol. 2001, 26, 117–123. [Google Scholar] [CrossRef]
- Wilson, P.; Thomson, J.D. Heterogeneity among floral visitors leads to discordance between removal and deposition of pollen. Ecology 1991, 72, 1503–1507. [Google Scholar] [CrossRef]
- Batra, S.W.T. Comparative efficiency of alfalfa pollination by Nomia melanderi, Megachile rotundata, Anthidium florentinum and Pithitis smaragdula (Hymenoptera: Apoidea). J. Kansas Entomol. Soc. 1976, 49, 18–22. Available online: https://www.jstor.org/stable/25082782 (accessed on 20 September 2021).
- Akram, W.; Sajjad, A.; Ali, S.; Mujtaba, G.; Ali, M.; Ahmad, A. Pollination of Grewia asiatica (Malvaceae) by Megachile cephalotes (Hymenoptera:Megachilidae): Male vs. Female Pollination. Sociobiology 2019, 66, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Vicens, N.; Bosch, J. Pollinating efficacy of Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae, Apidae) on ‘red Delicious’ apple. Environ. Entomol. 2000, 29, 235–240. [Google Scholar] [CrossRef]
- Thomson, J.D.; Goodell, K. Pollen removal and deposition by honeybee and bumblebee visitors to apple and almond flowers. J. Appl. Ecol. 2001, 38, 1032–1044. Available online: https://www.jstor.org/stable/827241 (accessed on 10 November 2021). [CrossRef]
- Monzón, V.H.; Bosch, J.; Retana, J. Foraging behavior and pollinating effectiveness of Osmia cornuta (Hymenoptera: Megachilidae) and Apis mellifera (Hymenoptera: Apidae) on “Comice” pear. Apidologie 2004, 35, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Cane, J.H. Pollination potential of the bee Osmia aglaia for cultivated red raspberries and blackberries (Rubus: Rosaceae). HortScience 2005, 40, 1705–1708. [Google Scholar] [CrossRef] [Green Version]
- Pecetti, L.; Tava, A.; Felicioli, A.; Pinzauti, M.; Piano, E. Effect of three volatile compounds from lucerne flowers on their attractiveness towards pollinators. Bull. Insectology 2002, 55, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Riday, H.; Reisen, P.; Raasch, J.A.; Santa-martinez, E.; Brunet, J. Selfing Rate in an Alfalfa Seed Production Field Pollinated with Leafcutter Bees. Crop Sci. 2015, 55, 1087–1095. [Google Scholar] [CrossRef] [Green Version]
- Bradner, N.R.; Frakes, R. V Crossed and Selfed Seeds within Alfalfa Pods Produced by Endemic Pollinators 1. Crop Sci. 1964, 4, 111. [Google Scholar] [CrossRef]
- Viands, D.R.; Sun, P.; Barnes, D.K. Pollination control: Mechanical and sterility. Alfalfa Alfalfa Improv. 1988, 29, 931–960. [Google Scholar] [CrossRef]
Order | Pollinator Group | Family | Genus/Species | Total Abundance (2019) | Total Abundance (2020) | Visitation Frequency (Individuals/m2/min) 2019 | Visitation Frequency (Individuals/m2/min) 2020 |
---|---|---|---|---|---|---|---|
Hymenoptera | Solitary bees | Apidae | Amegilla sp. | 67 ± 3.71 | 93 ± 5.98 | 0.022 | 0.031 |
