Biocontrol of Melolontha spp. Grubs in Organic Strawberry Plantations by Entomopathogenic Fungi as Affected by Environmental and Metabolic Factors and the Interaction with Soil Microbial Biodiversity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Trials
- (1)
- A Beauveria bassiana strain (BB59, hereafter BA) isolated from rhizospheric soil of an apple orchard located in Valle d’Aosta by the company CCS Aosta, (Aosta, Italy), which genomic sequence of ITS region of the ribosome has been deposited in the GenBank database and can be accessed to ID KT932307. The strain is not registered for use as plant protection product.
- (2)
- A Beaveria brongniartii strain (hereafter BR) isolated from the soil of a potato field highly infested by M. melolontha in Romanów locality (Lublin voivodeship, Eastern Poland). The strain is deposited in the Fungal Collection of the Institute of Agriculture and Horticulture, Siedlce University of Natural Science and Humanities. The sequence of the ITS region of the ribosome has been deposited in the GenBank database and can be accessed to ID KT932309.
- (3)
- A consortium of the two strains (BA + BR) applied as a mixture of the two single formulations.
2.2. Assessment of Treatment Efficacy
2.3. Assessment of the Presence of Entomopathogenic Fungi in the Soil
2.4. Analysis of Beauveria Strains Chitinolytic Activity and Metabolic Profile
2.5. Terminal Restriction Fragment Length Polymorphism (TRFLP) Analysis of Soil Microbial Community Structure and Diversity
2.6. Quantification of Fungal Gene Copies
2.7. Data Treatment and Statistical Analyses
2.7.1. Field Trials and Microbiological Analysis of Soil Samples
2.7.2. Analysis of the Interactions between Climatic Conditions, Entomopathogenic Fungi Abundance in Soil and Plant Damage
2.7.3. Analysis of Biolog and NAGase Activity
2.7.4. Analysis of TRFLP Profiles to Assess Soil Diversity
3. Results
3.1. Effect of Bioinocula on Melolontha spp. Damage of Strawberry Plants in Organic Plantations
3.2. Monitoring of Beauveria Species in Soil
3.3. Evaluation of the Interactions Between Climatic Conditions and Abundance of the Soil Entomopathogenic Fungi Populations on the Level of Plant Damage
3.4. In Vitro Metabolic and Chitinolytic Activities of the Two Beauveria Strains
3.5. Impact of Bioinocula on Soil Biodiversity
4. Discussion
4.1. Efficacy of Bioinocula in the Control of Melolontha spp. Damage and in Relation to Environmental Conditions
4.2. Impact of the Bioinocula on Population Abundance of Beauveria Species and Microbial Biodiversity
4.3. In Vitro Metabolism and Chitinolytic Activity as a Tool to Assess Bioinocula Potential
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keller, S.; Zimmermann, G. Scarabs and Other Soil Pests in Europe: Situation, Perspectives and Control Strategies. IOBC WPRS Bull. 2005, 25, 59–64. [Google Scholar]
- Wagenhoff, E.; Blum, R.; Delb, H. Spring Phenology of Cockchafers, Melolontha Spp. (Coleoptera: Scarabaeidae), in Forests of South-Western Germany: Results of a 3-Year Survey on Adult Emergence, Swarming Flights, and Oogenesis from 2009 to 2011. J. For. Sci. 2014, 60, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Sukovata, L.; Jaworski, T.; Karolewski, P.; Kolk, A. The Performance of Melolontha Grubs on the Roots of Various Plant Species. Turk. J. Agric. For. 2015, 39, 107–116. [Google Scholar] [CrossRef]
