Evidence for Range Expansion and Origins of an Invasive Hornet Vespa bicolor (Hymenoptera, Vespidae) in Taiwan, with Notes on Its Natural Status
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Genetic Variations across V. bicolor Ranges
2.2. Occurrences, Daily and Seasonal Activities of V. bicolor
2.3. Ecological Niche Modeling
2.3.1. Species Occurrence and Environmental Data
2.3.2. Ensemble Modelling
3. Results
3.1. Genetic Variations across V. bicolor Ranges
3.2. Current Status, Daily and Seasonal Activities of V. bicolor
3.3. Potential Range for V. bicolor
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EU. European Parliament and of the Council on the Prevention and Management of the Introduction and Spread of Invasive Alien Species. Regulation (EU) No. 1143. 2014. Available online: https://eur-lex.europa.eu/eli/reg/2014/1143/oj (accessed on 14 January 2021).
- SSC (Species Survival Commission). IUCN Guidelines of the Prevention of Biodiversity Loss Caused by Alien Invasive Species. Gland Switzerland. 2000. Available online: https://portals.iucn.org/library/efiles/documents/Rep-2000-052.pdf (accessed on 14 January 2021).
- Kenis, M.; Auger-Rozenberg, M.A.; Roques, A.; Timms, L.; Péré, C.; Cock, M.J.W.; Settele, J.; Augustin, S.; Lopez-Vaamonde, C. Ecological effects of invasive alien insects. In Ecological Impacts of Non-Native Invertebrates and Fungi on Terrestrial Ecosystems; Langor, D.W., Sweeney, J., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 11, pp. 21–45. [Google Scholar] [CrossRef]
- Matsuura, M. Social Wasps of Japan in Color; Hokkaido University Press: Sapporo, Japan, 1995; p. 353. [Google Scholar]
- Haxaire, J.; Tamisier, J.P.; Bouguet, J.M. Vespa velutina Lepeletier, 1836, une redoutable nouveauté pour la faune de France (Hym., Vespidae). Bull. Soc. Entomol. Fr. 2006, 111, 194. [Google Scholar]
- Ueno, T. Establishment of the invasive hornet Vespa velutina (Hymenoptera: Vespidae) in Japan. Int. J. Chem. Environ. Biol. Sci. 2014, 2, 3. [Google Scholar]
- Kim, J.K.; Choi, M.B.; Moon, T.Y. Occurrence of Vespa velutina Lepeletier from Korea, and a revised key for Korean Vespa species (Hymenoptera: Vespidae). Entomol. Res. 2006, 36, 112–115. [Google Scholar] [CrossRef]
- Budge, G.E.; Hodgetts, J.; Jones, E.P.; Ostojá-Starzewski, J.C.; Hall, J.; Tomkies, V.; Semmence, N.; Brown, M.; Wakefield, M.; Stainton, K. The invasion, provenance and diversity of Vespa velutina Lepeletier (Hymenoptera: Vespidae) in Great Britain. PLoS ONE 2017, 12, e0185172. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, J.; Hipólito, D.; Santarém, F.; Martins, R.; Gomes, A.; Carmo, P.; Rodrigues, R.; Grosso-Silva, J.; Fonseca, C. Patterns of Vespa velutina invasion in Portugal using crowdsourced data. Insect Conserv. Diver. 2020, 13, 501–507. [Google Scholar] [CrossRef]
- Takeuchi, T.; Takahashi, R.; Kiyoshi, T.; Nakamura, M.; Minoshima, Y.N.; Takahashi, J. The origin and genetic diversity of the yellow-legged hornet, Vespa velutina introduced in Japan. Insectes Soc. 2017, 64, 313–320. [Google Scholar] [CrossRef]
- Arca, M.; Mougel, F.; Guillemaud, T.; Dupas, S.; Rome, Q.; Perrard, A.; Muller, F.; Fossoud, A.; Capdevielle-Dulac, C.; Torres-Leguizamon, M.; et al. Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, in Europe. Biol. Invasions 2015, 17, 2357–2371. [Google Scholar] [CrossRef]
- Wilson, T.M.; Takahashi, J.; Spichiger, S.E.; Kim, I.; van Westendorp, P. First reports of Vespa mandarinia (Hymenoptera: Vespidae) in North America represent two separate maternal lineages in Washington State, United States, and British Columbia, Canada. Ann. Entomol. Soc. Am. 2020, 20, 1–5. [Google Scholar] [CrossRef]
- Perrard, A.; Pickett, A.M.; Villemant, C.; Kojima, J.; CarpenterJ, J.M. Phylogeny of hornets: A total evidence approach (Hymenoptera, Vespidae, Vespinae, Vespa). J. Hymenopt. Res. 2013, 32, 1–15. [Google Scholar] [CrossRef]
- Barthélémy, C. A Provisional Identification Guide to the Social Vespids of Hong Kong (Hymenoptera: Vespidae). Available online: http://insectahk.com (accessed on 14 January 2021).
