Impact of Temperature on Survival Rate, Fecundity, and Feeding Behavior of Two Aphids, Aphis gossypii and Acyrthosiphon gossypii, When Reared on Cotton
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Aphids Sources and Host Plants
2.2. Tested Temperatures
2.3. Effects of Temperature on Survival and Fecundity of Adults
2.4. Electrical Recording of Aphid Feeding-Behaviors
2.5. Statistical Analysis
3. Results
3.1. Survival, Longevity, and Fecundity
3.2. Feeding Behavior
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jamieson, M.A.; Trowbridge, A.M.; Raffa, K.F.; Lindroth, R.L. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol. 2012, 160, 1719–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Bale, J.; Masters, G.J.; Hodkinson, I.; Awmack, C.; Bezemer, T.M.; Brown, V.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Wang, S.S.; Chen, X.; Li, Y.; Pan, B.Y.; Wang, S.G.; Dai, H.J.; Wang, S.; Tang, B. Effects of changing temperature on the physiological and biochemical properties of Harmonia axyridis larvae. Entomol. Gen. 2020, 40, 229–241. [Google Scholar] [CrossRef]
- Yao, F.L.; Ding, X.L.; Mei, W.J.; Zheng, Y.; Desneux, N.; He, Y.X.; Weng, Q.Y. Impact of heat stress on the development of egg and adult coccinellid Serangium japonicum: Evidence for cross-stage and cross-generation effects. Entomol. Gen. 2020, 40, 365–376. [Google Scholar] [CrossRef]
- Ma, G.; Ma, C.S. Climate warming may increase aphids’ dropping probabilities in response to high temperatures. J. Insect Physiol. 2012, 58, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Ma, C.S. Effect of acclimation on heat-escape temperatures of two aphid species: Implications for estimating behavioral response of insects to climate warming. J. Insect Physiol. 2012, 58, 303–309. [Google Scholar] [CrossRef]
- Bussaman, P.; Sa-uth, C.; Chandrapatya, A.; Atlihan, R.; Gökce, A.; Saska, P.; Chi, H. Fast population growth in physogastry reproduction of Luciaphorus perniciosus (Acari: Pygmephoridae) at different temperatures. J. Econ. Entomol. 2017, 110, 1397–1403. [Google Scholar] [CrossRef]
- Guo, J.Y.; Lin, C.; Wan, F.H. Multiple generation effects of high temperature on the development and fecundity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Insect Sci. 2013, 20, 541–549. [Google Scholar] [CrossRef]
- Bale, J.S.; Hayward, S.A.L. Insect overwintering in a changing climate. J. Exp. Biol. 2010, 213, 980. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Zhang, W.; Hoffmann, A.A.; Ma, C.S. Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod. J. Anim. Ecol. 2013, 83, 769–778. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.; Liu, H.; Qiao, G.; Huang, X. Investigating the impact of climate warming on phenology of aphid pests in China using long-term historical data. Insects 2020, 11, 167. [Google Scholar] [CrossRef] [Green Version]
- Lande, R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 2009, 22, 1435–1446. [Google Scholar] [CrossRef]
- Kuo, M.H.; Chiu, M.C.; Perng, J.J. Temperature effects on life history traits of the corn leaf aphid, Rhopalosiphum maidis (Homoptera: Aphididae) on corn in Taiwan. Appl. Entomol. Zool. 2006, 41, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Hullé, M.; Chaubet, B.; Turpeau, E.; Simon, J.C. Encyclop’Aphid: A website on aphids and their natural enemies. Entomol. Gen. 2020, 40, 97–101. [Google Scholar] [CrossRef]
