Metapopulation Patterns of Iberian Butterflies Revealed by Fuzzy Logic
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Distribution Data and Explanatory Variables
2.3. Distribution Modelling
2.4. Metapopulation Structure
2.5. Connectivity Analysis
3. Results
4. Discussion
4.1. The Usefulness of Fuzzy Logic for Metapopulation Studies
4.2. Consequences for Conservation Planning
4.3. Implications for a Chorological Theory
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez, J. Ecología; Piramide: Madrid, Spain, 2010; ISBN 978-84-368-3591-5. [Google Scholar]
- Fernández-Chacón, A.; Stefanescu, C.; Genovart, M.; Nichols, J.D.; Hines, J.E.; Páramo, F.; Turco, M.; Oro, D. Determinants of extinction-colonization dynamics in Mediterranean butterflies: The role of landscape, climate and local habitat features. J. Anim. Ecol. 2014, 83, 276–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levins, R. Some mathematical questions in biology. In Lectures on Mathematics in the Life Sciences; Gerstenhaber, M., Ed.; American Mathematical Society: Providence, RI, USA, 1970; Volume 2, pp. 75–107. ISBN 978-0-8218-1152-8. [Google Scholar]
- Begon, M.; Townsend, C.R.; Harper, J.L. Ecology. From Individuals to Ecosystems; Blackwell Publishing Ltd.: Oxford, UK, 2006; ISBN 978-1-405-11117-1. [Google Scholar]
- Van Nouhuys, S. Metapopulation Ecology. In Encyclopedia of Life Science; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 1–9. [Google Scholar]
- Hanski, I.A. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly. Proc. Natl. Acad. Sci. USA 2011, 108, 14397–14404. [Google Scholar] [CrossRef] [Green Version]
- Hanski, I. Dynamics of regional distribution: The core and satellite species hypothesis. Oikos 1982, 38, 210–221. [Google Scholar] [CrossRef]
- Pulliam, H.R. Sources, sinks, and population regulation. Am. Nat. 1988, 132, 652–661. [Google Scholar] [CrossRef]
- Dias, P.C. Sources and sinks in population biology. Trends Ecol. Evol. 1996, 11, 326–330. [Google Scholar] [CrossRef]
- Hanski, I.; Thomas, C.D. Metapopulation dynamic and conservation: A spatially explicit model applied to butterflies. Biol. Conserv. 1994, 68, 167–180. [Google Scholar] [CrossRef]
- Moilanen, A.; Hanski, I. Metapopulation dynamics: Effects of habitat quality and landscape structure. Ecology 1998, 7, 2503–2515. [Google Scholar] [CrossRef]
- Hanski, I. Metapopulation dynamics: Does it help to have more of the same? Trends Ecol. Evol. 1989, 4, 113–114. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Real, R.; Barbosa, A.M.; Vargas, J.M. Obtaining environmental favourability functions from logistic regression. Environ. Ecol. Stat. 2006, 13, 237–245. [Google Scholar] [CrossRef]
- Chamorro, D.; Real, R.; Muñoz, A.R. Fuzzy sets allow gaging the extent and rate of species range shift due to climate change. Sci. Rep. 2020, 10, 16272. [Google Scholar] [CrossRef]
- Carmona, C.P.; Pärtel, M. Estimating probabilistic site-specific species pools and dark diversity from co-occurrence data. Glob. Ecol. Biogeogr. 2021, 30, 316–326. [Google Scholar] [CrossRef]