- Muška, F. Occurrence and Control of the Field Cockchafer (Melolontha Melolontha L.) in the Czech Republic—A Historical Overview. Nachr. Dtsch. Pflanzenschutzd. 2006, 58, 228–234. [Google Scholar]
- Woreta, D. Control of Cockchafer Melolontha Spp. Grubs—A Review of Methods. Folia For. Pol. 2015, 57, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Tartanus, M.; Malusá, E.; Łabanowska, B.H.; Tkaczuk, C.; Kowalczyk, W.J.; Canfora, L.; Pinzari, F.; Chałańska, A. Utilization of Non-Chemical (Mechanical and Physical) Methods to Control Soil-Borne Pests in Organic Strawberry Plantations. J. Res. Appl. Agric. Eng. 2017, 62, 182–185. [Google Scholar]
- Laengle, T.; Pernfuss, B.; Seger, C.; Strasser, H. Field Efficacy Evaluation of Beauveria Brongniartii against Melolontha Melolontha in Potato Cultures. Sydowia 2005, 57, 54–93. [Google Scholar]
- Mayerhofer, J.; Enkerli, J.; Zelger, R.; Strasser, H. Biological Control of the European Cockchafer: Persistence of Beauveria Brongniartii after Long-Term Applications in the Euroregion Tyrol. BioControl 2015, 60, 617–629. [Google Scholar] [CrossRef]
- Jaber, L.R.; Ownley, B.H. Can We Use Entomopathogenic Fungi as Endophytes for Dual Biological Control of Insect Pests and Plant Pathogens? Biol. Control 2018, 116, 36–45. [Google Scholar] [CrossRef]
- Strasser, H.; Forer, A.; Schinner, F. Development of media for the selective isolation and maintenance of viruIence of Beauveria brongniartii. In Proceedings of the 3rd International Workshop on Microbial Control of Soil Dwelling Pests, Lincoln, New Zealand, 21–23 February 1996; Jackson, T., Glare, T., Jackson, T., Glare, T., Eds.; pp. 125–130. [Google Scholar]
- Malusà, E.; Pinzari, F.; Canfora, L. Efficacy of Biofertilizers: Challenges to Improve Crop Production. In Microbial Inoculants in Sustainable Agricultural Productivity; Singh, D.P., Singh, H.B., Prabha, R., Singh, D.P., Singh, H.B., Prabha, R., Eds.; Springer: New Delhi, India, 2016; pp. 17–40. ISBN 978-81-322-2642-0. [Google Scholar]
- Kessler, P.; Enkerl, J.; Schweize, C.; Keller, S. Survival of Beauveria Brongniartii in the Soil after Application as a Biocontrol Agent against the European Cockchafer Melolontha Melolontha. BioControl 2004, 49, 563–581. [Google Scholar] [CrossRef]
- Klingen, I.; Eilenberg, J.; Meadow, R. Effects of Farming System, Field Margins and Bait Insect on the Occurrence of Insect Pathogenic Fungi in Soils. Agric. Ecosyst. Environ. 2002, 91, 191–198. [Google Scholar] [CrossRef]
- Clifton, E.H.; Jaronski, S.T.; Hodgson, E.W.; Gassmann, A.J. Abundance of Soil-Borne Entomopathogenic Fungi in Organic and Conventional Fields in the Midwestern USA with an Emphasis on the Effect of Herbicides and Fungicides on Fungal Persistence. PLoS ONE 2015, 10, e0133613. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.G.; Poprawski, T.J.; Khachatourians, G.G. Production, Formulation and Application of the Entomopathogenic Fungus Beauveria Bassiana for Insect Control: Current Status. Biocontrol Sci. Technol. 1994, 4, 3–34. [Google Scholar] [CrossRef]
- Vassilev, N.; Vassileva, M.; Martos, V.; Garcia del Moral, L.F.; Kowalska, J.; Tylkowski, B.; Malusá, E. Formulation of Microbial Inoculants by Encapsulation in Natural Polysaccharides: Focus on Beneficial Properties of Carrier Additives and Derivatives. Front. Plant Sci. 2020, 11, 270. [Google Scholar] [CrossRef]
- Scheepmaker, J.W.A.; Butt, T.M. Natural and Released Inoculum Levels of Entomopathogenic Fungal Biocontrol Agents in Soil in Relation to Risk Assessment and in Accordance with EU Regulations. Biocontrol Sci. Technol. 2010, 20, 503–552. [Google Scholar] [CrossRef]
