Toxicity and Sublethal Effect of Farnesyl Acetate on Diamondback Moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Bioassay and Determination of Sublethal Concentration (LC50) of Farnesyl Derivatives
2.3. Sublethal Treatment and Effects on P. xylostella
2.4. Data Analysis
3. Results
3.1. Sublethal Concentration of Selected Farnesyl Derivatives on P. xylostella
3.2. Sublethal Effects of Farnesyl Acetate
3.2.1. Developmental Time and Pupal Weight
3.2.2. Pupation and Adult Emergence
3.2.3. Female Ratio, Fecundity, and Hatchability
3.2.4. Ovipositional Period
3.2.5. Abnormalities Caused by Farnesyl Acetate Treatment
4. Discussion
5. Conclusions
6. Patent
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Imran, M. Economic insect pests of Brassica. In Brassica Germplasm-Characterization, Breeding and Utilization; Intechopen: London, UK, 2018. [Google Scholar]
- Furlong, M.J.; Wright, D.J.; Dosdall, L.M. Diamondback moth ecology and management: Problems, progress, and prospects. Annu. Rev. Entomol. 2013, 58, 517–541. [Google Scholar] [CrossRef] [PubMed]
- Zalucki, M.P.; Shabbir, A.; Silva, R.; Adamson, D.; Shu-Sheng, L.; Furlong, M.J. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): Just how long is a piece of string? J. Econ. Entomol. 2012, 105, 1115–1129. [Google Scholar] [CrossRef] [PubMed]
- Kermani, N.; Abu-Hassan, Z.A.; Dieng, H.; Ismail, N.F.; Attia, M.; Abd Ghani, I. Pathogenicity of Nosema sp.(Microsporidia) in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). PLoS ONE 2013, 8, e62884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bortoli, S.A.; Vacari, A.M.; Goulart, R.M.; Ferraudo, A.S.; Volpe, H.X. Classification of crucifer cultivars based on the life-history of diamondback moth (Plutella xylostella). Int. J. Pest Manag. 2013, 59, 73–78. [Google Scholar] [CrossRef]
- Talekar, N.; Shelton, A. Biology, ecology, and management of the diamondback moth. Annu. Rev. Entomol. 1993, 38, 275–301. [Google Scholar] [CrossRef]
- Li, Z.; Feng, X.; Liu, S.S.; You, M.; Furlong, M.J. Biology, ecology, and management of the diamondback moth in China. Annu. Rev. Entomol. 2016, 61, 277–296. [Google Scholar] [CrossRef]
- Wee, S.L. Effects of conspecific herbivory and mating status on host searching and oviposition behavior of Plutella xylostella (Lepidoptera: Plutellidae) in relation to its host, Brassica oleracea (Brassicales: Brassicaceae). Fla. Entomol. 2016, 99, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Yadav, C.S.; Singh, S.; Goel, S.; Ahmed, R.S.; Gupta, S.; Grover, R.K.; Banarjee, B.D. CYP 1A1 polymorphism and organochlorine pesticides levels in the etiology of prostate cancer. Chemosphere 2010, 81, 464–468. [Google Scholar] [CrossRef]
- López, Ó.; Fernández-Bolaños, J.G.; Gil, M.V. New trends in pest control: The search for greener insecticides. Green Chem. 2005, 7, 431–442. [Google Scholar] [CrossRef]
- Rust, M.K.; Lance, W.; Hemsarth, H. Synergism of the IGRs methoprene and pyriproxyfen against larval cat fleas (Siphonaptera: Pulicidae). J. Med. Entomol. 2016, 53, 629–633. [Google Scholar] [CrossRef]
- Lawler, S.P. Environmental safety review of methoprene and bacterially-derived pesticides commonly used for sustained mosquito control. Ecotoxicol. Environ. Saf. 2017, 139, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Tunaz, H.; Uygun, N. Insect growth regulators for insect pest control. Turk. J. Agric. For. 2004, 28, 377–387. [Google Scholar]