- Maes, D.; Van Dyck, H. Butterfly diversity loss in Flanders (north Belgium): Europe’s worst case scenario? Biol. Conserv. 2001, 99, 263–276. [Google Scholar] [CrossRef]
- Stefanescu, C.; Peñuelas, J.; Filella, I. Rapid changes in butterfly communities following the abandonment of grasslands: A case study. Insect Conserv. Divers. 2009, 2, 261–269. [Google Scholar] [CrossRef]
- Mattila, N.; Kaitala, V.; Komonen, A.; Päivinen, J.; Kotiaho, J. Ecological correlates of distribution change and range shift in butterflies. Insect Conserv. Divers. 2011, 4, 239–246. [Google Scholar] [CrossRef]
- Settele, J.; Kudrna, O.; Harpke, A.; Kühn, I.; van Swaay, C.; Verovnik, R.; Warren, M.; Wiemers, M.; Hanspach, J.; Hickler, T.; et al. Climatic risk atlas of european butterflies. BioRisk 2008, 1, 1–712. [Google Scholar] [CrossRef]
- Stefanescu, C.; Carnicer, J.; Peñuelas, J. Determinants of species richness in generalist and specialist Mediterranean butterflies: The negative synergistic forces of climate and habitat change. Ecography 2011, 34, 353–363. [Google Scholar] [CrossRef]
- Romo, H.; García-Barros, E.; Márquez, A.L.; Moreno, J.C.; Real, R. Effects of climate change on the distribution of ecologically interacting species: Butterflies and their main food plants in Spain. Ecography 2014, 37, 1063–1072. [Google Scholar] [CrossRef]
- Van Swaay, C.; Cuttelod, A.; Collins, S.; Maes, D.; López Munguira, M.; Šašić, M.; Settele, J.; Verovnik, R.; Verstrael, T.; Warren, M.; et al. European Red List of Butterfies; Publication Office of the European Union: Luxemburg, 2010; ISBN 9789279141515. [Google Scholar]
- Romo, H.; García-Barros, E.; Lobo, J.M. Identifying recorder-induced geographic bias in an Iberian butterfly database. Ecography 2006, 29, 873–885. [Google Scholar] [CrossRef]
- Romo, H.; García-Barros, E. Distribución e intensidad de los estudios faunísticos sobre mariposas diurnas en la Península Ibérica e Islas Baleares (Lepidoptera, Papilionoidea y Hesperioidea). Graellsia 2005, 61, 37–50. [Google Scholar] [CrossRef]
- Stefanescu, C.; Herrando, S.; Paramo, F. Butterfly species richness in the north-west Mediterranean Basin: The role of natural and human-induced factors. J. Biogeogr. 2004, 31, 905–915. [Google Scholar] [CrossRef]
- Romo, H.; Munguira, M.L.; García-Barros, E. Area selection for the conservation of butterflies in the Iberian Peninsula and Balearic Islands. Anim. Biodivers. Conserv. 2007, 30, 7–27. [Google Scholar]
- Romo, H.; Camero, R.E.; García-Barros, E.; Munguira, M.L.; Martín Cano, J. Recorded and potential distributions on the Iberian Peninsula of species of Lepidoptera listed in the Habitats Directive. Eur. J. Entomol. 2014, 111, 407–415. [Google Scholar] [CrossRef] [Green Version]
- Pulido-Pastor, A.; Márquez, A.L.; García-Barros, E.; Real, R. Identification of potential source and sink areas for butterflies on the Iberian Peninsula. Insect Conserv. Divers. 2018, 11, 479–492. [Google Scholar] [CrossRef] [Green Version]
- IGME. Mapa Geológico de la Península Ibérica, Baleares y Canarias a Escala 1/1.000.000. 2015. Available online: http://mapas.igme.es/ (accessed on 11 July 2016). (In Spanish).
