Sexual Dimorphism and Morphological Modularity in Acanthoscelides obtectus (Say, 1831) (Coleoptera: Chrysomelidae): A Geometric Morphometric Approach
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Species—Seed Beetle (Acanthoscelides obtectus), Laboratory Population and Rearing Conditions
2.2. Collection of Samples
2.3. Landmark Data
2.4. Geometric Morphometric Analyses
2.4.1. Analyses of Size and Shape Variation Patterns
2.4.2. Analyses of Shape Covariation Patterns
3. Results
3.1. Sexual Dimorphism in Size and Shape
3.2. Modularity
4. Discussion
4.1. Morphological Variation and Sexual Dimorphism in Size and Shape
4.2. Modularity
5. Conclusions
- Female-biased size dimorphism in seed beetle (Acanthoscelides obtectus) laboratory population is affected by both life-history and sexual selection.
- Females have shorter and wider abdomens compared to more elongated abdomens in males.
- By testing the modularity hypothesis it was confirmed that female and male body is compartmentalized into two functional modules: thorax and abdomen. The integration of the abdomen in males is dependent on their size, indicating the more prominent role of sexual selection. On the other hand, strong modularity in females, regardless of size, is the result of strong natural selection on reproductive function.
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Ofuya, T.I.; Credland, P.F. Differences in the susceptibility of seeds of selected varieties of cowpea to Bruchidius atrolineatus (Coleoptera: Bruchidae). Bull. Entomol. Res. 1995, 85, 259–265. [Google Scholar] [CrossRef]
- Stillwell, R.C.; Fox, C.W. Environmental effects on sexual size dimorphism of a seed-feeding beetle. Oecologia 2007, 153, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Stillwell, R.C.; Moya-Laraño, J.; Fox, C.W. Selection does not favor larger body size at lower temperature in a seed—Feeding beetle. Evol. Int. J. Org. Evol. 2008, 62, 2534–2544. [Google Scholar] [CrossRef] [Green Version]
- Messina, F.J. Predictable modification of body size and competitive ability following a host shift by a seed beetle. Evolution 2004, 58, 2788–2797. [Google Scholar] [CrossRef] [PubMed]
- Benítez, H.A.; Avaria-Llautureo, J.; Canales-Aguirre, C.B.; Jerez, V.; Parra, L.E.; Hernandez, C.E. Evolution of sexual size dimorphism and its relationship with sex ratio in carabid beetles of Genus Ceroglossus Solier. Curr. Zool. 2013, 59, 769–777. [Google Scholar] [CrossRef]
- Colgoni, A.; Vamosi, S.M. Sexual dimorphism and allometry in two seed beetles (Coleoptera: Bruchidae). Entomol. Sci. 2006, 9, 171–179. [Google Scholar] [CrossRef]
- Vesović, N.; Ivanović, A.; Ćurčić, S. Sexual size and shape dimorphism in two ground beetle taxa, Carabus (Procrustes) coriaceus cerisyi and C. (Morphocarabus) kollari praecellens (Coleoptera: Carabidae)—A geometric morphometric approach. Arthropod Struct. Dev. 2019, 49, 1–9. [Google Scholar] [CrossRef]
- Honěk, A. Intraspecific variation in body size and fecundity in insects: A general relationship. Oikos 1993, 66, 483–492. [Google Scholar] [CrossRef]
- Fox, C.W.; Czesak, M.E. Selection on body size and sexual size dimorphism differs between host species in a seed—Feeding beetle. J. Evol. Biol. 2006, 19, 1167–1174. [Google Scholar] [CrossRef]
- Benítez, H.A.; Sukhodolskaya, R.A.; Órdenes-Clavería, R.; Avtaeva, T.A.; Kushalieva, S.A.; Saveliev, A.A. Measuring the inter and intraspecific sexual shape dimorphism and body shape variation in generalist ground geetles in Russia. Insects 2020, 11, 361. [Google Scholar] [CrossRef]
- Espinoza-Donoso, S.; Angulo-Bedoya, M.; Lemic, D.; Benítez, H.A. Assessing the influence of allometry on sexual and non-sexual traits: An example in Cicindelidia trifasciata (Coleoptera: Cicindelinae) using geometric morphometrics. Zool. Anz. 2020, 5, 9. [Google Scholar] [CrossRef]
- Olson, E.C.; Miller, R.L. Morphological Integration; University of Chicago Press: Chicago, IL, USA, 1999. [Google Scholar]
- Klingenberg, C.P. Developmental constraints, modules, and evolvability. In Variation; Hallgrímsson, H., Hall, B., Eds.; Academic Press: Cambridge, MA, USA, 2005; pp. 219–247. [Google Scholar]