- Sung, I.H.; Lu, S.S.; Chao, J.T.; Yeh, W.C.; Lee, W.J. Establishment of Vespa bicolor in Taiwan (Hymenoptera, Vespidae). J. Insect Sci. 2014, 14, 231. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Tong, X. Biological habit of Vespa bicolor. J. Jishou Univ. Nat. Sci. 2004, 25, 80–84. [Google Scholar]
- Lee, J.X.Q. Potentially Dangerous Bees and Wasps of Hong Kong; Hong Kong Entomology Society: Hong Kong, China, 2009; pp. 50–53. [Google Scholar]
- Carpenter, J.M.; Kojima, J. Checklist of the species in the subfamily Vespinae (Insecta: Hymenoptera: Vespidae). Nat. Hist. Bull. Ibaraki Univ. 1997, 1, 51–92. [Google Scholar]
- Choi, M.B.; Kwon, O. Occurrence of Hymenoptera (Wasps and bees) and their foraging in the Southwestern part of Jirisan National Park, South Korea. J. Ecol. Environ. 2015, 38, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Chantawannakul, P.; Guzman, L.D.; Li, J.; Williams, G.R. Parasites, pathogens, and pests of honeybees in Asia. Apidologie 2016, 47, 301–324. [Google Scholar] [CrossRef]
- Lee, V.J. The Oriental Honey-Buzzard of Ninety-Nine Peaks. Forestry Bureau, Council of Agriculture, Executive Yuan, Taiwan. Available online: https://youtu.be/KUeN6U2OnXI (accessed on 14 January 2021).
- Huang, K.Y.; Lin, Y.S.; Severinghaus, L.L. Nest provisioning of the Oriental Honey-buzzard (Pernis ptilorhyncus) in northern Taiwan. J. Raptor Res. 2004, 38, 367–371. [Google Scholar]
- Macià, F.X.; Menchetti, M.; Corbella, C.; Grajera, J.; Vila, R. Exploitation of the invasive Asian Hornet Vespa velutina by the European Honey Buzzard Pernis apivorus. Bird Study 2019, 66, 425–429. [Google Scholar] [CrossRef]
- With, K.A. The landscape ecology of invasive spread. Conserv. Biol. 2002, 16, 1192–1203. [Google Scholar] [CrossRef] [Green Version]
- Kamenova, S.; Bartley, T.; Bohan, D.A.; Boutain, J.R.; Colautti, R.I.; Domaizon, I.; Fontaine, C.; Lemainque, A.; Viol, I.L.; Mollot, G.; et al. Invasions toolkit: Current methods for tracking the spread and impact of invasive species. Adv. Ecol. Res. 2017, 56, 85–182. [Google Scholar]
- Choi, M.B.; Lee, S.A.; Suk, H.Y.; Lee, J.W. Microsatellite variation in colonizing populations of yellow-legged Asian hornet, Vespa velutina nigrithorax, in South Korea. Entomol. Res. 2013, 43, 208–214. [Google Scholar] [CrossRef]
- Villemant, C.; Barbet-Massin, M.; Perrard, A.; Muller, F.; Gargominy, O.; Jiguet, F.; Rome, Q. Predicting the invasion risk by the alien bee-hawking Yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models. Biol. Conserv. 2011, 144, 2142–2150. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Huang, W.; Xie, X.; Huo, L.; Liang, X.; Wang, X.; Chen, X. An integrative DNA barcoding framework of ladybird beetles (Coleoptera: Coccinellidae). Sci. Rep. 2020, 10, 10063. [Google Scholar] [CrossRef] [PubMed]