- AEMET. IMP Atlas Climático Ibérico. Temperatura del Aire y Precipitación (1971–2000); Agencia Estatal de Meteorología, Ministerio de Medio Ambiente y Medio Rural: Madrid, Spain, 2011; ISBN 9788478370795. (in Spanish) [Google Scholar]
- García-Barros, E.; Munguira, M.L.; Cano, M.; Benito, R.; Garcia-pereira, P.; Maravalhas, E.S. Atlas of the butterflies of the Iberian Peninsula and Balearesic Islands (Lepidoptera: Papilionoidea & Hesperioidea). In Monografías de la Sociedad Entomológica Aragonesa (SEA); 2004; Volume 11, pp. 1–228. ISBN 8493280755. [Google Scholar]
- De Jong, Y.; Verbeek, M.; Michelsen, V.; de Place Bjørn, P.; Los, W.; Steeman, F.; Bailly, N.; Basire, C.; Chylarecki, P.; Stloukal, E.; et al. Fauna Europaea—all European animal species on the web. Biodivers. Data J. 2014, 2, e4034. [Google Scholar] [CrossRef] [Green Version]
- Wiemers, M.; Balletto, E.; Dincă, V.; Fric, Z.F.; Lamas, G.; Lukhtanov, V.; Munguira, M.L.; van Swaay, C.A.M.; Vila, R.; Vliegenthart, A.; et al. An updated checklist of the European Butterflies (Lepidoptera, Papilionoidea). Zookeys 2018, 811, 9–45. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, L.J.; Hughes, L.; Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Modell. 2005, 186, 251–270. [Google Scholar] [CrossRef]
- Parmesan, C.; Williams-Anderson, A.; Moskwik, M.; Mikheyev, A.S.; Singer, M.C. Endangered Quino checkerspot butterfly and climate change: Short-term success but long-term vulnerability? J. Insect Conserv. 2015, 19, 185–204. [Google Scholar] [CrossRef] [Green Version]
- Austin, M.P.; Van Niel, K.P. Improving species distribution models for climate change studies: Variable selection and scale. J. Biogeogr. 2011, 38, 1–8. [Google Scholar] [CrossRef]
- Márquez, A.L.; Real, R.; Olivero, J.; Estrada, A. Combining climate with other influential factors for modelling the impact of climate change on species distribution. Clim. Chang. 2011, 108, 135–157. [Google Scholar] [CrossRef]
- Stefanescu, C.; Torre, I.; Jubany, J.; Páramo, F. Recent trends in butterfly populations from north-east Spain and Andorra in the light of habitat and climate change. J. Insect Conserv. 2011, 15, 83–93. [Google Scholar] [CrossRef]
- Legendre, P. Spatial autocorrelation: Trouble or new paradigm? Ecology 1993, 74, 1659–1673. [Google Scholar] [CrossRef]
- Real, R.; Barbosa, A.M.; Porras, D.; Kin, M.S.; Márquez, A.L.; Guerrero, J.C.; Palomo, L.J.; Justo, E.R.; Vargas, J.M. Relative importance of environment, human activity and spatial situation in determining the distribution of terrestrial mammal diversity in Argentina. J. Biogeogr. 2003, 30, 939–947. [Google Scholar] [CrossRef]
- Storch, D.; Konvicka, M.; Benes, J.; Martinková, J.; Gaston, K.J. Distribution patterns in butterflies and birds of the Czech Republic: Separating effects of habitat and geographical position. J. Biogeogr. 2003, 30, 1195–1205. [Google Scholar] [CrossRef] [Green Version]
- US Geological Survey GTOPO30. Land Processes Distributed Active Archive Center (LPDAAC); EROS Data Center: Sioux Falls, SD, USA, 1996.
- HydroSHEDS Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales. Available online: https://www.hydrosheds.org/ (accessed on 4 March 2021).
- DERA Datos Espaciales de Referencia de Andalucía. Instituto de Estadística y Cartografía de Andalucía. Available online: https://www.juntadeandalucia.es/institutodeestadisticaycartografia/DERA/index.htm (accessed on 15 July 2016).
- ORNL LandScan 2000 Global Population Database version 1.2. Oak Ridge National Laboratory. Available online: http://web.ornl.gov/sci/landscan/landscan_data_avail.shtml.2001 (accessed on 15 May 2010).