- Klingenberg, C.P. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Abadías, N.; Esparza, M.; Sjøvold, T.; González-José, R.; Santos, M.; Hernández, M.; Klingenberg, C.P. Pervasive genetic integration directs the evolution of human skull shape. Evol. Int. J. Org. Evol. 2012, 66, 1010–1023. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.P.; Marugán-Lobón, J. Evolutionary covariation in geometric morphometric data: Analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 2013, 62, 591–610. [Google Scholar] [CrossRef]
- Mitteroecker, P.; Bookstein, F. The conceptual and statistical relationship between modularity and morphological integration. Syst. Biol. 2007, 56, 818–836. [Google Scholar] [CrossRef] [PubMed]
- Zelditch, M.L.; Swiderski, D.L.; Sheets, H.D. Geometric Morphometrics for Biologists: A Primer; Academic Press: Cambridge, MA USA, 2012. [Google Scholar]
- Hansen, T.F. Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems 2003, 69, 83–94. [Google Scholar] [CrossRef]
- Griswold, C.K. Pleiotropic mutation, modularity and evolvability. Evol. Dev. 2006, 8, 81–93. [Google Scholar] [CrossRef]
- Talarico, F.; Brandmayr, P.; Giglio, A.; Massolo, A.; Brandmayr, T.Z. Morphometry of eyes, antennae and wings in three species of Siagona (Coleoptera, Carabidae). Zookeys 2011, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frantsevich, L.; Gorb, S.; Radchenko, V.; Gladun, D.; Polilov, A. Lehr’s fields of campaniform sensilla in beetles (Coleoptera): Functional morphology. I. General part and allometry. Arthropod Struct. Dev. 2014, 43, 523–535. [Google Scholar] [CrossRef]
- Boggs, C.L. Selection pressures affecting male nutrient investment at mating in heliconiine butterflies. Evolution 1981, 35, 931–940. [Google Scholar] [CrossRef]
- Moya-Laraño, J.; Fox, C.W. Ejaculate size, second male size, and moderate polyandry increase female fecundity in a seed beetle. Behav. Ecol. 2006, 17, 940–946. [Google Scholar] [CrossRef] [Green Version]
- Haines, C.P. Insects and Arachnids of Tropical Stored Products: Their Biology and Identification (a Training Manual), 2nd ed.; Natural Resources Inst.: Chatham, Medway, UK, 1991. [Google Scholar]
- Halstead, D.G.H. External sex differences in stored-products Coleoptera. Bull. Entomol. Res. 1963, 54, 119–134. [Google Scholar] [CrossRef]
- Klingenberg, C.P.; Barluenga, M.; Meyer, A. Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution 2002, 56, 1909–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, S.J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 1966, 41, 587–638. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.P. Morphometric integration and modularity in configurations of landmarks: Tools for evaluating a priori hypotheses. Evol. Dev. 2009, 11, 405–421. [Google Scholar] [CrossRef] [Green Version]
- Klingenberg, C.P. Evolution and development of shape: Integrating quantitative approaches. Nat. Rev. Genet. 2010, 11, 623–635. [Google Scholar] [CrossRef]
- Dryden, I.L.; Mardia, K.V. Statistical Shape Analysis: With Applications in R; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Rohlf, F.J. tpsDig, Version 2.10; Informer Technologies Inc.: Los Angeles, CA, USA, 2006. [Google Scholar]
- SAS Institute Inc. The SAS System for Windows; Release 9.9; SAS Institute: Cary, NC, USA, 2010. [Google Scholar]
- Monteiro, L.R. Multivariate regression models and geometric morphometrics: The search for causal factors in the analysis of shape. Syst. Biol. 1999, 48, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Klingenberg, C.P.; McIntyre, G.S. Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 1998, 52, 1363–1375. [Google Scholar] [CrossRef]
- Robert, P.; Escoufier, Y. A unifying tool for linear multivariate statistical methods: The RV-coefficient. J. R. Stat. Soc. Ser. C 1976, 25, 257–265. [Google Scholar] [CrossRef]
- Klingenberg, C.P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357. [Google Scholar] [CrossRef]