Eucera sp. | 88 ±7.27 | 127 ± 8.26 | 0.029 | 0.042 | |||
Halictidae | Nomia (Hoplonomia) sp. | 23 ± 1.18 | 71 ± 1.25 | 0.008 | 0.024 | ||
Megachilidae | Megachile cephalotes | 65 ± 2.21 | 141 ± 11.11 | 0.022 | 0.047 | ||
M. hera | 77 ± 6.63 | 116 ± 8.38 | 0.026 | 0.039 | |||
Honeybees | Apidae | Apis mellifera | 75 ± 10.38 | 132 ± 2.48 | 0.025 | 0.044 | |
A. dorsata | 165 ± 5.44 | 181 ± 7.30 | 0.060 | 0.054 | |||
A. florea | 227 ± 14.45 | 245 ± 14.72 | 0.082 | 0.044 | |||
Diptera | Flies | Syrphidae | Eristalinus aeneus | 207 ± 13.05 | 274 ± 13.73 | 0.069 | 0.091 |
E. arvorum | 130 ± 3.28 | 182 ± 4.13 | 0.043 | 0.061 |
Pollinator Species | Number of Virgin Flowers Tripped/Raceme (N = 40) | Number of Already Tripped Flowers Visited/Raceme (N = 40) | Number of Pollen Grains Harvested in Single Visit (N = 10) |
---|---|---|---|
Amegilla sp. | 31.63 a * (58.51 ± 5.65) ** | 8.50 f (0.61 ± 0.10) | 32.81 c (102.63 ± 4.59) |
Eucera sp. | 32.25 a (62.50 ± 5.46) | 8.25 ef (0.75 ± 0.31) | 28.38 c (91.63 ± 5.31) |
Nomia (Hoplonomia) sp. | 29.63 a (56.79 ± 3.94) | 15.00 def (1.00 ± 0.00) | 24.31 cd (79.25 ± 7.12) |
Megachile cephalotes | 31.75 a (59.29 ± 6.31) | 8.13 d (1.25 ± 0.13) | 72.81 a (1012.88 ± 19.36) |
M. hera | 27.25 a (55.24 ± 3.56) | 12.88 de (1.04 ± 0.08) | 72.19 a (1007.63 ± 19.76) |
Apis mellifera | 9.75 b (10.12 ± 0.84) | 29.50 b (2.25 ± 0.22) | 53.38 b (725.50 ± 17.00) |
A. dorsata | 16.13 b (9.05 ± 2.67) | 26.25 c (1.75 ± 0.18) | 51.75 b (715.38 ± 15.06) |
A. florea | 7.50 b (3.57 ± 0.00) | 28.75 c (1.79 ± 0.14) | 52.38 b (717.50 ± 12.82) |
Eristalinus aeneus | 11.63 b (1.40 ± 0.68) | 30.88 a (3.18 ± 0.28) | 6.38 e (16.62 ± 2.00) |
E. arvorum | 7.50 b (3.57 ± 0.00) | 36.88 b (2.54 ± 0.15) | 10.63 de (21.75 ± 1.75) |
Chi-Square | 32.69 | 32.09 | 74.18 |
p | 0.0000 | 0.0000 | 0.0000 |
Time | Number of Virgin Flowers Tripped/Raceme | Number of Already Tripped Flowers Visited/Raceme) |
---|---|---|
8:00 | 20.20 ab * (33.87 ± 3.73) ** | 19.15 bc (1.51 ± 0.19) |
11:00 | 22.05 a (35.63 ± 4.45) | 24.10 a (1.41 ± 0.12) |
14:00 | 19.85 b (29.00 ± 4.24) | 22.2 b (1.77 ± 0.15) |
17:00 | 19.90 b (29.51 ± 3.99) | 16.55 c (1.76 ± 0.14) |
Chi-Square | 0.25 | 2.44 |
p | 0.969 | 0.490 |
Pollinator Species | Visitation Rate (No. of Racemes Visited/Min) (N = 20) | Stay Time (Time Spent (Seconds) on a Raceme/Visit) (N = 40) |
---|---|---|
Amegilla sp. | 119.1 ab * (12.40 ± 1.38) ** | 228.90 abc (10.07 ± 1.06) |
Eucera sp. | 129.3 a (13.75 ± 1.38) | 205.89 a (17.66 ± 4.31) |
Nomia (Hoplonomia) sp. | 114.0 ab (12.10 ± 1.34) | 248.44 ab (13.70 ± 20.3) |
Megachile cephalotes | 105.61 ab (12.32 ± 1.41) | 155.28 abc (9.55 ± 2.20) |
M. hera | 115.43 ab (12.05 ± 1.38) | 210.38 abc (10.40 ± 1.59) |
Apis mellifera | 96.53 ab (10.10 ± 1.38) | 226.99 abc (9.81 ± 0.98) |
A. dorsata | 68.95 b (7.55 ± 1.38) | 213.30 bc (8.41 ± 1.02) |
