Compass Cue Integration and Its Relation to the Visual Ecology of Three Tribes of Ball-Rolling Dung Beetles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of Dung Beetle Species
2.2. Collection and Maintenance of Animals
2.3. Determining Habitat Preference and Eye Size of the Dung Beetles
2.3.1. Habitat Preference
2.3.2. Statistical Analysis of Habitat Preference
2.3.3. Eye Size
2.4. Behavioural Experiments
2.4.1. Orientation Performance of Dung Beetles
2.4.2. Relative Weighting of Directional Cues in the Orientation System of Dung Beetles
2.4.3. Manipulation of Directional Input
2.4.4. Circular Statistics
3. Results
3.1. Habitat Preference
3.2. Differences in Eye Size and Shape
3.3. Orientation Performance under the Natural Sky Is Equal for All Species
3.4. Ball-Rolling Dung Beetles Can Orient to a Single Green Light Spot
3.5. The Role of the Sun in the Orientation System of Ball-Rolling Dung Beetles
3.6. The Role of Polarised Light in the Orientation System of Ball-Rolling Dung Beetles
3.7. The Combined Role of Sun and Polarised Skylight in the Orientation System of Garreta Unicolor and G. nitens
4. Discussion
4.1. Diurnal Scarabaeini Attribute the Greatest Relative Weight to the Directional Information Provided by the Sun
4.2. Sisyphus fasciculatus Attributes Greatest Relative Weight to the Directional Information Provided by the Celestial Polarisation Pattern
4.3. A Different Weighting of Directional Reference Cues in Garreta Species
4.4. Compass Cue Integration and Its Relation to the Visual Ecology of Ball-Rolling Dung Beetles
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dacke, M.; Bell, A.T.A.; Foster, J.J.; Baird, E.J.; Strube-Bloss, M.F.; Byrne, M.J.; el Jundi, B. Multimodal cue integration in the dung beetle compass. Proc. Natl. Acad. Sci. USA 2019, 116, 14248–14253. [Google Scholar] [CrossRef] [Green Version]
- Buehlmann, C.; Mangan, M.; Graham, P. Multimodal interactions in insect navigation. Anim. Cogn. 2020, 23, 1129–1141. [Google Scholar] [CrossRef] [Green Version]
- Guerra, P.A.; Gegear, R.J.; Reppert, S.M. A magnetic compass aids monarch butterfly migration. Nat. Commun. 2014, 5, 4164. [Google Scholar] [CrossRef] [Green Version]
- Frye, M.A.; Tarsitano, M.; Dickinson, M.H. Odor localization requires visual feedback during free flight in Drosophila melanogaster. J. Exp. Biol. 2003, 206, 843–855. [Google Scholar] [CrossRef] [Green Version]
- Ostwald, M.M.; Shaffer, Z.; Pratt, S.C.; Fewell, J.H. Multimodal cues facilitate nest recognition in carpenter bee aggregations. Anim. Behav. 2019, 155, 45–51. [Google Scholar] [CrossRef]
- Dreyer, D.; Frost, B.; Mouritsen, H.; Günther, A.; Green, K.; Whitehouse, M.; Johnsen, S.; Heinze, S.; Warrant, E. The Earth’s magnetic field and visual landmarks steer migratory flight behavior in the nocturnal Australian bogong moth. Curr. Biol. 2018, 28, 2160–2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, K.; Shettleworth, S.J.; Huttenlocher, J.; Rieser, J.J. Bayesian integration of spatial information. Psychol. Bull. 2007, 133, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Perez, S.; Taylor, O.; Jander, R. A sun compass in monarch butterflies. Nature 1997, 387. [Google Scholar] [CrossRef]
- Reppert, S.M.; Zhu, H.; White, R.H. Polarized light helps monarch butterflies navigate. Curr. Biol. 2004, 14, 155–158. [Google Scholar] [CrossRef]