- Steiger, S. Bigger mothers are better mothers: Disentangling size-related prenatal and postnatal maternal effects. Proc. R. Soc. B Biol. Sci. 2013, 280, 1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, M. Sexual Selection; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Bonsignore, C.P.; Jones, T.M. Aggregation and mating success of Capnodis tenebrionis (Coleoptera: Buprestidae). Insect Sci. 2013, 21, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Šešlija, D.; Tucić, N. Selection for developmental time in bean weevil (Acanthoscelides obtectus): Correlated responses for other life history traits and genetic architecture of line differentiation. Entomol. Exp. Appl. 2003, 106, 19–35. [Google Scholar] [CrossRef]
- Đorđević, M.; Savković, U.; Lazarević, J.; Tucić, N.; Stojković, B. Intergenomic interactions in hybrids between short-lived and long-lived lines of a seed beetle: Analyses of life history traits. Evol. Biol. 2015, 42, 461–472. [Google Scholar] [CrossRef]
- Rutowski, R.L. Epigamic selection by males as evidenced by courtship partner preferences in the checkered white butterfly (Pieris protodice). Anim. Behav. 1982, 30, 108–112. [Google Scholar] [CrossRef]
- Sigurjonsdottir, H.; Snorrason, S.S. Distribution of male yellow dungflies around ovipasition sites: The effect of body size. Ecol. Entomol. 1995, 20, 84–90. [Google Scholar] [CrossRef]
- Uhl, G. Mating behaviour in the cellar spider, Pholcus phalangioides, indicates sperm mixing. Anim. Behav. 1998, 56, 1155–1159. [Google Scholar] [CrossRef] [Green Version]
- Zonneveld, C. Being big or emerging early? Polyandry and the trade-off between size and emergence in male butterflies. Am. Nat. 1996, 147, 946–965. [Google Scholar] [CrossRef]
- Stojković, B.; Jovanović, D.Š.; Perovanović, J.; Tucić, N. Sexual activity and reproductive isolation between age-specific selected populations of seed beetle. Ethology 2011, 117, 812–821. [Google Scholar] [CrossRef]
- Rönn, J.; Katvala, M.; Arnqvist, G. Coevolution between harmful male genitalia and female resistance in seed beetles. Proc. Natl. Acad. Sci. USA 2007, 104, 10921–10925. [Google Scholar] [CrossRef] [Green Version]
- Maklakov, A.A.; Kremer, N.; Arnquist, G. The effects of age at mating on female life-history traits in a seed beetle. Behav. Ecol. 2007, 18, 551–555. [Google Scholar] [CrossRef] [Green Version]
- Cepeda-Pizarro, J.; Vásquez, H.; Veas, H.; Colon, G.O. Relaciones entre tamaño corporal y biomasa en adultos de Tenebrionidae (Coleoptera) de la estepa costera del margen meridional del desierto chileno. Rev. Chil. Hist. Nat. 1996, 69, 67–76. [Google Scholar]
- Alibert, P.; Moureau, B.; Dommergues, J.; David, B. Differentiation at a microgeographical scale within two species of ground beetle, Carabus auronitens and C. nemoralis (Coleoptera, Carabidae): A geometrical morphometric approach. Zool. Scr. 2001, 30, 299–311. [Google Scholar] [CrossRef]
- Düngelhoef, S.; Schmitt, M. Genital feelers: The putative role of parameres and aedeagal sensilla in Coleoptera Phytophaga (Insecta). Genetica 2010, 138, 45. [Google Scholar] [CrossRef]
- Blanckenhorn, W.U.; Kraushaar, U.; Reim, C. Sexual selection on morphological and physiological traits and fluctuating asymmetry in the yellow dung fly. J. Evol. Biol. 2003, 16, 903–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molet, M.; Wheeler, D.E.; Peeters, C. Evolution of novel mosaic castes in ants: Modularity, phenotypic plasticity, and colonial buffering. Am. Nat. 2012, 180, 328–341. [Google Scholar] [CrossRef] [Green Version]
- Benítez, H.A.; Vidal, M.; Briones, R.; Jerez, V. Sexual dimorphism and morphological variation in populations of Ceroglossus chilensis (Eschscholtz, 1829) (Coleoptera, Carabidae). J. Entomol. Res. Soc. 2010, 12, 87–95. [Google Scholar]
- Sasakawa, K. Utility of geometric morphometrics for inferring feeding habit from mouthpart morphology in insects: Tests with larval Carabidae (Insecta: Coleoptera). Biol. J. Linn. Soc. 2016, 118, 394–409. [Google Scholar] [CrossRef]
