Newly Emerging Pest in China, Rhynchaenusmaculosus (Coleoptera: Curculionidae): Morphology and Molecular Identification with DNA Barcoding
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Collection
2.2. Genomic DNA Extraction and Amplification
2.3. Sequencing, Identification, and Phylogenetic Analysis
3. Results
3.1. Morphology
3.2. DNA Barcoding and Molecular Identification of R. maculosus
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, R.S. Revision of the subfamily Rhynchaeninae in North America (Coleoptera: Curculionidae). Trans. Am. Entomol. Soc. 1989, 115, 207–312. [Google Scholar]
- Yang, L.; Yao, Y.; Chen, L.; Qi, H. Four new records of Rhynchaenus (Coleoptera: Curculionidae). J. Northeast For. Univ. 1996, 24, 75–78. (In Chinese) [Google Scholar]
- Morimoto, K. The family Curculionidae of Japan. IV. Subfamily Rhynchaeninae. Esakia 1984, 22, 5–76. [Google Scholar]
- Yang, L.; Dai, H.; Zhang, X. Two new species of Rhynchaenus (Coleoptera: Curculionidae) from Daxinganling mountains region. Entomotaxonomia 1991, 13, 25–27. (In Chinese) [Google Scholar]
- Zhou, H. Three new curculionid pests of mango in Xishuangbanna. Entomotaxonomia 1982, 4, 231–232. (In Chinese) [Google Scholar]
- Tan, Y.; Tan, Q. Preliminary report on biological characteristics and control of Rhynchaenus sp. J. Sichuan Forest. Sci. Technol. 1991, 12, 58–60. (In Chinese) [Google Scholar]
- Chen, H. Preliminary report on flea weevil Rhynchaenus sp. Infesting Diversifolious poplar. Xinjiang Agric. Sci. 1998, 15, 19–20. (In Chinese) [Google Scholar]
- Behura, S.K. Molecular marker systems in insects: Current trends and future avenues. Mol. Ecol. 2006, 15, 3087–3113. [Google Scholar] [CrossRef]
- Charaabi, K.; Carletto, J.; Chavighy, P.; Marrakchi, M.; Makni, F.; Masutti, V. Genotypic diversity of the cotton-melon aphid Aphis gossypii (Glover) in Tunisia is structured by host plants. Bull. Entomol. Res. 2008, 98, 333–341. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinskaa, A.; Ball, S.L.; de Waard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.W.; Min, H.K.; Kim, Y.H.; Choi, L.A.; Lee, S.Y.; Bae, Y.J.; Paek, L.K. A DNA barcode library of the beetle reference collection (Insecta: Coleoptera) in the National Science Museum, Korea. J. Asia Pac. Biodivers. 2016, 9, 234–244. [Google Scholar]
- Reidenbach, K.R.; Cook, S.; Bertone, M.A.; Harbach, R.E.; Wiegmann, B.M.; Besansky, N.J. Phylogentic analysis and temporal diversification of mosquitoes (Diptera: Culicidae) based on nuclear genes and morphology. BMC Evol. Biol. 2009, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Hebert, P.D.N.; Ratnasingham, S.; de Waard, J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270 (Suppl. 1), S96–S99. [Google Scholar] [CrossRef] [Green Version]
- Cywinska, A.; Hunter, F.F.; Hebert, P.D.N. Identifying Canadian mosquito species through DNA barcodes. Med. Vet. Entomol. 2006, 20, 413–424. [Google Scholar] [CrossRef]