- Gao, G.Z.; Perkins, L.E.; Zalucki, M.P.; Lu, Z.Z.; Ma, J.H. Effect of temperature on the biology of Acyrthosiphon gossypii Mordvilko (Homoptera: Aphididae) on cotton. J. Pest. Sci. 2013, 86, 167–172. [Google Scholar] [CrossRef]
- Gao, G.Z.; Lu, Z.Z.; Sun, P.; Xia, D.P. Effects of high temperature on the mortality and fecundity of two co-existing cotton aphid species Aphis gossypii Glover and Acyrthosiphon gossypii Mordvilko. Chin. J. Appl. Ecol. 2012, 23, 506–510. [Google Scholar]
- Lv, Z.Z.; Tian, C.Y.; Song, Y.D. Relationship between Aphis gossypii and Acyrthosiphon gossypii on cotton in Xinjiang. China Cotton 2002, 29, 11–12. [Google Scholar]
- Kersting, U.; Satar, S.; Uygun, N. Effect of temperature on development rate and fecundity of apterous Aphis gossypii Glover (Hom. Aphididae) reared on Gossypium hirsutum L. J. Appl. Entomol. 1999, 123, 23–27. [Google Scholar] [CrossRef]
- Xia, J.Y.; Werf, W.V.D.; Rabbinge, R. Influence of temperature on bionomics of cotton aphid, Aphis gossypii, on cotton. Entomol. Exp. Appl. 2010, 90, 25–35. [Google Scholar] [CrossRef]
- Satar, S.; Kersting, U.; Uygun, N. Effect of temperature on development and fecundity of Aphis gossypii Glover (Homoptera: Aphididae) on cucumber. J. Pest. Sci. 2005, 78, 133–137. [Google Scholar] [CrossRef]
- Zamani, A.A.; Talebi, A.A.; Fathipour, Y.; Baniameri, V. Effect of temperature on biology and population growth parameters of Aphis gossypii Glover (Hom. Aphididae) on greenhouse cucumber. J. Appl. Entomol. 2010, 130, 453–460. [Google Scholar] [CrossRef]
- Parajulee, M.N. Influence of constant temperatures on life history parameters of the cotton aphid, Aphis gossypii, infesting cotton. Environ. Entomol. 2007, 36, 666–672. [Google Scholar]
- Ma, C.S.; Hau, B.; Poehling, H.M. The effect of heat stress on the survival of the rose grain aphid, Metopolophium dirhodum (Hemiptera: Aphididae). Eur. J. Entomol. 2004, 101, 327–331. [Google Scholar] [CrossRef]
- Guo, H.; Sun, Y.C.; Peng, X.H.; Wang, Q.Y.; Marvin, H.; Ge, F. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress. J. Exp. Bot. 2016, 3, 681–693. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Guo, H.; Ge, F. Plant–aphid interactions under elevated CO2: Some cues from aphid feeding behavior. Front. Plant Sci. 2016, 7, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Peng, X.; Gu, L.; Wu, J.; Ge, F.; Sun, Y. Up-regulation of MPK4 increases the feeding efficiency of the green peach aphid under elevated CO2 in Nicotiana attenuata. J. Exp. Bot. 2017, 21–22, 5923–5935. [Google Scholar] [CrossRef]
- Guo, H.J.; Zhang, Y.J.; Tong, J.H.; Hogenhout, S.A.; Ge, F.; Sun, Y.C. An aphid-secreted salivary protease activates plant defense in phloem. Curr. Biol. 2020, 30, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Liu, T.; Yu, F.; Teng, L.; Chen, F. Feeding behavioral response of cotton aphid, Aphis gossypii, to elevated CO2: EPG test with leaf microstructure and leaf chemistry. Entomol. Exp. Appl. 2016, 160, 219–228. [Google Scholar] [CrossRef]
- James, C.K.; Perry, K.L. Transmission of plant viruses by aphid vectors. Mol. Plant. Pathol. 2004, 5, 505–511. [Google Scholar]