- Mahmoudvand, M.; Moharramipour, S.; Iranshahi, M. Effects of pyriproxyfen on life table indices of Plutella xylostella in multigenerations. Psyche 2015, 2015, 453701. [Google Scholar]
- Alizadeh, M.; Karimzadeh, J.; Rassoulian, G.R.; Farazmand, H.; Hosseini-Naveh, V.; Pourian, H.R. Sublethal effects of pyriproxyfen, a juvenile hormone analogue, on Plutella xylostella (Lepidoptera:Plutellidae): Life table study. Arch. Phytopathol. Pflanzenschutz 2012, 45, 1741–1763. [Google Scholar] [CrossRef]
- Mahmoudvand, M.; Moharramipour, S. Sublethal effects of fenoxycarb on the Plutella xylostella (Lepidoptera: Plutellidae). J. Insect Sci. 2015, 15, 82. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.C.; Wu, P.S.; Chang, H.C.; Chen, Y.W. Effect of sub-lethal dosages of insecticides on honeybee behavior and physiology. In Proceedings of the International Seminar on Enhancement of Functional Biodiversity Relevant to Sustainable Food Production in ASPAC, Tsukuba, Japan, 8–12 November 2010; pp. 9–11. [Google Scholar]
- Fourrier, J.; Deschamps, M.; Droin, L.; Alaux, C.; Fortini, D.; Beslay, D.; Decourtye, A. Larval exposure to the juvenile hormone analog pyriproxyfen disrupts acceptance of and social behavior performance in adult honeybees. PLoS ONE 2015, 10, e0132985. [Google Scholar] [CrossRef]
- Chen, Y.W.; Wu, P.S.; Yang, E.C.; Nai, Y.S.; Huang, Z.Y. The impact of pyriproxyfen on the development of honey bee (Apis mellifera L.) colony in field. J. Asia-Pac. Entomol. 2016, 19, 589–594. [Google Scholar] [CrossRef]
- Arambourou, H.; Fuertes, I.; Vulliet, E.; Daniele, G.; Noury, P.; Delorme, N.; Barata, C. Fenoxycarb exposure disrupted the reproductive success of the amphipod Gammarus fossarum with limited effects on the lipid profile. PLoS ONE 2018, 13, e0196461. [Google Scholar] [CrossRef]
- Cusson, M.; Sen, S.E.; Shinoda, T. Juvenile hormone biosynthetic enzymes as targets for insecticide discovery. In Advanced Technologies for Managing Insect Pests; Ishaaya, I., Palli, S.R., Horowitz, A.R., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 31–55. [Google Scholar]
- Noriega, F.G. Juvenile hormone biosynthesis in insects: What is new, what do we know, and what questions remain? Int. Sch. Res. Not. 2014, 2014, 967361. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Marchal, E.; Hult, E.F.; Tobe, S.S. Characterization of the juvenile hormone pathway in the viviparous cockroach, Diploptera punctata. PLoS ONE 2015, 10, e0117291. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Ma, L.; Xiao, H.; Liu, C.; Chen, L.; Wu, S.; Liang, G. Identification and characterization of genes involving the early step of juvenile hormone pathway in Helicoverpa armigera. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Ekert, E.; Heylen, K.; Rougé, P.; Powell, C.A.; Shatters, R.G., Jr.; Smagghe, G.; Borovsky, D. Aedes aegypti juvenile hormone acid methyl transferase, the ultimate enzyme in the biosynthetic pathway of juvenile hormone III, exhibits substrate control. J. Insect Physiol. 2014, 64, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Qiu, Y.W.; Huang, J.; Tobe, S.S.; Chen, S.S.; Kai, Z.P. Enzymes in the juvenile hormone biosynthetic pathway can be potential targets for pest control. Pest Manag. Sci. 2020, 76, 1071–1077. [Google Scholar] [CrossRef]
- Zifruddin, A.N.; Mohamad-Khalid, K.A.; Suhaimi, S.A.; Mohamed-Hussein, Z.A.; Hassan, M. Molecular Characterization and Enzyme Inhibition Studies of a Novel NADP+- Farnesol Dehydrogenase from Diamondback Moth, Plutella Xylostella (Lepidoptera:Plutellidae); Manuscript in preparation.