- Ibrahim, L.; Butt, T.M.; Jenkinson, P. Effect of Artificial Culture Media on Germination, Growth, Virulence and Surface Properties of the Entomopathogenic Hyphomycete Metarhizium Anisopliae. Mycol. Res. 2002, 106, 705–715. [Google Scholar] [CrossRef]
- Keyhani, N.O. Lipid Biology in Fungal Stress and Virulence: Entomopathogenic Fungi. Fungal Biol. 2018, 122, 420–429. [Google Scholar] [CrossRef]
- Charnley, A.K.; St. Leger, R.J. The Role of Cuticle-Degrading Enzymes in Fungal Pathogenesis in Insects. In The Fungal Spore and Disease Initiation in Plants and Animals; Cole, G.T., Hoch, H.C., Cole, G.T., Hoch, H.C., Eds.; Springer: Boston, MA, USA, 1991; pp. 267–286. ISBN 978-1-4899-2635-7. [Google Scholar]
- Pedrini, N.; Crespo, R.; Juárez, M.P. Biochemistry of Insect Epicuticle Degradation by Entomopathogenic Fungi. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007, 146, 124–137. [Google Scholar] [CrossRef]
- Scheepmaker, J.W.A.; Kassteele, J. van de Effects of Chemical Control Agents and Microbial Biocontrol Agents on Numbers of Non-Target Microbial Soil Organisms: A Meta-Analysis. Biocontrol Sci. Technol. 2011, 21, 1225–1242. [Google Scholar] [CrossRef]
- European Commission. European Commission Commission Regulation (EU) No 546/2011of 10 June 2011 Implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Councilas Regards Uniform Principles for Evaluation and Authorisation of Plant Protection Products; European Commission: Brussels, Belgium, 2011; Volume L155. [Google Scholar]
- Tall, S.; Meyling, N.V. Probiotics for Plants? Growth Promotion by the Entomopathogenic Fungus Beauveria Bassiana Depends on Nutrient Availability. Microb. Ecol. 2018, 76, 1002–1008. [Google Scholar] [CrossRef]
- Kowalska, J.; Tyburski, J.; Matysiak, K.; Tylkowski, B.; Malusá, E. Field Exploitation of Multiple Functions of Beneficial Microorganisms for Plant Nutrition and Protection: Real Possibility or Just a Hope? Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Bordenstein, S.R.; Theis, K.R. Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes. PLoS Biol. 2015, 13, e1002226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehner, S.A.; Minnis, A.M.; Sung, G.-H.; Luangsa-ard, J.J.; Devotto, L.; Humber, R.A. Phylogeny and Systematics of the Anamorphic, Entomopathogenic Genus Beauveria. Mycologia 2011, 103, 1055–1073. [Google Scholar] [CrossRef]
- Humber, R.A. Entomophthoromycota: A New Phylum and Reclassification for Entomophthoroid Fungi. Mycotaxon 2012, 120, 477–492. [Google Scholar] [CrossRef]
- Imoulan, A.; Hussain, M.; Kirk, P.M.; El Meziane, A.; Yao, Y.-J. Entomopathogenic Fungus Beauveria: Host Specificity, Ecology and Significance of Morpho-Molecular Characterization in Accurate Taxonomic Classification. J. Asia-Pac. Entomol. 2017, 20, 1204–1212. [Google Scholar] [CrossRef]
- Niemi, R.M.; Vepsäläinen, M. Stability of the Fluorogenic Enzyme Substrates and PH Optima of Enzyme Activities in Different Finnish Soils. J. Microbiol. Methods 2005, 60, 195–205. [Google Scholar] [CrossRef]
- Seidl, V.; Druzhinina, I.S.; Kubicek, C.P. A Screening System for Carbon Sources Enhancing Beta-N-Acetylglucosaminidase Formation in Hypocrea Atroviridis (Trichoderma Atroviride). Microbiol. Read. Engl. 2006, 152, 2003–2012. [Google Scholar] [CrossRef] [Green Version]