- Heinze, S.; Reppert, S.M. Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 2011, 69, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Froy, O.; Gotter, A.L.; Casselman, A.L.; Reppert, S.M. Illuminating the circadian clock in monarch butterfly migration. Science 2003, 300, 1303–1305. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Wehner, R. Wind and sky as compass cues in desert ant navigation. Naturwissenschaften 2007, 94, 589–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wystrach, A.; Mangan, M.; Webb, B. Optimal cue integration in ants. Proc. R. Soc. B 2015, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruck, J.N.; Allen, N.A.; Brass, K.E.; Horn, B.A.; Campbell, P. Species differences in egocentric navigation: The effect of burrowing ecology on a spatial cognitive trait in mice. Anim. Behav. 2017, 127, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Odling-Smee, L.C.; Boughman, J.W.; Braithwaite, V.A. Sympatric species of three-spine stickleback differ in their performance in a spatial learning task. Behav. Ecol. Sociobiol. 2008, 62, 1935–1945. [Google Scholar] [CrossRef]
- Kimchi, T.; Terkel, J. Spatial learning and memory in the blind mole-rat in comparison with the laboratory rat and Levant vole. Anim. Behav. 2001, 61, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Beugnon, G.; Lachaud, J.-P.; Chagné, P. Use of long-term stored vector information in the neotropical ant Gigantiops destructor. J. Insect. Behav. 2005, 18, 415–432. [Google Scholar] [CrossRef]
- Cheng, K.; Middleton, E.J.T.; Wehner, R. Vector-based and landmark-guided navigation in desert ants of the same species inhabiting landmark-free and landmark-rich environments. J. Exp. Biol. 2012, 215, 3169–3174. [Google Scholar] [CrossRef] [Green Version]
- Bühlmann, C.; Cheng, K.; Wehner, R. Vector-based and landmark-guided navigation in desert ants inhabiting landmark-free and landmark-rich environments. J. Exp. Biol. 2011, 214, 2845–2853. [Google Scholar] [CrossRef] [Green Version]
- Schultheiss, P.; Stannard, T.; Pereira, S.; Reynolds, A.M.; Wehner, R.; Cheng, K. Similarities and differences in path integration and search in two species of desert ants inhabiting a visually rich and a visually barren habitat. Behav. Ecol. Sociobiol. 2016, 70, 1319–1329. [Google Scholar] [CrossRef] [Green Version]
- El Jundi, B.; Warrant, E.J.; Byrne, M.J.; Khaldy, L.; Baird, E.; Smolka, J.; Dacke, M. Neural coding underlying the cue preference for celestial orientation. Proc. Natl. Acad. Sci. USA 2015, 112, 11395–11400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baird, E.; Byrne, M.J.; Scholtz, C.H.; Warrant, E.J.; Dacke, M. Bearing selection in ball-rolling dung beetles: Is it constant? J. Comp. Physiol. A 2010, 196, 801–806. [Google Scholar] [CrossRef]
- Dacke, M.; el Jundi, B.; Smolka, J.; Byrne, M.; Baird, E. The role of the sun in the celestial compass of dung beetles. Phil. Trans. R. Soc. B 2014, 369. [Google Scholar] [CrossRef] [Green Version]
- Byrne, M.; Dacke, M.; Nordström, P.; Scholtz, C.; Warrant, E. Visual cues used by ball-rolling dung beetles for orientation. J. Comp. Physiol. A 2003, 189, 411–418. [Google Scholar] [CrossRef]
- Dacke, M.; Byrne, M.J.; Baird, E.; Scholtz, C.H.; Warrant, E.J. How dim is dim? Precision of the celestial compass in moonlight and sunlight. Phil. Trans. R. Soc. B 2011, 366, 697–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaldy, L.; Tocco, C.; Byrne, M.; Baird, E.; Dacke, M. Straight-line orientation in the woodland-living beetle Sisyphus fasciculatus. J. Comp. Physiol. A 2020, 206, 327–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolka, J.; Baird, E.; el Jundi, B.; Reber, T.; Byrne, M.J.; Dacke, M. Night sky orientation with diurnal and nocturnal eyes: Dim-light adaptations are critical when the moon is out of sight. Anim. Behav. 2016, 111, 127–146. [Google Scholar] [CrossRef] [Green Version]