A. florea | 77.65 ab (8.10 ± 1.38) | 213.34 abc (12.02 ± 1.92) |
Eristalinus aeneus | 74.73 ab (7.95 ± 1.41) | 119.59 c (4.66 ± 0.72) |
E. arvorum | 103.3 ab (11.05 ± 1.34) | 182.91 abc (8.98 ± 1.37) |
Chi-Square | 22.88 | 39.39 |
p | 0.01 | 0.00 |
Pollinator Species | Number of Pods/Raceme | Number of Seeds/Raceme | 1000 Seed Weight (g) | Germination (%) |
---|---|---|---|---|
Amegilla sp. | 65.88 bc * (3.00 ± 0.27) ** | 69.81 bc (6.12 ± 0.30) | 70.63 a (3.57 ± 0.16) | 70.88 a (93.75 ± 2.63) |
Eucera sp. | 64.81 bc (3.00 ± 0.33) | 65.50 c (5.87 ± 0.52) | 68.06 a (3.50 ± 0.12) | 70.88 a (93.75 ± 2.63) |
Nomia (Hoplonomia) sp. | 56.75 cd (2.50 ± 0.19) | 56.69 c (4.80 ± 0.35) | 64.63 a (3.42 ± 0.17) | 56.25 ab (86.25 ± 3.75) |
Megachile cephalotes | 71.88 b (3.50 ± 0.38) | 74.00 b (7.63 ± 0.94) | 64.75 a (3.45 ± 0.21) | 78.88 a (97.50 ± 1.64) |
M. hera | 65.88 bc (3.00 ± 0.2) | 69.31 bc (6.12 ± 0.44) | 68.00 a (3.53 ± 0.15) | 56.25 b (86.25 ± 3.75) |
Apis mellifera | 20.50 fg (0.75 ± 0.31) | 19.63 ef (0.87 ± 0.35) | 25.56 cd (1.50 ± 0.57) | 42.81 ab (77.50 ± 5.26) |
A. dorsata | 36.81 e (1.63 ± 0.26) | 35.69 de (2.38 ± 0.60) | 49.25 ab (3.08 ± 0.18) | 23.19 bc (62.50 ± 5.26) |
A. florea | 19.56 fg (0.75 ± 0.25) | 21.25 ef (1.00 ± 0.39) | 19.94 cd (1.56 ± 0.48) | 31.63 bc (67.50 ± 7.01) |
Eristalinus aeneus | 31.13 ef (1.38 ± 0.18) | 28.38 de (1.88 ± 0.69) | 33.19 bc (1.92 ± 0.58) | 29.63 bc (67.50 ± 5.90) |
E. arvorum | 10.88 g (0.25 ± 0.16) | 10.63 f (0.13 ± 0.13) | 12.31 d (0.38 ± 0.38) | 17.94 c (50.00 ± 9.26) |
Open pollination | 92.50 a (13.25 ± 0.88) | 92.50 a (21.75 ± 1.42) | 58.38 ab (3.32 ± 0.11) | 58.63 ab (87.50 ± 3.66) |
Hand pollination | 45.44 de (2.00 ± 0.19) | 38.63 d (2.75 ± 0.53) | 47.31 ab (3.10 ± 0.18) | 45.06 ab (76.25 ± 7.78) |
Chi-square | 74.22 | 78.62 | 49.60 | 47.08 |
p | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauf, A.; Saeed, S.; Ali, M.; Nadeem Tahir, M.H. Comparative Efficiency of Native Insect Pollinators in Reproductive Performance of Medicago sativa L. in Pakistan. Insects 2021, 12, 1029. https://doi.org/10.3390/insects12111029
Rauf A, Saeed S, Ali M, Nadeem Tahir MH. Comparative Efficiency of Native Insect Pollinators in Reproductive Performance of Medicago sativa L. in Pakistan. Insects. 2021; 12(11):1029. https://doi.org/10.3390/insects12111029
Chicago/Turabian StyleRauf, Abdur, Shafqat Saeed, Mudssar Ali, and Muhammad Hammad Nadeem Tahir. 2021. "Comparative Efficiency of Native Insect Pollinators in Reproductive Performance of Medicago sativa L. in Pakistan" Insects 12, no. 11: 1029. https://doi.org/10.3390/insects12111029
APA StyleRauf, A., Saeed, S., Ali, M., & Nadeem Tahir, M. H. (2021). Comparative Efficiency of Native Insect Pollinators in Reproductive Performance of Medicago sativa L. in Pakistan. Insects, 12(11), 1029. https://doi.org/10.3390/insects12111029