Biological Control of Pest Non-Marine Molluscs: A Pacific Perspective on Risks to Non-Target Organisms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Historical Review: Biocontrol of Non-Marine Molluscs in Oceania
2.1. Euglandina “rosea” Species Complex
2.2. Platydemus manokwari
2.3. Sciomyzid Flies
2.4. Molluscan Biocontrol in Oceania: A Summary
2.5. We Don’t Do That Any More
3. Current Best Practices, Sarcophagid Flies, and Phasmarhabditis
3.1. Best Practices
3.2. Sarcophagid Flies
3.3. Phasmarhabditis spp.
3.4. Moraxella osloensis as a Human Pathogen
4. Defining Success in Modern Biocontrol
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumashiro, B.R.; Lai, P.Y.; Funasaki, G.Y.; Teramoto, K.K. Efficacy of Nephaspis amnicola and Encarsia haitiensis in controlling Aleurodiscus dispersus in Hawaii. Proc. Hawaii. Entomol. Soc. 1983, 24, 281–289. [Google Scholar]
- Kaufman, L.V.; Yalemar, J.; Wright, M.G. Classical biological control of the erythrina gall wasp, Quadrastichus erythrinae, in Hawaii: Conserving an endangered habitat. Biol. Control. 2020, 142, 104161. [Google Scholar] [CrossRef]
- Howarth, F.G. Classical biocontrol: Panacea or Pandora’s Box? Proc. Hawaii. Entomol. Soc. 1983, 24, 239–244. [Google Scholar]
- Howarth, F.G. Environmental impacts of classical biological control. Annu. Rev. Entomol. 1991, 36, 485–509. [Google Scholar] [CrossRef]
- Simberloff, D.; Stiling, P. Risks of species introduced for biological control. Biol. Conserv. 1996, 78, 185–192. [Google Scholar] [CrossRef]
- Simberloff, D.; Stiling, P. How risky is biological control? Ecology 1996, 77, 1965–1974. [Google Scholar] [CrossRef]
- Port, G.R.; Glen, D.M.; Symondson, W.O.C. Success in biological control of terrestrial molluscs. In Biological Control: Measures of Success; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2000; pp. 133–157. ISBN 978-0-412-84280-1. [Google Scholar]
- Christensen, C.C. Are Euglandina and Gonaxis effective agents for biological control of the Giant African Snail? Am. Malacol. Bull. 1984, 2, 98–99. [Google Scholar]
- Christensen, C.C. Should we open this can of worms? A call for caution regarding use of the nematode Phasmarhabditis hermaphrodita for control of pest slugs and snails in the United States. Tentacle 2019, 27, 2–4. [Google Scholar]
- Gagné, W.C.; Christensen, C.C. Conservation status of native terrestrial invertebrates in Hawaii. In Hawaii’s Terrestrial Ecosystems: Preservation and Management; Stone, C.P., Scott, J.M., Eds.; University of Hawaii Press: Honolulu, HI, USA, 1985; pp. 105–126. ISBN 978-0-8248-1048-1. [Google Scholar]
- Cowie, R.H. Evolution and extinction of Partulidae, endemic Pacific Island land snails. Philos. Trans. R. Soc. Lond. 1992, 335, 167–191. [Google Scholar] [CrossRef]
- Cowie, R.H. Can snails ever be effective and safe biocontrol agents? Int. J. Pest. Manag. 2001, 47, 23–40. [Google Scholar] [CrossRef]
- Cowie, R.H. Decline and homogenization of Pacific faunas: The land snails of American Samoa. Biol. Conserv. 2001, 99, 207–222. [Google Scholar] [CrossRef]
- Cowie, R.H. Snail predator now in Samoa. Tentacle 2002, 10, 18. [Google Scholar]
- Cowie, R.H.; Robinson, A.C. The decline of native Pacific Island faunas: Changes in the status of the land snails of Samoa through the 20th century. Biol. Conserv. 2003, 110, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Holland, B.S.; Christensen, C.C.; Hayes, K.A.; Cowie, R.H. Biocontrol in Hawaii: A response to Messing (2007). Proc. Hawaii. Entomol. Soc. 2008, 40, 81–83. [Google Scholar]
- Chiba, S.; Cowie, R.H. Evolution and extinction of land snails on Oceanic Islands. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 123–141. [Google Scholar] [CrossRef]
- Christensen, C.C.; Kahn, J.G. First records of the invasive predatory land snail Gulella (Huttonella) bicolor (Hutton, 1834) (Gastropoda: Streptaxidae) from the Society Islands, French Polynesia. Bishop Mus. Occas. Pap. 2017, 121, 1–11. [Google Scholar]
- Meyer, W.M., III; Yeung, N.W.; Slapcinsky, J.; Hayes, K.A. Two for one: Inadvertent introduction of Euglandina species during failed biocontrol efforts in Hawaii. Biol. Control. 2017, 19, 1399–1405. [Google Scholar] [CrossRef]
- Gerlach, J.; Barker, G.M.; Bick, C.S.; Bouchet, P.; Brodie, G.; Christensen, C.C.; Collins, T.; Coote, T.; Cowie, R.H.; Fiedler, G.C.; et al. Negative impacts of invasive predators used as biological control agents against the pest snail Lissachatina fulica: The snail Euglandina ‘rosea’ and the flatworm Platydemus manokwari. Biol. Invasions 2021, 23, 997–1031. [Google Scholar] [CrossRef]