- El Jundi, B.; Smolka, J.; Baird, E.; Byrne, M.J.; Dacke, M. Diurnal dung beetles use the intensity gradient and the polarization pattern of the sky for orientation. J. Exp. Biol. 2014, 217, 2422–2429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Jundi, B.; Foster, J.J.; Byrne, M.J.; Baird, E.; Dacke, M. Spectral information as an orientation cue in dung beetles. Biol. Lett. 2015, 11. [Google Scholar] [CrossRef]
- Khaldy, L.; Peleg, O.; Tocco, C.; Mahadevan, L.; Byrne, M.; Dacke, M. The effect of step size on straight-line orientation. J. R. Soc. Interface 2019, 16. [Google Scholar] [CrossRef]
- Dacke, M.; Nordström, P.; Scholtz, C.; Warrant, E. A specialized dorsal rim area for polarized light detection in the compound eye of the scarab beetle Pachysoma Striatum. J. Comp. Physiol. A 2002, 188, 211–216. [Google Scholar] [CrossRef]
- Freas, C.A.; Narendra, A.; Lemesle, C.; Cheng, K. Polarized light use in the nocturnal bull ant, Myrmecia midas. R. Soc. Open. Sci. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Collett, M. How navigational guidance systems are combined in a desert ant. Curr. Biol. 2012, 22, 927–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebhardt, F.; Ronacher, B. Interactions of the polarization and the sun compass in path integration of desert ants. J. Comp. Physiol. A. 2014, 200, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Reid, S.F.; Narendra, A.; Hemmi, J.M.; Zeil, J. Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following. J. Exp. Biol. 2011, 214, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Legge, E.L.G.; Wystrach, A.; Spetch, M.L.; Cheng, K. Combining sky and earth: Desert ants (Melophorus bagoti) show weighted integration of celestial and terrestrial cues. J. Exp. Biol. 2014, 217, 4159–4166. [Google Scholar] [CrossRef] [Green Version]
- Scholtz, C.; Ranwashe, F. University of Pretoria: Dung Beetles (Coleoptera: Scarabaeidae: Scarabaeinae). South African National Biodiversity Institute. Available online: https://doi.org/10.15468/bapci6 (accessed on 16 April 2021).
- Zuur, A.F.; Ieno, E.N.; Smith, G.M. Analysing Ecological Data; Springer: New York, NY, USA, 2007. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Batschelet, E. Circular Statistics in Biology; Academic Press: London, UK, 1981; pp. 54–58. [Google Scholar]
- Ugolini, A.; Scapini, F.; Pardi, L. Interaction between solar orientation and landscape visibility in Talitrus saltator (Crustacea: Amphipoda). Mar. Biol. 1986, 90, 449–460. [Google Scholar] [CrossRef]
- Franzke, M.; Kraus, C.; Dreyer, D.; Pfeiffer, K.; Beetz, M.J.; Stöckl, A.L.; Foster, J.J.; Warrant, E.J.; el Jundi, B. Spatial orientation based on multiple visual cues in non-migratory monarch butterflies. J. Exp. Biol. 2020, 223. [Google Scholar] [CrossRef]
- Kramer, G. Experiments on bird orientation. Ibis 1952, 94, 265–285. [Google Scholar] [CrossRef]
- Horváth, G.; Barta, A.; Hegedüs, R. Polarization of the sky. In Polarized Light and Polarization Vision in Animal Sciences, 2nd ed.; Horváth, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 367–406. [Google Scholar]
- Pomozi, I.; Horváth, G.; Wehner, R. How the clear-sky angle of polarization pattern continues underneath clouds: Full-sky measurements and implications for animal orientation. J. Exp. Biol. 2001, 204, 2933–2942. [Google Scholar] [CrossRef]