- Munster, M.V. Impact of abiotic stresses on plant virus transmission by aphids. Viruses 2020, 12, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tjallingii, W.F. Electronic recording of penetration behaviour by aphids. Entomol. Exp. Appl. 1978, 24, 521–530. [Google Scholar] [CrossRef]
- Gabryś, B.; Pawluk, M. Acceptability of different species of brassicaceae as hosts for the cabbage aphid. Entomol. Exp. Appl. 2010, 91, 105–109. [Google Scholar] [CrossRef]
- Tholt, G.; Samu, F.; Kiss, B. Feeding behaviour of a virus-vector leafhopper on host and non-host plants characterised by electrical penetration graphs. Entomol. Exp. Appl. 2015, 155, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Milenovic, M.; Wosula, E.N.; Rapisarda, C.; Legg, J.P. Impact of host plant species and whitefly species on feeding behavior of Bemisia tabaci. Front. Plant Sci. 2019, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.X.; Lei, H.; Collar, L.J.; Martin, B.; Muñiz, M.; Fereres, A. Probing and feeding behavior of two distinct biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on tomato plants. J. Econ. Entomol. 1999, 92, 357–366. [Google Scholar] [CrossRef]
- Li, G.Y. Cotton Diseases and Pests in Xinjiang, 1st ed.; China Agricultural Press: Beijing, China, 2017; Volume 4, p. 168. [Google Scholar]
- Tjallingii, W.F.; Esch, T.H. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol. Entomol. 1993, 18, 317–328. [Google Scholar] [CrossRef]
- Miao, J.; Wu, Y.; Yu, Z.; Yun, D.; Li, G. Comparative of feeding behaviors of Sitobion avenae, Sitobion graminum and Rhopalosiphum padi (Homoptera: Aphididae) using electrical penetration graph (EPG). Acta Ecol. Sin. 2011, 31, 175–182. [Google Scholar]
- Pompon, J.; Dan, Q.; Giordanengo, P.; Pelletier, Y. Role of xylem consumption on osmoregulation in Macrosiphum euphorbiae (Thomas). J. Insect Physiol. 2010, 56, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Marimuthu, M.; Predeesh, C.; Aguirre-Rojas, L.M.; Reese, J.C.; Smith, C.M. Electrical penetration graph recording of Russian wheat aphid (Hemiptera: Aphididae) feeding on aphid-resistant wheat and barley. J. Econ. Entomol. 2015, 108, 2465–2470. [Google Scholar] [CrossRef]
- Kloth, K.J.; Busscher-Lange, J.; Wiegers, G.L.; Kruijer, W.; Buijs, G.; Meyer, R.C.; Albrectsen, B.R.; Bouwmeester, H.J.; Dicke, M.; Jongsma, M.A. Sieve element-lining chaperone1 restricts aphid feeding on Arabidopsis during heat stress. Plant Cell 2017, 29, 2450–2464. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, C.C.; Niemeyer, H.M. The influence of previous experience and starvation on aphid feeding behavior. J. Insect Behav. 2000, 13, 699–709. [Google Scholar] [CrossRef]
- Tjallingii, W.F. Salivary secretions by aphids interacting with proteins of phloem wound responses. J. Exp. Bot. 2006, 57, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Will, T.; Tjallingii, W.F.; Thönnessen, A.; van Bel, A.J.E. Molecular sabotage of plant defense by aphid saliva. Proc. Natl. Acad. Sci. USA 2007, 104, 10536–10541. [Google Scholar] [CrossRef] [Green Version]
- Garzo, E.; Fernández-Pascual, M.; Morcillo, C.; Fereres, A.; Gómez-Guillamón, M.L.; Tjallingii, W.F. Ultrastructure of compatible and incompatible interactions in phloem sieve elements during the stylet penetration by cotton aphids in melon. Insect Sci. 2018, 25, 631–642. [Google Scholar] [CrossRef]