- Kumar, N.P.; Rajavel, A.R.; Natarajan, R.; Jambulingam, P. DNA Barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2007, 44, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bourke, B.P.; Oliveira, T.P.; Suesdek, L.; Bergo, E.S.; Sallum, M.A. A multi-locus approach to barcoding in the Anopheles strodei subgroup (Diptera: Culicidae). Parasites Vectors 2013, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Foster, P.G.; Bergo, E.S.; Bourke, B.P.; Oliveira, T.M.P.; Nagaki, S.S.; Sant’Ana, D.C.; Sallum, M.A.M. Phylogenetic analysis and DNA-based species confirmation in Anopheles (Nyssorhynchus). PLoS ONE 2013, 8, e54063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Bank, F.H.; Greenfield, R.; Daru, B.; Yessoufou, K. DNA barcoding reveals micro-evolutionary changes and river-system level phylogeographic resolution of African silver catfish, Schilbe intermedius (Siluriformes, Schilbeidae) from seven populations across different African river systems. Acta Ichthyol. Piscat. 2012, 42, 307–320. [Google Scholar] [CrossRef] [Green Version]
- Jinbo, U.; Kato, T.; Ito, M. Current progress in DNA barcoding and future implications for entomology. Entomol. Sci. 2011, 14, 107–124. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6.0: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.D.; Gibson, T.J.; Frédéric, P.; Franois, J.; Higgins, D.G. The Clustal_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.A. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Crozier, R.H.; Crozier, Y.C. The Mitochondrial genome of the honeybee Apis mellifera: Complete sequence and genome organization. Genetics 1993, 133, 97–117. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Shi, L.; Xu, X.; Li, H.; Xing, H.; Liang, D.; Jiang, K.; Pang, X.; Chen, S. DNA barcode goes two-dimensions: DNA QR code web server. PLoS ONE 2012, 7, e35146. [Google Scholar] [CrossRef]
- Yang, R.; Liu, Y.; Xu, J.; Jiang, Y.; Qin, L. Preliminary identification of Rhynchaenus (Orchestes) maculosus, a newly-recorded pest species infesting oak in Liaoning Tussah Silkworm Rearing area. Acta Sericologica Sin. 2016, 42, 799–804. (In Chinese) [Google Scholar]
- Wei, C.; Wu, P. Preliminary study of biology of Tischeria deciduas Wocke. Liaoning Agric. Sci. 1985, 5, 36–38. (In Chinese) [Google Scholar]
- Prins, W.D. Tischeria decidua (Lepidoptera: Tischeriidae), new to the Belgian fauna. Phegea 2013, 41, 5–6. [Google Scholar]
- Shi, C.; Dong, H.; Li, R. Preliminary investigation of Acyocercops brongniardella Fabricius. Acta Sericologica Sin. 1988, 14, 51–53. (In Chinese) [Google Scholar]
- Yang, R.; Yun, T.; Zhang, J.; Chen, Y.; Shi, S.; Jiang, Y.; Wang, Y.; Qin, L. Study on occurrence regularity and spatial distribution of Rhynchaenus maculosus. Acta Sericologica Sin. 2018, 44, 834–840. (In Chinese) [Google Scholar]
- Doskocil, J.P.; Walker, N.R.; Bell, G.E.; Marek, S.M.; Reinert, J.A.; Royer, T.A. Species composition and seasonal occurrence of Phyllophaga (Coleoptera: Scarabaeidae) infesting intensely managed Bermuda grass in Oklahoma. J. Econ. Etnomol. 2008, 101, 1624–1632. [Google Scholar]
- Dona, J.; Diaz-Real, J.; Mironov, S.; Bazaga, P.; Serrano, D.; Jovani, R. DNA barcoding and minibarcoding as a powerful tool for feather mite studies. Mol. Ecol. Resour. 2015, 15, 1216–1225. [Google Scholar] [CrossRef]