- Suhai, B.; Horváth, G. How well does the Rayleigh model describe the e-vector distribution of skylight in clear and cloudy conditions? A full sky polarimetric study. J. Opt. Soc. Am. A 2004, 21, 1669–1676. [Google Scholar] [CrossRef]
- Warrant, E.; Johnsen, S.; Nilsson, D.-E. Light and visual environments. Sci. Direct 2020, 1, 4–30. [Google Scholar] [CrossRef]
- Coemans, M.A.J.M.; Vos Hzn, J.J.; Nuboer, J.F.W. The relation between celestial colour gradients and the position of the sun with regard to the sun compass. Vis. Res. 1993, 34, 1461–1470. [Google Scholar] [CrossRef]
- Lord, R. On the light from the sky, its polarization and colour. Lon. Edinb. Dubl. Phil. Mag. J. Sci. 1871, 41, 107–120. [Google Scholar] [CrossRef]
- Warrant, E.; Johnsen, S. Vision and the light environment. Curr. Biol. 2013, 23, 990–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zittrell, F.; Pfeiffer, K.; Homberg, U. Matched-filter coding of sky polarization results in an internal sun compass in the brain of the desert locust. Proc. Natl. Acad. Sci. USA 2020, 117, 25810–25817. [Google Scholar] [CrossRef] [PubMed]
- Wehner, R.; Strasser, S. The POL area of the honeybee’s eye- behavioural evidence. Physiol. Entomol. 1985, 10, 337–349. [Google Scholar] [CrossRef]
- Foster, J.J.; Kirwan, J.D.; el Jundi, B.; Smolka, J.; Khaldy, L.; Baird, E.; Byrne, M.; Nilsson, D.-E.; Johnsen, S.; Dacke, M. Orienting to polarized light at night—Matching lunar skylight to performance in a nocturnal beetle. J. Exp. Biol. 2018, 222. [Google Scholar] [CrossRef] [Green Version]
- Dacke, M.; Nordström, P.; Scholtz, C.H. Twilight orientation to polarised light in the crepuscular dung beetle Scarabaeus zambesianus. J. Exp. Biol. 2003, 206, 1535–1543. [Google Scholar] [CrossRef] [Green Version]
- Weir, P.T.; Dickinson, M.H. Flying drosophila orient to sky polarization. Curr. Biol. 2012, 22, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehner, R.; Müller, M. The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc. Natl. Acad. Sci. USA 2006, 103, 12575–12579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegedüs, R.; Barta, A.; Bernath, B.; Meyer-Rochow, V.B.; Horváth, G. Imaging polarimetry of forest canopies- how the azimuth direction of the sun, occluded by vegetation, can be assessed from the polarization pattern of the sunlit foliage. Appl. Opt. 2007, 46, 6019–6032. [Google Scholar] [CrossRef] [PubMed]
- Shashar, N.; Cronin, T.; Wolff, L.; Condon, M. The polarization of light in a tropical rain forest. Biotropica 1988, 30, 275–285. Available online: https://www.jstor.org/stable/2389169 (accessed on 17 July 2018). [CrossRef]
- Montreuil, O. The species of Sisyphus Latreille, 1807 (Coleoptera, Scarabaeidae, Sisyphini) with tuffs of setae on elytra: First cases of brachypterism for this genus. Ann. Soc. Entomol. Fr. 2015, 51, 281–293. [Google Scholar] [CrossRef]
- Paschalidis, K.M. The Genus Sisyphus Latr. (Coleoptera: Scarabaeidae). Master’s Thesis, Rhodes University, Grahamstown, South Africa, December 1974. [Google Scholar]
- Lythgoe, J.N. The Ecology of Vision; Clarendon Press: Oxford, UK, 1979; pp. 1–16. [Google Scholar]
- Greiner, B.; Ribi, W.; Warrant, E. Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res. 2004, 316, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Yack, J.E.; Johnson, S.E.; Brown, S.G.; Warrant, E.J. The eyes of Macrosoma Sp. (Lepidoptera: Hedyloidea): A nocturnal butterfly with superposition optics. Arthropod Struct. Dev. 2007, 36, 11–22. [Google Scholar] [CrossRef]