- Pinzari, F.; Ceci, A.; Abu-Samra, N.; Canfora, L.; Maggi, O.; Persiani, A. Phenotype MicroArrayTM System in the Study of Fungal Functional Diversity and Catabolic Versatility. Res. Microbiol. 2016, 167, 710–722. [Google Scholar] [CrossRef]
- Canfora, L.; Abu-Samra, N.; Tartanus, M.; Łabanowska, B.H.; Benedetti, A.; Pinzari, F.; Malusá, E. Co-Inoculum of Beauveria Brongniartii and B. Bassiana Shows in Vitro Different Metabolic Behaviour in Comparison to Single Inoculums. Sci. Rep. 2017, 7, 13102. [Google Scholar] [CrossRef] [Green Version]
- Tanzer, M.M.; Arst, H.N.; Skalchunes, A.R.; Coffin, M.; Darveaux, B.A.; Heiniger, R.W.; Shuster, J.R. Global Nutritional Profiling for Mutant and Chemical Mode-of-Action Analysis in Filamentous Fungi. Funct. Integr. Genom. 2003, 3, 160–170. [Google Scholar] [CrossRef]
- Trabelsi, D.; Mhamdi, R. Microbial Inoculants and Their Impact on Soil Microbial Communities: A Review. BioMed Res. Int. 2013, 2013, 863240. [Google Scholar] [CrossRef] [PubMed]
- Canfora, L.; Lo Papa, G.; Vittori Antisari, L.; Bazan, G.; Dazzi, C.; Benedetti, A. Spatial Microbial Community Structure and Biodiversity Analysis in “Extreme” Hypersaline Soils of a Semiarid Mediterranean Area. Appl. Soil Ecol. 2015, 93, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Vilgalys, R.; Gonzalez, D. Organization of Ribosomal DNA in the Basidiomycete Thanatephorus Praticola. Curr. Genet. 1990, 18, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Töwe, S.; Kleineidam, K.; Schloter, M. Differences in Amplification Efficiency of Standard Curves in Quantitative Real-Time PCR Assays and Consequences for Gene Quantification in Environmental Samples. J. Microbiol. Methods 2010, 82, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Canfora, L.; Malusá, E.; Tkaczuk, C.; Tartanus, M.; Łabanowska, B.H.; Pinzari, F. Development of a Method for Detection and Quantification of B. Brongniartii and B. Bassiana in Soil. Sci. Rep. 2016, 6, 22933. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Addinsoft. XLSTAT Statistical and Data Analysis Solution; Addinsoft: Boston, MA, USA, 2020. [Google Scholar]
- Atanasova, L.; Druzhinina, I.S. Global Nutrient Profiling by Phenotype MicroArrays: A Tool Complementing Genomic and Proteomic Studies in Conidial Fungi*. J. Zhejiang Univ. Sci. B 2010, 11, 151–168. [Google Scholar] [CrossRef] [Green Version]
- Hahne, F.; Huber, W.; Gentleman, R.; Falcon, S. Bioconductor Case Studies; Springer: New York, NY, USA, 2008; ISBN 978-0-387-77239-4. [Google Scholar]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Keller, S.; Kessler, P.; Jensen, D.B.; Schweizer, C. How Many Spores of Beauveria Brongniartii Are Needed to Control Melolontha Melolontha? IOBC WPRS Bull. 2002, 25, 59–64. [Google Scholar]
- Enkerli, J.; Widmer, F.; Gessler, C.; Keller, S. Strain-Specific Microsatellite Markers in the Entomopathogenic Fungus Beauveria Brongniartii. Mycol. Res. 2001, 105, 1079–1087. [Google Scholar] [CrossRef]
- Fătu, A.C.; Dinu, M.M.; Ciornei, C.; Andrei, A.M. Biological Control of Melolontha Melolontha L. Larvae with Entomopathogenic Bioinsecticide Based on Beauveria Brongniartii. AgroLife Sci. J. 2015, 4, 64–69. [Google Scholar]
- Schmidt, M.; Hurling, R. A Spatially-Explicit Count Data Regression for Modeling the Density of Forest Cockchafer (Melolontha Hippocastani) Larvae in the Hessian Ried (Germany). For. Ecosyst. 2014, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Malusá, E.; Tartanus, M.; Furmanczyk, E.M.; Łabanowska, B.H. Holistic Approach to Control Melolontha Spp. in Organic Strawberry Plantations. Org. Agric. 2020, 10, 13–22. [Google Scholar] [CrossRef]