- Ahmad-Sohdi, N.A.S.; Seman-Kamarulzaman, A.F.; Mohamed-Hussein, Z.A.; Hassan, M. Purification and characterization of a novel NADP+-farnesol dehydrogenase from Polygonum minus leaves. PLoS ONE 2015, 10, e0143310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayoral, J.G.; Nouzova, M.; Navare, A.; Noriega, F.G. NADP+-dependent farnesol dehydrogenase, a corpora allata enzyme involved in juvenile hormone synthesis. Proc. Natl. Acad. Sci. USA 2009, 106, 21091–21096. [Google Scholar] [CrossRef] [Green Version]
- Inoue, H.; Tsuji, H.; Uritani, I. Characterization and activity change of farnesol dehydrogenase in black rot fungus-infected sweet potato. Agric. Biol. Chem. 1984, 48, 733–738. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, J.; Fitzpatrick, A.H.; Crowell, D.N. Identification of a novel abscisic acid-regulated farnesol dehydrogenase from Arabidopsis. Plant Physiol. 2010, 154, 1116–1127. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Rizwan-Ul-Haq, M.; AlJabr, A.M.; Al-Ayedh, H. Lethality of sesquiterpenes reprogramming red palm weevil detoxification mechanism for natural novel biopesticide development. Molecules 2019, 24, 1648. [Google Scholar] [CrossRef] [Green Version]
- Govindarajan, M.; Benelli, G. Artemisia absinthium-borne compounds as novel larvicides: Effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms. Parasitol. Res. 2016, 115, 4649–4661. [Google Scholar] [CrossRef] [Green Version]
- Dancewicz, K.; Gliszczynska, A.; Halarewicz, A.; Wawrzenczyk, C.; Gabrys, B. Effect of farnesol and its synthetic derivatives on the settling behaviour of the peach potato aphid Myzus persicae (Sulz.). Pestycydy 2010, 1–4, 51–57. [Google Scholar]
- Park, D.H.; Choi, J.Y.; Lee, S.H.; Kim, J.H.; Park, M.G.; Kim, J.Y.; Wang, M.; Kim, H.J.; Je, Y.H. Mosquito larvicidal activities of farnesol and farnesyl acetate via regulation of juvenile hormone receptor complex formation in Aedes mosquito. J. Asia-Pac. Entomol. 2020, 23, 689–693. [Google Scholar] [CrossRef]
- Kandil, M.A.; Abdel-kerim, R.N.; Moustafa, M.A. Lethal and sub-lethal effects of bio-and chemical insecticides on the tomato leaf miner, Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae). Egypt. J. Biol. Pest Control 2020, 30, 1–7. [Google Scholar] [CrossRef]
- Hassan, M.; Yusoff, N.; Aizat, W.M.; Othman, N.W.; Abd Ghani, I. Optimization method for proteomic analysis of the larva and adult tissues of Plutella xylostella (L.) (Lepidoptera: Plutellidae). Sains Malays. 2018, 47, 2975–2983. [Google Scholar] [CrossRef]
- Hui, W.; Juan, W.; Li, H.S.; Dai, H.G.; Gu, X.J. Sub-lethal effects of fenvalerate on the development, fecundity, and juvenile hormone esterase activity of diamondback moth, Plutella xylostella (L.). Agric. Sci. China 2010, 9, 1612–1622. [Google Scholar]
- Amarasekare, K.G.; Shearer, P.W. Laboratory bioassays to estimate the lethal and sublethal effects of various insecticides and fungicides on Deraeocoris brevis (Hemiptera: Miridae). J. Econ. Entomol. 2013, 106, 776–785. [Google Scholar] [CrossRef]