- Lu, Z.Z.; Feng, L.K.; Gao, G.Z.; Gao, L.L.; Han, P.; Sharma, S.; Zalucki, M. Differences in the high-temperature tolerance of Aphis craccivora (Hemiptera: Aphididae) on cotton and soybean: Implications for ecological niche switching among hosts. Appl. Entomol. Zool. 2017, 52, 9–18. [Google Scholar]
- Cao, H.H.; Wu, J.; Zhang, Z.F.; Liu, T.X. Phloem nutrition of detached cabbage leaves varies with leaf age and influences performance of the green peach aphid, Myzus persicae. Entomol. Exp. Appl. 2018, 166, 452–459. [Google Scholar] [CrossRef]
- Nachappa, P.; Culkin, C.T.; Saya II, P.M.; Han, J.; Nalam, V.J. Water stress modulates soybean aphid performance, feeding behavior, and virus transmission in soybean. Front. Plant Sci. 2016, 7, 552. [Google Scholar] [CrossRef] [Green Version]
- Febvay, G.; Bonnin, J.; Rahbé, Y.; Bournoville, R.; Bonnemain, J.L. Resistance of different Lucerne cultivars to the pea aphid Acyrthosiphon pisum: Influence of phloem composition on aphid fecundity. Entomol. Exp. Appl. 2011, 48, 127–134. [Google Scholar] [CrossRef]
- Du, R.; Ma, C.S.; Zhao, Q.H.; Ma, G. Effects of heat stress on physiological and biochemical mechanisms of insects: A literature review. Acta Ecol. Sin. 2007, 4, 1565–1572. [Google Scholar]
- Cui, J.; Zhu, S.Y.; Gao, Y.; Bi, R.; Xu, Z.; Shi, S.S. Comparative transcriptome analysis of Megacopta cribraria (Hemiptera: Plataspidae) in response to high-temperature stress. J. Econ. Entomol. 2018, 112, 407–415. [Google Scholar] [CrossRef]
- Huang, H.J.; Xue, J.; Zhou, J.C.; Cheng, R.L.; Xu, H.J.; Zhang, C.X. Comparative analysis of the transcriptional responses to low and high temperatures in three rice planthopper species. Mol. Ecol. 2017, 26, 2726–2737. [Google Scholar] [CrossRef]
- Zhang, B.; Leonard, S.P.; Li, Y.; Moran, N.A. Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proc. Natl. Acad. Sci. USA 2019, 116, 201915307. [Google Scholar] [CrossRef] [PubMed]
- Burke, G.; Fiehn, O.; Moran, N. Effects of facultative symbionts and heat stress on the metabolome of pea aphids. ISME J. 2010, 4, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Leybourne, D.J.; Valentine, T.A.; Bos, J.I.B.; Karley, A.J. A fitness cost resulting from Hamiltonella defensa infection is associated with altered probing and feeding behaviour in Rhopalosiphum padi. J. Exp. Biol. 2020, 223, jeb.207936. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Q.; Duan, X.; Song, C.; Chen, M. Transcription of four Rhopalosiphum padi (L.) heat shock protein genes and their responses to heat stress and insecticide exposure. Comp. Biochem. Phys. A 2017, 205, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Will, T.; Schmidtberg, H.; Skaljac, M.; Vilcinskas, A. Heat shock protein 83 plays pleiotropic roles in embryogenesis, longevity, and fecundity of the pea aphid Acyrthosiphon pisum. Dev. Genes Evol. 2017, 227, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
EPG Parameters | Aphis gossypii | Acrythosiphon gossypii | ||||
---|---|---|---|---|---|---|
29 °C (n = 18) | 32 °C (n = 18) | 35 °C (n = 26) | 29 °C (n = 19) | 32 °C (n = 18) | 35 °C (n = 20) | |