- Nielsen, C.; Hartvig, P.; Kollmann, J. Predicting the distribution of the invasive alien Heracleum mantegazzianum at two different spatial scales. Divers. Distrib. 2008, 14, 307–317. [Google Scholar] [CrossRef]
- Williams-Tripp, M.; D’Amico, F.J.N.; Pagé, C.; Bertrand, A.; Némoz, M.; Brown, J.A. Modeling rare species distribution at the edge: The case for the vulnerable endemic Pyrenean Desman in France. Sci. World J. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Schueler, S.; Falk, W.; Koskela, J.; Lefèvre, F.; Bozzano, M.; Hubert, J.; Kraigher, H.; Longauer, R.; Olrik, D.C. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change. Glob. Chang. Biol. 2014, 20, 1498–1511. [Google Scholar] [CrossRef]
- Blasco-Costa, I.; Rouco, C.; Poulin, R. Biogeography of parasitism in freshwater fish: Spatial patterns in hot spots of infection. Ecography 2015, 38, 301–310. [Google Scholar] [CrossRef]
- Rosalino, L.M.; Guedes, D.; Cabecinha, D.; Serronha, A.; Grilo, C.; Santos-Reis, M.; Monterroso, P.; Carvalho, J.; Fonseca, C.; Pardavila, X.; et al. Climate and landscape changes as driving forces for future range shift in southern populations of the European badger. Sci. Rep. 2019, 9, 3155. [Google Scholar] [CrossRef] [Green Version]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2000; ISBN 0-471-35632-8. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Crawley, M.J. The R Book; John Wiley & Sons: Chichester, UK, 2007; ISBN 9780470510247. [Google Scholar]
- Barbosa, A.M.; Real, R. Favourable areas for expansion and reintroduction of Iberian lynx accounting for distribution trends and genetic variation of the wild rabbit. Wildl. Biol. Pract. 2010, 6. [Google Scholar] [CrossRef]
- Barbosa, A.M.; Real, R. Applying fuzzy logic to comparative distribution modelling: A case study with two sympatric amphibians. Sci. World J. 2012, 2012, 428206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, A.M. FuzzySim: Applying fuzzy logic to binary similarity indices in ecology. Methods Ecol. Evol. 2015, 6, 853–858. [Google Scholar] [CrossRef]
- Barbosa, A.M. FuzzySim: Fuzzy Similarity in Species Distributions. R Package Version 1.7/r79. Available online: https://r-forge.r-project.org/projects/fuzzysim/ (accessed on 13 October 2015).
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Barbosa, A.M.; Real, R.; Muñoz, A.R.; Brown, J.A. New measures for assessing model equilibrium and prediction mismatch in species distribution models. Divers. Distrib. 2013, 19, 1333–1338. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 41, 687–699. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- R Development Core Team R. A Language and Environment for Statistical Computing; R Foundation Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- Real, R.; Barbosa, A.M.; Bull, J.W. Species Distributions, Quantum Theory, and the Enhancement of Biodiversity Measures. Syst. Biol. 2017, 66, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Estrada, A.; Real, R.; Vargas, J.M. Using crisp and fuzzy modelling to identify favourability hotspots useful to perform gap analysis. Biodivers. Conserv. 2008, 17, 857–871. [Google Scholar] [CrossRef] [Green Version]
- Sarà, M. Spatial analysis of lanner falcon habitat preferences: Implications for agro-ecosystems management at landscape scale and raptor conservation. Biol. Conserv. 2014, 178, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Hanski, I. Single-species metapopulation dynamics: Concepts, models and observations. Biol. J. Linn. Soc. 1991, 42, 17–38. [Google Scholar] [CrossRef]
- Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 1969, 15, 237–240. [Google Scholar] [CrossRef]
- Jules, E.S.; Shahani, P. A broader ecological context to habitat fragmentation: Why matrix habitat is more important than we thought. J. Veg. Sci. 2003, 14, 459–464. [Google Scholar] [CrossRef]
- Baum, K.A.; Haynes, K.J.; Dillemuth, F.P.; Cronin, J.T. The matrix enhances the effectiveness of corridors and stepping stones. Ecology 2004, 85, 2671–2676. [Google Scholar] [CrossRef]
- Haynes, K.J.; Dillemuth, F.P.; Anderson, B.J.; Hakes, A.S.; Jackson, H.B.; Elizabeth Jackson, S.; Cronin, J.T. Landscape context outweighs local habitat quality in its effects on herbivore dispersal and distribution. Oecologia 2007, 151, 431–441. [Google Scholar] [CrossRef]
- Olaya, V. Sistemas de Información Geográfica. 2014. Available online: http://volaya.github.io/libro-sig/index.html (accessed on 2 December 2019). (in Spanish).