- Yin, X.H.; Wu, Q.J.; Li, X.F.; Zhang, Y.J.; Xu, B.Y. Sublethal effects of spinosad on Plutella xylostella (Lepidoptera: Yponomeutidae). Crop Prot. 2008, 27, 1385–1391. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Z.; Cui, K.; Zhao, Y.; Han, J.; Liu, F.; Mu, W. Effects of sublethal concentrations of cyantraniliprole on the development, fecundity and nutritional physiology of the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). PLoS ONE 2016, 11, e0156555. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–270. [Google Scholar] [CrossRef]
- Liu, M.Y.; Tzeng, Y.J.; Sun, C.N. Diamondback moth resistance to several synthetic pyrethroids. J. Econ. Entomol. 1981, 74, 393–396. [Google Scholar] [CrossRef]
- Sayyed, A.H.; Wright, D.J. Fipronil resistance in the diamondback moth (Lepidoptera: Plutellidae): Inheritance and number of genes involved. J. Econ. Entomol. 2004, 97, 2043–2050. [Google Scholar] [CrossRef]
- Santos, V.C.; De Siqueira, H.A.A.; Da Silva, J.E.; De Farias, M.J.D.C. Insecticide resistance in populations of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), from the state of Pernambuco, Brazil. Neotrop. Entomol. 2011, 40, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Syed, A.R. Insecticide resistance in diamondback moth in Malaysia. In Proceedings of the Second International Workshop on the Management of Diamondback Moth and Other Crucifer Pests, Tainan, Taiwan, 10–14 December 1990; Asian Vegetable Research and Development Center: Shanhua, Taiwan, 1992; pp. 437–442. [Google Scholar]
- Mahmoudvand, M.; Abbasipour, H.; Garjan, A.S.; Bandani, A.R. Sublethal effects of hexaflumuron on development and reproduction on the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Insect Sci. 2011, 18, 689–696. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Cushing, N.L.; Johnson, M.W. Diamondback moth (Lepidoptera: Plutellidae) resistance to insecticides in Hawaii: Intra-island variation and cross-resistance. J. Econ. Entomol. 1987, 80, 1091–1099. [Google Scholar] [CrossRef]
- Mahmoudvand, M.; Abbasipour, H.; Garjan, A.S.; Bandani, A.R. Decrease in pupation and adult emergence of Plutella xylostella (L.) treated with hexaflumuron. Chil. J. Agric. Res. 2012, 72, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Sial, A.A.; Brunner, J.F. Lethal and sublethal effects of an insect growth regulator, pyriproxyfen, on obliquebanded leafroller (Lepidoptera: Tortricidae). J. Econ. Entomol. 2010, 103, 340–347. [Google Scholar] [CrossRef]
- Moadeli, T.; Hejazi, M.J.; Golmohammadi, G. Lethal effects of pyriproxyfen, spinosad, and indoxacarb and sublethal effects of pyriproxyfen on the 1st instars larvae of beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae) in the Laboratory. J. Agric. Sci. Technol. 2014, 16, 1217–1227. [Google Scholar]
- Ghasemi, A.; Sendi, J.; Ghadamyari, M. Physiological and biochemical effect of pyriproxyfen on Indian meal moth Plodia interpunctella (Hübner)(Lepidoptera: Pyralidae). J. Plant Pro. Res. 2010, 50, 416–422. [Google Scholar] [CrossRef]
- Boina, D.R.; Rogers, M.E.; Wang, N.; Stelinskia, L.L. Effect of pyriproxyfen, a juvenile hormone mimic, on egg hatch, nymph development, adult emergence and reproduction of the Asian citrus psyllid, Diaphorina citri Kuwayama. Pest Manag. Sci. 2010, 66, 349–357. [Google Scholar] [CrossRef]
- Jangir, H.; Kumawat, K.C.; Sharma, P.; Yadav, D.; Ranawat, Y.S. Bioefficacy of insect growth regulators (IGRs) as seed protectant against lesser grain borer, Rhyzopertha dominica (Fab.) on wheat. J. Entomol. Zool. Stud. 2018, 6, 1641–1646. [Google Scholar]