Total duration of Np (min) | 13.00 ± 1.56 bB | 10.97 ± 1.27 bB | 33.77 ± 2.32 aB | 85.88 ± 7.49 cA | 139.80 ± 10.45 bA | 187.92 ± 14.34 aA |
Total duration of C (min) | 199.26 ± 9.96 aA | 167.49 ± 8.56 bB | 204.41 ± 10.55 aA | 202.64 ± 13.34 aA | 226.70 ± 15.01 aA | 184.69 ± 12.55 aA |
Total duration of Pd (min) | 14.75 ± 0.82 aB | 12.78 ± 0.89 aB | 15.74 ± 0.96 aA | 21.15 ± 2.40 aA | 20.06 ± 1.89 aA | 14.05 ± 1.69 aA |
Total number of C | 251 ± 11.37 bB | 225.20 ± 11.81 bB | 307.78 ± 14.15 aB | 329.93 ± 20.50 aA | 293.29 ± 15.15 abA | 242.85 ± 13.24 bA |
Total number of pd | 158 ± 10.52 bB | 145 ± 11.79 bB | 202 ± 12.71 aB | 230.4 ± 16.7 aA | 258.2 ± 18.6 aA | 169.92 ± 14.38 bA |
Total duration of G | 30.1 ± 4.56 aB | 31.05 ± 5.18 aB | 34.97 ± 5.77 aB | 93.07 ± 10.16 aA | 60.62 ± 7.87 abA | 54.58 ± 8.06 bA |
EPG Parameters | Aphis gossypii | Acyrthosiphon gossypii | ||||
---|---|---|---|---|---|---|
29 °C (n = 18) | 32 °C (n = 18) | 35 °C (n = 26) | 29 °C (n = 19) | 32 °C (n = 18) | 35 °C (n = 20) | |
Total duration of E1 (min) | 108.83 ± 10.78 aA | 71.71 ± 8.49 bA | 73.65 ± 7.97 bA | 36.10 ± 5.10 aB | 14.78 ± 1.75 bB | 13.36 ± 1.17 bB |
Total duration of E2 (min) | 112.28 ± 14.34 bA | 177.49 ± 14.25 aA | 97.70 ± 8.47 bA | 24.17 ± 1.69 aB | 15.06 ± 1.71 bB | 9.37 ± 1.01 cB |
Percentage of E1 + E2 | 0.461 ± 0.037 aA | 0.519 ± 0.032 aA | 0.357 ± 0.023 bA | 0.125 ± 0.011 aB | 0.062 ± 0.006 bB | 0.047 ± 0.003 bB |
Total number of single E1 | 4.58 ± 0.39 abB | 3.42 ± 0.55 aB | 5.22 ± 0.85 aA | 6.61 ± 1.01 aA | 6.45 ± 0.86 aA | 5.92 ± 0.63 aA |
Total number of E1 | 24.62 ± 2.17 aA | 21.73 ± 2.14 aA | 24.07 ± 2.43 aA | 13.12 ± 1.37 aB | 10.70 ± 1.15 abB | 7.92 ± 0.92 bB |
Total number of E2 | 13.61 ± 1.85 aA | 12.46 ± 1.68 aA | 12.69 ± 1.75 aA | 4.54 ± 0.53 aB | 3.17 ± 0.36 abB | 2.50 ± 0.42 bB |
Time to first E1 (min) | 64.12 ± 13.82 aB | 67.23 ± 16.02 aB | 49.08 ± 8.68 aB | 93.27 ± 16.12 aA | 109.20 ± 14.2 aA | 90.38 ± 12.2 aA |
Time to first E2 (min) | 111.94 ± 16.45 aB | 100.22 ± 14.10 aB | 77.70 ± 10.39 aB | 183.99 ± 20.58 aA | 154.64 ± 14.64 bA | 197.22 ± 22.21 aA |
Sustain phloem ingestion (E2 >10 min) | 2.93 ± 0.32 a | 3.08 ± 0.40 a | 2.52 ± 0.26 a | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, C.; Desneux, N.; Lu, Y. Impact of Temperature on Survival Rate, Fecundity, and Feeding Behavior of Two Aphids, Aphis gossypii and Acyrthosiphon gossypii, When Reared on Cotton. Insects 2021, 12, 565. https://doi.org/10.3390/insects12060565
Liu J, Wang C, Desneux N, Lu Y. Impact of Temperature on Survival Rate, Fecundity, and Feeding Behavior of Two Aphids, Aphis gossypii and Acyrthosiphon gossypii, When Reared on Cotton. Insects. 2021; 12(6):565. https://doi.org/10.3390/insects12060565
Chicago/Turabian StyleLiu, Jinping, Chen Wang, Nicolas Desneux, and Yanhui Lu. 2021. "Impact of Temperature on Survival Rate, Fecundity, and Feeding Behavior of Two Aphids, Aphis gossypii and Acyrthosiphon gossypii, When Reared on Cotton" Insects 12, no. 6: 565. https://doi.org/10.3390/insects12060565
APA StyleLiu, J., Wang, C., Desneux, N., & Lu, Y. (2021). Impact of Temperature on Survival Rate, Fecundity, and Feeding Behavior of Two Aphids, Aphis gossypii and Acyrthosiphon gossypii, When Reared on Cotton. Insects, 12(6), 565. https://doi.org/10.3390/insects12060565