- Tkaczuk, C.; Król, A.; Majchrowska-Safaryan, A.; Nicewicz, Ł. The Occurrence of Entomopathogenic Fungi in Soil from Fields Cultivated in a Conventional and Organic System. J. Ecol. Eng. 2014, 15, 137–144. [Google Scholar] [CrossRef]
- Butt, T.M. Use of Entomogenous Fungi for the Control of Insect Pests. In Agricultural Applications; Kempken, F., Kempken, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 111–134. ISBN 978-3-662-03059-2. [Google Scholar]
- Zimmermann, G. Review on Safety of the Entomopathogenic Fungi Beauveria Bassiana and Beauveria Brongniartii. Biocontrol Sci. Technol. 2007, 17, 533–596. [Google Scholar] [CrossRef]
- Keller, S.J. Use of Beauveria Brongniartii in Switzerland and Its Acceptance by Farmers. IOBC WPRS Bull. 2000, 23, 67–71. [Google Scholar]
- Walstadt, J.D.; Anderson, R.F.; Stambaugh, W.J. Effects of Environmental Conditions on Two Species of Muscardine Fungi (Beauveria Bassiana and Metarhizium Anisopliae). J. Invertebr. Pathol. 1970, 16, 221–226. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Shanthi, V.; Nagasathya, A. Effect of Different Media and PH on the Growth of Beauveria Bassiana and Its Parasitism on Leaf Eating Caterpillars. Res. J. Agric. Biol. Sci. 2008, 4, 117–119. [Google Scholar]
- Quesada-Moraga, E.; Navas-Corte, J.A.; Maranhao, E.A.A.; Ortiz-Urquiza, A.; Santiago-Álvarez, C. Factors Affecting the Occurrence and Distribution of Entomopathogenic Fungi in Natural and Cultivated Soils. Mycol. Res. 2007, 111, 947–966. [Google Scholar] [CrossRef]
- Padmavathi, J.; Uma Devi, K.; Uma Maheswara Rao, C. The Optimum and Tolerance PH Range Is Correlated to Colonial Morphology in Isolates of the Entomopathogenic Fungus Beauveria Bassiana—A Potential Biopesticide. World J. Microbiol. Biotechnol. 2003, 19, 469–477. [Google Scholar] [CrossRef]
- Niemczyk, M.; Sierpińska, A.; Tereba, A.; Sokołowski, K.; Przybylski, P. Natural Occurrence of Beauveria Spp. in Outbreak Areas of Cockchafers (Melolontha Spp.) in Forest Soils from Poland. BioControl 2019, 64, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Sharma, J.; Agarwal, G.P.; Rajak, R.C. Effect of Temperature, PH and Light on Toxin Production by Beauveria Bassiana (Bal) Vuill. Indian J. Exp. Biol. 1992, 30, 918–919. [Google Scholar]
- Bezemer, T.M.; van der Putten, W.H.; Martens, H.; van de Voorde, T.F.J.; Mulder, P.P.J.; Kostenko, O. Above- and below-Ground Herbivory Effects on below-Ground Plant-Fungus Interactions and Plant-Soil Feedback Responses. J. Ecol. 2013, 101, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Pascale, A.; Proietti, S.; Pantelides, I.S.; Stringlis, I.A. Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Front. Plant Sci. 2020, 10, 1741. [Google Scholar] [CrossRef]
- Kumar, K.H.; Jagadeesh, K.S. Microbial Consortia-Mediated Plant Defense against Phytopathogens and Growth Benefits. South Indian J. Biol. Sci. 2016, 2, 395–403. [Google Scholar] [CrossRef]
- Katiski da Costa Stuart, A.; Lee Furuie, J.; Aparecida Cassilha Zawadneak, M.; Chapaval Pimentel, I. Increased Mortality of the European Pepper Moth Duponchelia Fovealis (Lepidoptera:Crambidae) Using Entomopathogenic Fungal Consortia. J. Invertebr. Pathol. 2020, 177, 107503. [Google Scholar] [CrossRef]
- Chandler, D.; Hay, D.; Reid, A.P. Sampling and Occurrence of Entomopathogenic Fungi and Nematodes in UK Soils. Appl. Soil Ecol. 1997, 5, 133–141. [Google Scholar] [CrossRef]