- Kinoshita, M.; Pfeiffer, K.; Homberg, U. Spectral properties of identified polarized-light sensitive interneurons in the brain of the desert locust Schistocerca gregaria. J. Exp. Biol. 2007, 210, 1350–1361. [Google Scholar] [CrossRef] [Green Version]
- Aepli, F.; Labhart, T.; Meyer, E.P. Structural specializations of the cornea and retina at the dorsal rim of the compound eye in hymenopteran insects. Cell Tissue Res. 1985, 239, 19–24. [Google Scholar] [CrossRef]
- Labhart, T.; Meyer, E.P. Detectors for polarized skylight in insects: A survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc. Res. Tech. 1999, 47, 368–379. [Google Scholar] [CrossRef]
- Labhart, T.; Meyer, E.P.; Schenker, L. Specialized ommatidia for polarization vision in the compound eye of cockchafers, Melolontha melolontha (Coleoptera, Scarabaeidae). Cell Tissue Res. 1992, 268, 419–429. [Google Scholar] [CrossRef]
- Tocco, C.; Dacke, M.; Byrne, M. Eye and wing structure closely reflects the visual ecology of dung beetles. J. Comp. Physiol. A 2019, 205, 211–221. [Google Scholar] [CrossRef]
- Forgie, S.A.; Philips, T.K.; Scholtz, C.H. Evolution of the Scarabaeini (Scarabaeidae: Scarabaeinae). Syst. Entomol. 2005, 30, 60–96. [Google Scholar] [CrossRef]
- Daniel, G.M.; Davis, A.L.V.; Sole, C.L.; Scholtz, C.H. Taxonomic review of the tribe Sisyphini sensu stricto (Coleoptera: Scarabaeidae: Scarabaeinae) in southern Africa, including new species descriptions. Insect. Syst. Evol. 2018, 51, 1–61. [Google Scholar] [CrossRef]
- Hanski, I.; Cambefort, Y. Dung Beetle Ecology; Hanski, I., Cambefort, Y., Eds.; Princeton University Press: Oxford, UK, 1991; pp. 51–69. [Google Scholar]
- Taylor, G.J.; Tichit, P.; Schmidt, M.D.; Bodey, A.J.; Rau, C.; Baird, E. Bumblebee visual allometry results in locally improved resolution and globally improved sensitivity. Elife 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Land, M.; Nilsson, D.-E. What makes a good eye. In Animals Eyes, 2nd ed.; Oxford University Press: Oxford, UK, 2012; pp. 46–70. [Google Scholar]
- Cronin, T.W.; Johnsen, S.; Marshall, J.N.; Warrant, E.J. Visual Ecology; Princeton University Press: Woodstock, UK; Oxfordshire, UK, 2014; pp. 66–116. [Google Scholar]
- Rutowski, R.L.; Gislén, L.; Warrant, E.J. Visual acuity and sensitivity increase allometrically with body size in butterflies. Arthropod. Struct. Dev. 2009, 38, 91–100. [Google Scholar] [CrossRef]
- Land, M. Visual Acuity in Insects. Annu. Rev. Ento. 1997, 42, 147–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaldy, L.; Tocco, C.; Byrne, M.; Dacke, M. Compass Cue Integration and Its Relation to the Visual Ecology of Three Tribes of Ball-Rolling Dung Beetles. Insects 2021, 12, 526. https://doi.org/10.3390/insects12060526
Khaldy L, Tocco C, Byrne M, Dacke M. Compass Cue Integration and Its Relation to the Visual Ecology of Three Tribes of Ball-Rolling Dung Beetles. Insects. 2021; 12(6):526. https://doi.org/10.3390/insects12060526
Chicago/Turabian StyleKhaldy, Lana, Claudia Tocco, Marcus Byrne, and Marie Dacke. 2021. "Compass Cue Integration and Its Relation to the Visual Ecology of Three Tribes of Ball-Rolling Dung Beetles" Insects 12, no. 6: 526. https://doi.org/10.3390/insects12060526
APA StyleKhaldy, L., Tocco, C., Byrne, M., & Dacke, M. (2021). Compass Cue Integration and Its Relation to the Visual Ecology of Three Tribes of Ball-Rolling Dung Beetles. Insects, 12(6), 526. https://doi.org/10.3390/insects12060526