- Kuwano, E.; Fujita, N.; Furuta, K.; Yamada, N. Synthesis and biological activity of novel anti-juvenile hormone agents. J. Pestic. Sci. 2008, 33, 14–16. [Google Scholar] [CrossRef] [Green Version]
- Aribi, N.; Smagghe, G.; Lakbar, S.; Soltani-Mazouni, N.; Soltani, N. Effects of pyriperoxyfen, a juvenile hormone analog, on development of the mealworm, Tenebrio molitor. Pestic. Biochem. Physiol. 2006, 84, 55–62. [Google Scholar] [CrossRef]
- Leonardi, M.G.; Marciani, P.; Montorfono, P.G.; Cappellozza, S.; Giordana, B.; Monticalli, G. Effects of fenoxycarb on leucine uptake and lipid composition of midgut brush border membrane in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Pestic. Biochem. Physiol. 2001, 70, 42–51. [Google Scholar] [CrossRef]
- Moreno, J.; Hawlitzky, N.; Jimenez, R. Effect of the juvenile hormone analog fenoxycarb on the last larval instar of Ephestia kuehniella Zell.(Lep., Pyralidae). J. Appl. Entomol. 1992, 114, 118–123. [Google Scholar] [CrossRef]
- Ishaaya, I.; Horowitz, R. Pyriproxyfen, a novel insect growth regulator for controlling whiteflies. Mechanism and resistance management. Pestic. Sci. 1995, 43, 227–232. [Google Scholar] [CrossRef]
- Yasir, M.; Hasan, M.; Sagheer, M.; Fiaz, M.; Serrão, J.E. Residual efficacy of pyriproxyfen on grain commodities against stored product insect pests. Gesunde Pflanz. 2020, 72, 265–272. [Google Scholar] [CrossRef]
- Biddinger, D.J.; Hull, L.A. Sublethal effects of selected insecticides on growth and reproduction of a laboratory susceptible strain of tufted apple bud moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 1999, 92, 314–324. [Google Scholar] [CrossRef]
- Ali, Q.; Ranjha, M.H.; Sahi, G.M.; Faisal, M.; Shakir, H.U.; Anjum, N.A.; Hanif, M.S.; Albaayit, S.F.A. Ovicidal effect of insect growth regulators against eggs of Trogoderma granarium (Everts) and Tribolium castaneum (Herbst). Pak. J. Agric. Sci. 2020, 57, 73–79. [Google Scholar]
- Harburguer, L.; Zerba, E.; Licastro, S. Sublethal effect of pyriproxyfen released from a fumigant formulation on fecundity, fertility, and ovicidal action in Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2014, 51, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Kanost, M.R.; Kawooya, J.K.; Law, J.H.; Ryan, R.O.; van Heusden, M.C.; Ziegler, R. Insects haemolymph proteins. Adv. Insect Physiol. 1990, 22, 299–396. [Google Scholar]
- Maiza, A.; Kilani, S.; Fraine, J.P.; Aribi, N.; Soltani, N. Reproductive effects in German cockroach by ecdysteroid agonist RH- 0345, juvenile hormone analogue methoprene and carbamate benfuracarb. Commun. Agric. Appl. Biol. Sci. 2004, 69, 257–266. [Google Scholar]
- Josan, A.; Singh, G. Sublethal effects of lufenuron on the diamondback moth, Plutella xylostella (Linnaeus). Int. J. Trop. Insect Sci. 2004, 20, 303–308. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Y.; Zhang, Y. Lethal and sublethal effects of cantharidin on development and reproduction of Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 2015, 108, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.F. The Insects Structure and Function; Cambridge University Press: New York, NY, USA, 1998; p. 750. [Google Scholar]
Sublethal Effects | Calculation | References |
---|---|---|
(i) Pupation rate (%) | [38] | |
(ii) Emergence rate (%) | [38] | |