- Meyling, V.N.; Eilenberg, J. Occurrence and Distribution of Soil Borne Entomopathogenic Fungi within a Single Organic Agroecosystem. Agric. Ecosyst. Environ. 2006, 113, 336–341. [Google Scholar] [CrossRef]
- Garrido-Jurado, I.; Fernández-Bravo, M.; Campos, C.; Quesada-Moraga, E. Diversity of Entomopathogenic Hypocreales in Soil and Phylloplanes of Five Mediterranean Cropping Systems. J. Invertebr. Pathol. 2015, 130, 97–106. [Google Scholar] [CrossRef]
- Sharma, L.; Oliveira, I.; Torres, L.; Marques, G. Entomopathogenic Fungi in Portuguese Vineyards Soils: Suggesting a ‘Galleria-Tenebrio-Bait Method’ as Bait-Insects Galleria and Tenebrio Significantly Underestimate the Respective Recoveries of Metarhizium (Robertsii) and Beauveria (Bassiana). MycoKeys 2018, 1–23. [Google Scholar] [CrossRef]
- Bueno-Pallero, F.Á.; Blanco-Pérez, R.; Vicente-Díez, I.; Rodríguez Martín, J.A.; Dionísio, L.; Campos-Herrera, R. Patterns of Occurrence and Activity of Entomopathogenic Fungi in the Algarve (Portugal) Using Different Isolation Methods. Insects 2020, 11, 352. [Google Scholar] [CrossRef] [PubMed]
- Medo, J.; Cagáň, Ľ. Factors Affecting the Occurrence of Entomopathogenic Fungi in Soils of Slovakia as Revealed Using Two Methods. Biol. Control 2011, 59, 200–208. [Google Scholar] [CrossRef]
- Neuvéglise, C.; Brygoo, Y.; Vercambre, B.; Riba, G. Comparative Analysis of Molecular and Biological Characteristics of Strains of Beauveria Brongniartii Isolated from Insects. Mycol. Res. 1994, 98, 322–328. [Google Scholar] [CrossRef]
- Dolci, P.; Guglielmo, F.; Secchi, F.; Ozino, O.I. Persistence and Efficacy of Beauveria Brongniartii Strains Applied as Biocontrol Agents against Melolontha Melolontha in the Valley of Aosta (Northwest Italy). J. Appl. Microbiol. 2006, 100, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.; Galidevara, S.; Strohmeier, S.; Devi, K.U.; Reineke, A. Effects on Diversity of Soil Fungal Community and Fate of an Artificially Applied Beauveria Bassiana Strain Assessed through 454 Pyrosequencing. Microb. Ecol. 2013, 66, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Enkerli, J.; Widmer, F.; Keller, S. Long-Term Field Persistence of Beauveria Brongniartii Strains Applied as Biocontrol Agents against European Cockchafer Larvae in Switzerland. Biol. Control 2004, 29, 115–123. [Google Scholar] [CrossRef]
- McKinnon, A.C.; Glare, T.R.; Ridgway, H.J.; Mendoza-Mendoza, A.; Holyoake, A.; Godsoe, W.K.; Bufford, J.L. Detection of the Entomopathogenic Fungus Beauveria Bassiana in the Rhizosphere of Wound-Stressed Zea Mays Plants. Front. Microbiol. 2018, 9, 1161. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, P.R.; Mauchline, T.H.; Clark, I.M. Culture-Independent Molecular Techniques for Soil Microbial Ecology. Soil Biol. Biochem. 2010, 42, 878–887. [Google Scholar] [CrossRef]
- Luo, A.X.; Wang, M.; Hu, G.; Weng, B. Seasonal Change of Microbial Diversity and Its Relation with Soil Chemical Properties in Orchard. PLoS ONE 2019, 14, e0215556. [Google Scholar] [CrossRef]
- Wang, Y.; Crocker, R.L.; Wilson, L.T.; Smart, G.; Wei, X.; Nailon, W.T.; Cobb, P.P. Effect of Nematode and Fungal Treatments on NontargetTurfgrass-Inhabiting Arthropod and Nematode Populations. Environ. Entomol. 2001, 30, 196–203. [Google Scholar] [CrossRef]
- Roy, H.E.; Pell, J.K. Interactions Between Entomopathogenic Fungi and Other Natural Enemies: Implications for Biological Control. Biocontrol Sci. Technol. 2000, 10, 737–752. [Google Scholar] [CrossRef]