- van Houdt, J.K.; Breman, F.C.; Virgilio, M.; DeMeyer, M. Recovering full DNA barcodes from natural history collections of Tephritid fruitflies (Tephritidae, Diptera) using mini barcodes. Mol. Ecol. Resour. 2010, 10, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.F.; Kelso, S.; Jackson, M.D.; Kits, J.H.; Miranda, G.F.G.; Skevington, J.H. Diptera-specific polymerase chain reaction amplification primers of use in molecular phylogenetic research. Ann. Entomol. Soc. Am. 2011, 104, 976–997. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Wei, S.J.; Niu, F.F.; Tan, J.L. The mitochondrial genome of the Vespa bicolor Fabricius (Hymenoptera: Vespidae: Vespinae). Mitochondrial DNA A DNA Mapp. Seq. Anal. 2016, 27, 875–876. [Google Scholar] [CrossRef]
- Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2016, 44, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP v6: DNA sequence polymorphism analysis of large datasets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Ecol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- An, J. Dances with Hornets; Independent Writer Press: Taipei, Taiwan, 2015; pp. 155–163. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Evans, J.S.; Oakleaf, J.; Cushman, S.A.; Theobald, D. An ArcGIS Toolbox for Surface Gradient and Geomorphometric Modeling, Version 2.0-0. 2014. Available online: http://evansmurphy.wix.com/evansspatial (accessed on 14 January 2021).
- Naimi, B.; Araújo, M.B. Sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Pearce, J.; Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 2000, 133, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Giannini, T.C.; Acosta, A.L.; Garófalo, C.A.; Saraiva, A.M.; Alves-dos-Santos, I.; Imperatriz-Fonseca, V.L. Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. Ecol. Model. 2012, 244, 127–131. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 2010, 35, 25–55. [Google Scholar] [CrossRef] [Green Version]
- Orlova-Bienkowskaja, M.J.; Bieńkowski, A.O. Alien Coccinellidae (Ladybirds) in Sochi National Park and its vicinity, Russia. Nat. Conserv. Res. 2017, 2, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Ruchin, A.B.; Egorov, L.V.; Lobachev, E.A.; Lukiyanov, S.V.; Sazhnev, A.S.; Semishin, G.B. Expansion of Harmonia axyridis (Pallas, 1773) (Coleoptera: Coccinellidae) to European part of Russia in 2018–2020. Baltic J. Coleopterol. 2020, 20, 51–60. [Google Scholar]
- Dubovik, D.V.; Skuratovich, A.N.; Miller, D.; Spiridovich, E.V.; Gorbunov, Y.N.; Vinogradova, Y.K. The invasiveness of Solidago canadensis in the Sanctuary «Prilepsky» (Belarus). Nat. Conserv. Res. 2019, 4, 48–56. [Google Scholar] [CrossRef]
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar] [CrossRef]
- Milosavljević, I.; El-Shafie, H.A.; Faleiro, J.R.; Hoddle, C.D.; Lewis, M.; Hoddle, M.S. Palmageddon: The wasting of ornamental palms by invasive palm weevils, Rhynchophorus spp. J. Pest Sci. 2019, 92, 143–156. [Google Scholar] [CrossRef]