- Yu, C.; Lee, J.; Mundro-Stasiuk, M.J. Extensions to least-cost path algorithms for roadway planning. Int. J. Geogr. Inf. Sci. 2003, 17, 361–376. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Found Project. Available online: www.qgis.org/ (accessed on 10 January 2015).
- Acevedo, P.; Real, R. Favourability: Concept, distinctive characteristics and potential usefulness. Naturwissenschaften 2012, 99, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Hanski, I.; Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain. Biol. J. Linn. Soc. 1991, 42, 3–16. [Google Scholar] [CrossRef]
- Vandermeer, J.; Carvajal, R. Metapopulation dynamics and the quality of the matrix. Am. Nat. 2001, 158, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Prevedello, J.A.; Vieira, M.V. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 2010, 19, 1205–1223. [Google Scholar] [CrossRef]
- Wilson, R.J.; Davies, Z.G.; Thomas, C.D. Linking habitat use to range expansion rates in fragmented landscapes: A metapopulation approach. Ecography 2010, 33, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Hanski, I. Metapopulation dynamics. Nature 1998, 396, 41–49. [Google Scholar] [CrossRef]
- Romo, H.; Silvestre, M.; Munguira, M.L. Potential distribution models and the effect of climatic change on the distribution of Phengaris nausithous considering its food plant and host ants. J. Insect Conserv. 2015, 19, 1101–1118. [Google Scholar] [CrossRef]
- Cristoffer, C.; Peres, C.A. Elephants versus butterflies: The ecological role of large herbivores in the evolutionary history of two tropical worlds. J. Biogeogr. 2003, 30, 1357–1380. [Google Scholar] [CrossRef] [Green Version]
- Rojas, A.B.; Cotilla, I.; Palomo, J.; Real, R. Determinación de las áreas probables de distribución de los mamíferos terrestres en la provincia de Málaga. Galemys 2001, 13, 217–229. (In Spanish) [Google Scholar]
- Pärtel, M.; Szava-Kovats, R.; Zobel, M. Dark diversity: Shedding light on absent species. Trends Ecol. Evol. 2011, 26, 124–128. [Google Scholar] [CrossRef]
- Mokany, K.; Paini, D.R. Dark diversity: Adding the grey. Trends Ecol. Evol. 2011, 26, 264–265. [Google Scholar] [CrossRef]
- Ricketts, T.H. The matrix matters: Effective isolation in fragmented landscapes. Am. Nat. 2001, 158, 87–99. [Google Scholar] [CrossRef]
- Carter, R.; Prince, S. Epidemic models used to explain biogeographical distribution limits. Nature 1981, 293, 644–645. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulido-Pastor, A.; Márquez, A.L.; Guerrero, J.C.; García-Barros, E.; Real, R. Metapopulation Patterns of Iberian Butterflies Revealed by Fuzzy Logic. Insects 2021, 12, 392. https://doi.org/10.3390/insects12050392
Pulido-Pastor A, Márquez AL, Guerrero JC, García-Barros E, Real R. Metapopulation Patterns of Iberian Butterflies Revealed by Fuzzy Logic. Insects. 2021; 12(5):392. https://doi.org/10.3390/insects12050392
Chicago/Turabian StylePulido-Pastor, Antonio, Ana Luz Márquez, José Carlos Guerrero, Enrique García-Barros, and Raimundo Real. 2021. "Metapopulation Patterns of Iberian Butterflies Revealed by Fuzzy Logic" Insects 12, no. 5: 392. https://doi.org/10.3390/insects12050392
APA StylePulido-Pastor, A., Márquez, A. L., Guerrero, J. C., García-Barros, E., & Real, R. (2021). Metapopulation Patterns of Iberian Butterflies Revealed by Fuzzy Logic. Insects, 12(5), 392. https://doi.org/10.3390/insects12050392