- Enkerli, J.; Widmer, F. Molecular Ecology of Fungal Entomopathogens: Molecular Genetic Tools and Their Applications in Population and Fate Studies. BioControl 2010, 55, 17–37. [Google Scholar] [CrossRef]
- Pernfuss, B.; Schweigkofler, W. Distinction of the Entomopathogenic Fungal Species Beauveria Brongniartii and Beauveria Bassiana by Comparing Their Carbon Utilization Patterns. Bull. OILBSROP 2001, 26, 121–123. [Google Scholar]
- Gourbiere, S.; Gourbiere, F. Competition between Unit-Restricted Fungi: A Metapopulation Model. J. Theor. Biol. 2002, 217, 351–368. [Google Scholar] [CrossRef]
- Loesch, A.; Hutwimmer, S.; Strasser, H. Carbon Utilization Pattern as a Potential Quality Control Criterion for Virulence of Beauveria Brongniartii. J. Invertebr. Pathol. 2010, 104, 58–65. [Google Scholar] [CrossRef]
- Geange, S.W.; Pledger, S.; Burns, K.C.; Shima, J.S. A Unified Analysis of Niche Overlap Incorporating Data of Different Types. Methods Ecol. Evol. 2011, 2, 175–184. [Google Scholar] [CrossRef]
- de Carolina Sánchez-Pérez, L.; Barranco-Florido, J.E.; Rodríguez-Navarro, S.; Cervantes-Mayagoitia, J.F.; Ramos-López, M.Á. Enzymes of Entomopathogenic Fungi, Advances and Insights. Adv. Enzyme Res. 2014, 2, 65–76. [Google Scholar] [CrossRef] [Green Version]
- St Leger, R.J.; Cooper, R.M.; Charnley, A.K. Cuticle-Degrading Enzymes of Entomopathogenic Fungi: Regulation of Production of Chitinolytic Enzymes. Microbiology 1986, 132, 1509–1517. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Tian, B.; Liang, L.; Zhang, K.-Q. Extracellular Enzymes and the Pathogenesis of Nematophagous Fungi. Appl. Microbiol. Biotechnol. 2007, 75, 21–31. [Google Scholar] [CrossRef]
Treatments | Efficacy (%) According to Abbott | ||
---|---|---|---|
September 2014 | October 2015 | July 2016 | |
Trial NW # | |||
Control | - | - | - |
B. bassiana | 60.1 | 53.2 | 21.5 |
B. brongniartii | 44.6 | 53.2 | 51.6 |
BA + BR | 54.9 | 52.5 | 58.5 |
Trial BZ # | |||
Control | - | - | - |
B. bassiana | - | 18.2 | 30.5 |
B. brongniartii | - | 14.0 | 17.2 |
BA + BR | - | 16.1 | 23.1 |
Treatment | Species Determined (CFU 103 g−1 Soil) | |||||||
---|---|---|---|---|---|---|---|---|
September 2014 | July 2015 | October 2015 | July 2016 | |||||
B. bassiana | B. brongniartii | B. bassiana | B. brongniartii | B. bassiana | B. brongniartii | B. bassiana | B. brongniartii | |
Trial NW # | ||||||||
Control | 0.33 ± 0.5 | 0.0 a | 1.67 ± 1.7 a | 0.0 a | 0.33 ± 0.5 | 0.0 a | 2.00 ± 0.8 | 0.0 |
B. bassiana | 1.33 ± 0.5 | 0.0 a | 4.67 ± 0.5 b | 0.0 a | 1.67 ± 0.9 | 0.67 ± 0.5 a | 1.00 ± 0.1 | 0.0 |
B. brongniartii | 1.00 ± 0.1 | 3.00 ± 0.8 b | 0.67 ± 0.5 a | 0.67 ± 0.5 b | 0.67 ± 0.5 | 6.00 ± 1.4 b | 0.33 ± 0.5 | 0.0 |
BA + BR | 1.67 ± 0.9 | 0.33 ± 0.5 a | 2.67 ± 1.2 a | 0.0 a | 0.33 ± 0.5 | 1.00 ± 0.8 a | 0.33 ± 0.5 | 0.0 |
Trial BZ # | ||||||||
Control | 4.00 ± 0.8b | 0.0 a | 0.67 ± 0.5 | 0.0 a | 0.67 ± 0.5 | 0.0 a | 0.33 ± 0.5 | 0.0 |
B. bassiana | 5.33 ± 0.5b | 0.0 a | 1.00 ± 0.8 | 0.0 a | 1.00 ± 0.8 | 0.0 a | 1.00 ± 0.1 | 0.0 |
B. brongniartii | 2.00 ± 1.4a | 1.00 ± 0.1 b | 0.33 ± 0.5 | 1.33 ± 1.3 ab | 0.0 | 1.00 ± 0.8 ab | 0.0 | 0.0 |
BA + BR | 1.67 ± 0.5a | 0.0 a | 0.67 ± 0.5 | 1.00 ± 0.8 b | 1.67 ± 0.9 | 4.00 ± 0.1 b | 0.67 ± 0.5 | 1.33 ± 0.5 |
Trial NW | ||||||||
---|---|---|---|---|---|---|---|---|
Treatment | September 2014 | July 2015 | ||||||
Fungi | Bacteria | Fungi | Bacteria | |||||