- Benítez, H.A.; Lemic, D.; Bažok, R.; Gallardo-Araya, C.M.; Mikac, K.M. Evolutionary directional asymmetry and shape variation in Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae): An example using hind wings. Biol. J. Linn. Soc. 2014, 111, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Klingenberg, C.P.; Badyaev, A.V.; Sowry, S.M.; Beckwith, N.J. Inferring developmental modularity from morphological integration: Analysis of individual variation and asymmetry in bumblebee wings. Am. Nat. 2001, 157, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Blanke, A. Analysis of modularity and integration suggests evolution of dragonfly wing venation mainly in response to functional demands. J. R. Soc. Interface 2018, 15, 0277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, T.F.; Houle, D. Evolvability, stabilizing selection, and problem of stasis. In Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes; Pigliucci, M., Preston, K., Eds.; Oxford University Press: Oxford, UK, 2004; pp. 130–150. [Google Scholar]
- Muto, L.; Kamimura, Y.; Tanaka, K.M.; Takahashi, A. An innovative ovipositor for niche exploitation impacts genital coevolution between sexes in a fruit-damaging Drosophila. Proc. R. Soc. B Biol. Sci. 2018, 285, 1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genevcius, B.C.; Simon, M.N.; Moraes, T.; Schwertner, C.F. Copulatory function and development shape modular architecture of genitalia differently in males and females. Evolution 2020, 74, 1048–1062. [Google Scholar] [CrossRef] [PubMed]
Landmark Number | Landmark Position |
---|---|
1. | Point on the top of pronotum |
2. | Leftmost point on pronotum |
3. | Rightmost point on pronotum |
4. | Highest point on mesosternum on left side |
5. | Highest point on mesosternum on right side |
6. | Point on top of metasternum on left side |
7. | Point on top of metasternum on right side |
8. | Point on bottom of metacoxa on left side |
9. | Point on bottom of metacoxa on right side |
10. | Point on metacoxa and metasternum joining on left side |
11. | Point on metacoxa and metasternum joining on right side |
12. | Center of metathorax |
13. | Point on the top of 1st sternite |
14. | Leftmost point on 1st and 2nd sternite joining |
15. | Rightmost point on 1st and 2nd sternite joining |
16. | Leftmost point on 2nd and 3rd sternite joining |
17. | Rightmost point on 2nd and 3rd sternite joining |
18. | Leftmost point on 3rd and 4th sternite joining |
19. | Rightmost point on 3rd and 4th sternite joining |
20. | Leftmost point on 4th and 5th sternite joining |
21. | Rightmost point on 4th and 5th sternite joining |
22. | Point on half on 5th sternite bottom margin |
Eigenvalues | % Variance | Cumulative % | |
---|---|---|---|
Females | |||
PC l | 0.00057 | 27.185 | 27.185 |
PC 2 | 0.00037 | 17.603 | 44.787 |
Total variance | 0.00208 | ||
Males | |||
PC l | 0.00089 | 31.681 | 31.681 |
PC 2 | 0.00073 | 25.533 | 57.214 |
Total variance | 0.00283 |
SS | MS | df | F | p | |
---|---|---|---|---|---|
Females | |||||
Individual | 0.46976 | 0.0001506 | 3120 | 3.31 | <0.0001 |
Error | 0.03758 | 0.0000060 | 6280 | ||
Males | |||||
Individual | 0.70243 | 0.0002251 | 3120 | 4.59 | <0.0001 |
Error | 0.02821 | 0.0000045 | 6280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budečević, S.; Savković, U.; Đorđević, M.; Vlajnić, L.; Stojković, B. Sexual Dimorphism and Morphological Modularity in Acanthoscelides obtectus (Say, 1831) (Coleoptera: Chrysomelidae): A Geometric Morphometric Approach. Insects 2021, 12, 350. https://doi.org/10.3390/insects12040350
Budečević S, Savković U, Đorđević M, Vlajnić L, Stojković B. Sexual Dimorphism and Morphological Modularity in Acanthoscelides obtectus (Say, 1831) (Coleoptera: Chrysomelidae): A Geometric Morphometric Approach. Insects. 2021; 12(4):350. https://doi.org/10.3390/insects12040350
Chicago/Turabian StyleBudečević, Sanja, Uroš Savković, Mirko Đorđević, Lea Vlajnić, and Biljana Stojković. 2021. "Sexual Dimorphism and Morphological Modularity in Acanthoscelides obtectus (Say, 1831) (Coleoptera: Chrysomelidae): A Geometric Morphometric Approach" Insects 12, no. 4: 350. https://doi.org/10.3390/insects12040350
APA StyleBudečević, S., Savković, U., Đorđević, M., Vlajnić, L., & Stojković, B. (2021). Sexual Dimorphism and Morphological Modularity in Acanthoscelides obtectus (Say, 1831) (Coleoptera: Chrysomelidae): A Geometric Morphometric Approach. Insects, 12(4), 350. https://doi.org/10.3390/insects12040350