- Gaertner, M.; Wilson, J.R.U.; Cadotte, M.W.; MacIvor, J.S.; Zenni, R.D.; Richardson, D.M. Non-native species in urban environments: Patterns, processes, impacts and challenges. Biol. Invasions 2017, 19, 3461–3469. [Google Scholar] [CrossRef] [Green Version]
- Villamagna, A.M.; Murphy, B.R. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): A review. Freshw. Biol. 2010, 55, 282–298. [Google Scholar] [CrossRef]
- House, A.P.N.; Ring, J.G.; Shaw, P.P. Inventive nesting behaviour in the keyhole wasp Pachodynerus nasidens Latreille (Hymenoptera: Vespidae) in Australia, and the risk to aviation safety. PLoS ONE 2020, 15, e0242063. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Chiu, C.C.; Chang, H.S.; Kao, Y.H.; Hsiao, P.J.; Chuu, C.P. Comparison of clinical manifestations, treatments, and outcomes between Vespidae sting and Formicidae sting patients in the emergency department in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 6162. [Google Scholar] [CrossRef]
- Matsuura, M. Edible Wasps—Insect Food Culture Visitation; Hokkaido University Press: Sapporo, Japan, 2002; p. 356. [Google Scholar]
- Hozumi, S.; Yamane, S. Incubation ability of the functional envelope in paper wasp nests (Hymenopteta, Vespidae, Polistes): I. field measurements of nest temperature using paper models. J. Ethol. 2001, 19, 39–46. [Google Scholar] [CrossRef]
- Starr, C.K. The social wasps (Hymenoptera: Vespidae) of Taiwan. Bull. Nat. Mus. Nat. Sci. 1992, 3, 93–138. [Google Scholar]
- Kojima, J.I.; Saito, F.; Nguyen, L.T.P. On the species-group taxa of Taiwanese social wasps (Hymenoptera: Vespidae) described and/or treated by J. Sonan. Zootaxa 2011, 2920, 42–64. [Google Scholar] [CrossRef] [Green Version]
- Poidatz, J.; Monceau, K.; Bonnard, O.; Thiéry, D. Activity rhythm and action range of workers of the invasive hornet predator of honeybees Vespa velutina, measured by radio frequency identification tags. Ecol. Evol. 2018, 8, 7588–7598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monceau, K.; Bonnard, O.; Moreau, J.; Thiery, D. Spatial distribution of Vespa velutina individuals hunting at domestic honeybee hives: Heterogeneity at a local scale. Insect Sci. 2014, 21, 765–774. [Google Scholar] [CrossRef]
- Lasram, F.B.R.; Guilhaumon, F.; Albouy, C.; Somot, S.; Thuiller, W.; Mouillot, D. The Mediterranean Sea as a ‘cul-de-sac’ for endemic fishes facing climate change. Glob. Change Biol. 2010, 16, 3233–3245. [Google Scholar] [CrossRef]
- Bessa, A.S.; Carvalho, J.; Gomes, A.; Santarém, F. Climate and land-use drivers of invasion: Predicting the expansion of Vespa velutina nigrithorax into the Iberian Peninsula. Insect Conserv. Diver. 2016, 9, 27–37. [Google Scholar] [CrossRef]
- Lioy, S.; Manino, A.; Porporato, M.; Laurino, D.; Romano, A.; Capello, M.; Bertolino, S. Establishing surveillance areas for tackling the invasion of Vespa velutina in outbreaks and over the border of its expanding range. NeoBiota 2019, 46, 51–69. [Google Scholar] [CrossRef]
Species City/County | Locality | Year, Date | Collection Site | GenBank Accession Number | ||