- Raso, L.; Sint, D.; Rief, A.; Kaufman, R.; Traugott, M. Molecular identification of adult and juvenile Linyphiid and Theridiid spiders in Alpine Glacier Foreland communities. PLoS ONE 2014, 9, e0101755. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Pention, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neo-tropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 2004, 101, 14812–14817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahir, H.M.; Noor, A.; Mehmood, S.; Sherawat, S.M.; Qazi, M.A. Evaluating the accuracy of morphological identification of insect pests of rice crops using DNA barcoding. Mitochondrial DNA B 2018, 3, 1220–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.; Wei, Y.L.; Zhang, X.; Zhu, N.; Wang, Y.; Zhu, Y.; Zhang, H.P.; Li, F.M.; Yang, L.; Sun, J.Q.; et al. Barcode ITS2: A useful tool for identifying Trachelospermum jasminoides and a good monitor for medicine market. Sci. Rep. 2017, 7, 5037. [Google Scholar] [CrossRef]
- Sadoon, H.A.; Zahraa, T.A. A new method to convert the DNA Sequence of human to a QR code. ALRaf. J. Comput. Sci. Math. 2020, 13, 46–55. [Google Scholar]
- Kirichenko, N.; Augustin, S.; Kenis, M. Invasive leafminers on woody plants: A global review of pathways, impact, and management. J. Pest. Sci. 2019, 92, 93–106. [Google Scholar] [CrossRef] [Green Version]
Location/Province | Stage | Longitude/ Latitude * | Collection Date | Voucher | Host Plant | GenBank |
---|---|---|---|---|---|---|
Shenyang/Liaoning | Larva | 123°34′ E/ 41°49′ N | 14 May 2019 | ZTX-L-SY01 ~ ZTX-L-SY05 | Querus wutaishansea | MT905979 ~ MT905983 |
Pupa | 123°34′ E/ 41°49′ N | 25 May 2019 | ZTX-P-SY01 ~ ZTX-P-SY05 | MT905984 ~ MT905988 | ||
Yongji/Jilin | Larva | 126°30′E/ 43°39′N | 28 May 2019 | ZTX-L-YJ01 ~ ZTX-L-YJ05 | Querus mongolica | MT905989~ MT905993 |
pupa | 126°30′E/ 43°39′N | 4 June 2019 | ZTX-P-YJ01 ~ ZTX-P-YJ05 | MT905994 ~ MT905998 | ||
Jiamusi/Heilongjiang | Larva | 130°22′ E/ 46°48′ N | 31 May 2019 | ZTX-L-JMS01 ~ ZTX-L-JMS05 | Querus mongolica | MT905999~ MT906003 |
pupa | 130°22′ E/ 46°48′ N | 7 June 2019 | ZTX-P-JMS01 ~ ZTX-P-JMS05 | MT906004 ~ MT906008 |
Codon Site | T/% | C/% | A/% | G/% | A+T/% | G+C/% | AT Skew | GC Skew |
---|---|---|---|---|---|---|---|---|
1st site | 41.4 | 25.9 | 15.1 | 17.6 | 56.5 | 43.5 | −0.4655 | −0.1908 |
2nd site | 33.5 | 14.7 | 49.5 | 2.3 | 83.0 | 17.0 | 0.1928 | −0.7294 |
3rd site | 23.1 | 17.6 | 31.1 | 28.2 | 54.2 | 45.8 | 0.1476 | 0.2314 |
Average | 32.7 | 19.4 | 31.9 | 16.0 | 64.6 | 35.4 | −0.0124 | −0.0960 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.-S.; Ni, M.-Y.; Gu, Y.-J.; Xu, J.-S.; Jin, Y.; Zhang, J.-H.; Wang, Y.; Qin, L. Newly Emerging Pest in China, Rhynchaenusmaculosus (Coleoptera: Curculionidae): Morphology and Molecular Identification with DNA Barcoding. Insects 2021, 12, 568. https://doi.org/10.3390/insects12060568
Yang R-S, Ni M-Y, Gu Y-J, Xu J-S, Jin Y, Zhang J-H, Wang Y, Qin L. Newly Emerging Pest in China, Rhynchaenusmaculosus (Coleoptera: Curculionidae): Morphology and Molecular Identification with DNA Barcoding. Insects. 2021; 12(6):568. https://doi.org/10.3390/insects12060568
Chicago/Turabian StyleYang, Rui-Sheng, Ming-Yang Ni, Yu-Jian Gu, Jia-Sheng Xu, Ying Jin, Ji-Hui Zhang, Yong Wang, and Li Qin. 2021. "Newly Emerging Pest in China, Rhynchaenusmaculosus (Coleoptera: Curculionidae): Morphology and Molecular Identification with DNA Barcoding" Insects 12, no. 6: 568. https://doi.org/10.3390/insects12060568
APA StyleYang, R. -S., Ni, M. -Y., Gu, Y. -J., Xu, J. -S., Jin, Y., Zhang, J. -H., Wang, Y., & Qin, L. (2021). Newly Emerging Pest in China, Rhynchaenusmaculosus (Coleoptera: Curculionidae): Morphology and Molecular Identification with DNA Barcoding. Insects, 12(6), 568. https://doi.org/10.3390/insects12060568