(iii) Female ratio (%) | [39] | |
(iv) Fecundity | Total number of eggs laid per female | [40] |
(v) Hatching rate (%) | [41] |
Farnesyl Derivatives | N1 | LC50 | LC90 | Slope ± SE | χ2 | p-Value |
---|---|---|---|---|---|---|
Farnesyl acetate | 150 | 56.41 (36.963–92.523) | 272.562 (141.988–1696.881) | 1.87 ± 0.487 | 0.943 | >0.05 |
Farnesyl acetone | 150 | 142.87 (94.116–849.911) | 407.67 (186.36–23,669.26) | 2.814 ± 0.991 | 1.019 | >0.05 |
Farnesyl bromide | 150 | - | - | - | ||
Farnesyl chloride | 150 | - | - | - | ||
Hexahydrofarnesyl acetone | 150 | - | - | - |
Developmental Time (Mean ± SE) (Days) | df | t | p | ||
---|---|---|---|---|---|
Control | Treatment | ||||
Second instar larvae | 1.6 ± 0.08 | 2.6 ± 0.09 | 58 | −8.06 | <0.0001 |
Third instar larvae | 1.6 ± 0.09 | 2.4 ± 0.09 | 58 | −6.22 | <0.0001 |
Fourth instar larvae | 3.2 ± 0.07 | 4.85 ± 0.14 | 58 | −10.65 | <0.0001 |
All larvae | 8.4 ± 0.17 | 11.85 ± 0.21 | 58 | −12.00 | <0.0001 |
Pupa | 5.17 ± 0.17 | 6.17 ± 0.18 | 58 | −4.43 | <0.0001 |
Adult | 21.4 ± 0.55 | 20.8 ± 0.45 | 58 | 3.55 | 0.001 |
Pupal Weight (mg) | Pupation (%) | Emergence (%) | Female Ratio (%) | Fecundity (Egg/Female) | Egg Hatching (%) | |
---|---|---|---|---|---|---|
Control | 7.4 ± 0.07 | 90 ± 1.15 | 92 ± 2.11 | 45.3 ± 1.17 | 104.78 ± 4.4 | 84.17 ± 1.12 |
Treated | 5.23 ± 0.21 | 66.67 ± 7.69 | 58.7 ± 9.96 | 27.47 ± 3.3 | 25.11 ± 0.98 | 76.64 ± 1.62 |
Mean ± SE (Days) | df | t | p | ||
---|---|---|---|---|---|
Control | Treatment | ||||
Pre-oviposition | 0.9 ± 0.05 | 1.35 ± 0.16 | 16 | −2.64 | 0.018 |
Oviposition | 16.33 ± 0.44 | 13.22 ± 0.4 | 16 | 5.22 | <0.0001 |
Post-oviposition | 3.05 ± 0.19 | 2.3 ± 0.17 | 16 | 2.8 | 0.0123 |
Class | Insecticides | LC50 (mg/L) | References |
---|---|---|---|
Farnesyl acetate | 56.41 | In this study | |
Farnesyl acetone | 142.87 | In this study | |
JHA | Pyriproxyfen | 2010 | [15] |
Fenoxycarb | 93.92 | [16] | |
IGR | Teflubenzuron | 6.73–1440 | [46] |
Diflubenzuron | 1907–2171 | [46] | |
Hexaflumuron | 1.48 | [47] | |
Broad spectrum | Spinosad | 0.28 | [40] |
Fenvalerate | 13-2700 | [43] | |
Fipronil | 7.57 | [44] | |
Methomyl | 0.4-7.3 | [45] | |
Methamidophos | 116.35-6755 | [46] | |
DDT | 170-44200 | [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yusoff, N.; Abd Ghani, I.; Othman, N.W.; Aizat, W.M.; Hassan, M. Toxicity and Sublethal Effect of Farnesyl Acetate on Diamondback Moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Insects 2021, 12, 109. https://doi.org/10.3390/insects12020109
Yusoff N, Abd Ghani I, Othman NW, Aizat WM, Hassan M. Toxicity and Sublethal Effect of Farnesyl Acetate on Diamondback Moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Insects. 2021; 12(2):109. https://doi.org/10.3390/insects12020109
Chicago/Turabian StyleYusoff, Norazila, Idris Abd Ghani, Nurul Wahida Othman, Wan Mohd Aizat, and Maizom Hassan. 2021. "Toxicity and Sublethal Effect of Farnesyl Acetate on Diamondback Moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae)" Insects 12, no. 2: 109. https://doi.org/10.3390/insects12020109
APA StyleYusoff, N., Abd Ghani, I., Othman, N. W., Aizat, W. M., & Hassan, M. (2021). Toxicity and Sublethal Effect of Farnesyl Acetate on Diamondback Moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Insects, 12(2), 109. https://doi.org/10.3390/insects12020109