---|---|---|---|---|---|---|
Attacking Bees in Apiaries | Visiting Flowers | Own Nests | ||||
Vespa bicolor | ||||||
Taoyuan | Daxi | 17 July 2020 | MW455072 | |||
Fuxing | 29 August 2020 | MW455074 | ||||
Hsinchu | Beipu | 15 November 2019 | MW455066 | |||
Beipu | 17 July 2020 | MW455071 | ||||
Guanxi | 22 July 2019 | MW455065 | ||||
Guanxi | 10 August 2020 | MW455073 | ||||
Hengshan | 22 October 2020 | MW455078 | ||||
Hengshan | 13 January 2016 | MW455082 | ||||
Hengshan | 13 January 2016 | MW455083 | ||||
Qionglin | 4 November 2018 | MW455081 | ||||
Wufeng | 9 September 2020 | MW455076 | ||||
Xinpu | 30 October 2020 | MW455079 | ||||
Zhudong | 3 January 2020 | MW455068 | ||||
Miaoli | Sanwan | 16 November 2017 | MW455084 | |||
Sanyi | 3 January 2020 | MW455067 | ||||
Tongluo | 16 August 2019 | MW455061 | ||||
Tongluo | 2 August 2019 | MW455062 | ||||
Tongluo | 18 September 2019 | MW455063 | ||||
Tongluo | 16 July 2020 | MW455069 | ||||
Tongluo | 16 July 2020 | MW455070 | ||||
Tongluo | 19 August 2020 | MW455075 | ||||
Tongluo | 30 October 2020 | MW455080 | ||||
Touwu | 30 October 2020 | MW455077 |
City/County | Locality | Survey Year | Hornet Trap | Occurrence |
---|---|---|---|---|
Taoyuan City | Daxi | 2020 | No | ○ |
Fuxing | 2020 | No | ○ | |
Hsinchu County | Beipu | 2019–2020 | Yes | ○ |
Guanxi | 2019 | Yes | △ | |
Hengshan | 2020 | No | ○ | |
Xinpu | 2020 | Yes | ○ | |
Miaoli County | Dahu | 2020 | No | △ |
Tongluo | 2019–2020 | Yes | ○ | |
Tongxiao | 2019 | Yes | — | |
Taichung City | Houli | 2020 | No | — |
South District | 2020 | Yes | △ | |
Wufeng | 2020 | Yes | — | |
Nantou County | Guoxing | 2020 | No | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.-S.; Takahashi, J.; Yeh, W.-C.; Lu, M.-L.; Huang, J.-Y.; Lin, Y.-J.; Sung, I.-H. Evidence for Range Expansion and Origins of an Invasive Hornet Vespa bicolor (Hymenoptera, Vespidae) in Taiwan, with Notes on Its Natural Status. Insects 2021, 12, 320. https://doi.org/10.3390/insects12040320
Lu S-S, Takahashi J, Yeh W-C, Lu M-L, Huang J-Y, Lin Y-J, Sung I-H. Evidence for Range Expansion and Origins of an Invasive Hornet Vespa bicolor (Hymenoptera, Vespidae) in Taiwan, with Notes on Its Natural Status. Insects. 2021; 12(4):320. https://doi.org/10.3390/insects12040320
Chicago/Turabian StyleLu, Sheng-Shan, Junichi Takahashi, Wen-Chi Yeh, Ming-Lun Lu, Jing-Yi Huang, Yi-Jing Lin, and I-Hsin Sung. 2021. "Evidence for Range Expansion and Origins of an Invasive Hornet Vespa bicolor (Hymenoptera, Vespidae) in Taiwan, with Notes on Its Natural Status" Insects 12, no. 4: 320. https://doi.org/10.3390/insects12040320
APA StyleLu, S.-S., Takahashi, J., Yeh, W.-C., Lu, M.-L., Huang, J.-Y., Lin, Y.-J., & Sung, I.-H. (2021). Evidence for Range Expansion and Origins of an Invasive Hornet Vespa bicolor (Hymenoptera, Vespidae) in Taiwan, with Notes on Its Natural Status. Insects, 12(4), 320. https://doi.org/10.3390/insects12040320