OTU number | H’ index | OTU number | H’ index | OTU number | H’ index | OTU number | H’ index | |
Control | 14 | 1.62 | 21 | 1.32 | 104 | 4.60 | 11 | 2.34 |
B. bassiana | 29 | 1.90 | 15 | 1.29 | 95 | 4.50 | 13 | 2.52 |
B. brongniartii | 17 | 1.82 | 35 | 2.15 | 115 | 4.70 | 6 | 1.65 |
BA + BR | ND * | ND | ND | ND | 91 | 4.20 | 12 | 2.53 |
Trial BZ | ||||||||
Treatment | September 2014 | July 2015 | ||||||
Fungi | Bacteria | Fungi | Bacteria | |||||
OTU number | H’ index | OTU number | H’ index | OTU number | H’ index | OTU number | H’ index | |
Control | 16 | 1.80 | 19 | 2.00 | 79 | 4.38 | 14 | 2.60 |
B. bassiana | 23 | 2.60 | 23 | 1.90 | 58 | 4.12 | 9 | 2.49 |
B. brongniartii | 11 | 0.90 | 5 | 1.10 | 47 | 3.84 | 10 | 2.30 |
BA + BR | ND | ND | ND | ND | 82 | 4.40 | 10 | 2.30 |
Treatment | Trial NW | |||||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | |||||||
BA/total fungi | BR/total fungi | BA/total fungi | BR/total fungi | |||||
May | July | May | July | May | July | May | July | |
Control | 3.36 | 3.60 × 10−3 | 5.18 × 10−3 | 7.49 × 10−3 | 3.04 × 10−3 | 1.78 × 10−2 | 5.15 × 10−4 | 1.83 × 10−3 |
B. bassiana | 1.17 × 10−2 | 6.47 × 10−3 | - | - | 2.65 × 10−3 | 8.05 × 10−3 | - | - |
B. brongniartii | - | - | 1.38 × 10−2 | 1.04 × 10−2 | - | - | 4.74 × 10−4 | 2.11 × 10−3 |
BA + BR | 7.30 × 10−3 | 7.84 × 10−3 | 1.11 × 10−2 | 1.71 × 10−2 | 3.82 × 10−3 | 6.05 × 10−3 | 4.94 × 10−4 | 9.39 × 10−4 |
Trial BZ | ||||||||
2015 | 2016 | |||||||
BA/total fungi | BR/total fungi | BA/total fungi | BR/total fungi | |||||
May | July | May | July | May | July | May | July | |
Control | 29.43 | 8.90 | 5.24 × 10−3 | 8.50 × 10−3 | 0.00 | 0.00 | 3.73 × 10−4 | 7.74 × 10−4 |
B. bassiana | 72.76 | 6.30 | - | - | 0.00 | 0.01 | - | - |
B. brongniartii | - | - | 2.12 × 10−2 | 3.33 × 10−2 | - | - | 3.98 × 10−4 | 3.48 × 10−3 |
BA + BR | 37.87 | 2.16 | 4.29 × 10−4 | 3.81 × 10−3 | 0.00 | 0.01 | 7.22 | 4.65 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tartanus, M.; Furmanczyk, E.M.; Canfora, L.; Pinzari, F.; Tkaczuk, C.; Majchrowska-Safaryan, A.; Malusá, E. Biocontrol of Melolontha spp. Grubs in Organic Strawberry Plantations by Entomopathogenic Fungi as Affected by Environmental and Metabolic Factors and the Interaction with Soil Microbial Biodiversity. Insects 2021, 12, 127. https://doi.org/10.3390/insects12020127
Tartanus M, Furmanczyk EM, Canfora L, Pinzari F, Tkaczuk C, Majchrowska-Safaryan A, Malusá E. Biocontrol of Melolontha spp. Grubs in Organic Strawberry Plantations by Entomopathogenic Fungi as Affected by Environmental and Metabolic Factors and the Interaction with Soil Microbial Biodiversity. Insects. 2021; 12(2):127. https://doi.org/10.3390/insects12020127
Chicago/Turabian StyleTartanus, Malgorzata, Ewa M. Furmanczyk, Loredana Canfora, Flavia Pinzari, Cezary Tkaczuk, Anna Majchrowska-Safaryan, and Eligio Malusá. 2021. "Biocontrol of Melolontha spp. Grubs in Organic Strawberry Plantations by Entomopathogenic Fungi as Affected by Environmental and Metabolic Factors and the Interaction with Soil Microbial Biodiversity" Insects 12, no. 2: 127. https://doi.org/10.3390/insects12020127
APA StyleTartanus, M., Furmanczyk, E. M., Canfora, L., Pinzari, F., Tkaczuk, C., Majchrowska-Safaryan, A., & Malusá, E. (2021). Biocontrol of Melolontha spp. Grubs in Organic Strawberry Plantations by Entomopathogenic Fungi as Affected by Environmental and Metabolic Factors and the Interaction with Soil Microbial Biodiversity. Insects, 12(2), 127. https://doi.org/10.3390/insects12020127