- Pomeroy, D.E.; Laws, H.M. The distribution of introduced snails in South Australia. Rec. S. Aust. Mus. 1967, 15, 483–494. [Google Scholar]
- Sanderson, G.; Sirgel, W. Helicidae as pests in Australian and South African vineyards. In Molluscs as Crop Pests; Barker, G.M., Ed.; CAB International: Wallingford, UK, 2002; pp. 255–270. ISBN 0-85199-320-6. [Google Scholar]
- Pemberton, C.E. The Giant African Snail Achatina fulica (Fér.) discovered in Hawaii. Hawaii. Plant. Rec. 1938, 42, 135–140. [Google Scholar]
- Mead, A.R. The Giant African Snail: A Problem in Economic Malacology; University of Chicago Press: Chicago, IL, USA, 1961; ISBN 978-0-598-48991-3. [Google Scholar]
- Mead, A.R. Economic malacology with particular reference to Achatina fulica. In The Pulmonates; Fretter, V., Peake, J., Eds.; Academic Press: London, UK, 1979; Volume 2b, pp. 1–150. ISBN 978-0-12-267541-6. [Google Scholar]
- Barker, G.M.; Efford, M.G. Predatory gastropods as natural enemies of terrestrial gastropods and other invertebrates. In Natural Enemies of Terrestrial Molluscs; Barker, G.M., Ed.; CAB International: Wallingford, UK, 2004; pp. 279–403. ISBN 978-0-85199-319-5. [Google Scholar]
- Pemberton, C.E. Invertebrate Consultants Committee for the Pacific: Report for 1949–1954; Pacific Science Board, National Research Council: Washington, DC, USA, 1954. [Google Scholar]
- Funasaki, G.Y.; Lai, P.-Y.; Nakahara, L.M.; Beardsley, J.W.; Ota, A.K. A review of biological control introductions in Hawaii: 1890–1985. Proc. Hawaii. Entomol. Soc. 1988, 28, 105–160. [Google Scholar]
- Cowie, R.H. Catalog and bibliography of the nonindigenous nonmarine snails and slugs of the Hawaiian Islands. Bishop Mus. Occas. Pap. 1997, 50, 1–66. [Google Scholar]
- Mead, A.R. The proposed introduction of predatory snails into California. Nautilus 1955, 69, 37–40. [Google Scholar]
- Mead, A.R. Predators need defending. Nautilus 1956, 70, 65–69. [Google Scholar]
- Van der Schalie, H. Man meddles with nature—Hawaiian style. Biologist 1969, 51, 136–146. [Google Scholar]
- Murray, J.; Murray, E.; Johnson, M.S.; Clarke, B. The extinction of Partula on Moorea. Pac. Sci. 1988, 42, 150–153. [Google Scholar]
- Hajek, A.E.; Eilenberg, J. Natural Enemies. An. Introduction to Biological Control, 2nd ed.; Cambridge University Press: Cambridge, UK, 2018; ISBN 978-1-107-66824-9. [Google Scholar]
- Haponski, A.E.; Lee, T.; Foighil, D.Ó. Deconstructing an infamous extinction crisis: Survival of Partula species on Moorea and Tahiti. Evol. Appl. 2019, 12, 1017–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, B.; Murray, J.; Johnson, M.S. The extinction of native species by a program of biological control. Pac. Sci. 1984, 38, 97–104. [Google Scholar]
- Cowie, R.H. Non-indigenous land and freshwater molluscs in the islands of the Pacific: Conservation impacts and threats. In Invasive Species in the Pacific: A Technical Review and Draft Regional Strategy; Sherley, G., Ed.; South Pacific Regional Environment Program: Apia, Samoa, 2000; pp. 143–172. ISBN 982-04-0214-X. [Google Scholar]
- Hadfield, M.G.; Miller, S.E.; Carwile, A.H. The decimation of endemic Hawaiian tree snails by alien predators. Am. Zool. 1993, 33, 610–622. [Google Scholar] [CrossRef] [Green Version]
- Civeyrel, L.; Simberloff, D. A tale of two snails: Is the cure worse than the disease? Biodivers. Conserv. 1996, 5, 1231–1252. [Google Scholar] [CrossRef]
- Coote, T.; Loève, É. From 61 species to five: Endemic tree snails of the Society Islands fall prey to an ill-judged biological control programme. Oryx 2003, 37, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Régnier, C.; Fontaine, B.; Bouchet, P. Not knowing, not recording, not listing: Numerous unnoticed mollusk extinctions. Conserv. Biol. 2009, 23, 1214–1221. [Google Scholar] [CrossRef]
- Régnier, C.; Bouchet, P.; Hayes, K.A.; Yeung, N.W.; Christensen, C.C.; Chung, D.J.D.; Fontaine, B.; Cowie, R.H. Extinction in a hyperdiverse endemic Hawaiian land snail family and implications for the underestimation of invertebrate extinction. Conserv. Biol. 2015, 29, 1715–1723. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, J. Icons of Evolution: Pacific Island Tree-Snails of the Family Partulidae; Phelsuma Press: Cambridge, UK, 2016; ISBN 978-0-9932203-3-3. [Google Scholar]
- Cowie, R.H.; Régnier, C.; Fontaine, B.; Bouchet, P. Measuring the sixth extinction: What do mollusks tell us? Nautilus 2017, 131, 3–41. [Google Scholar]
- Cowie, R.H. Evolution, extinction and conservation of native Pacific Island land snails. In Imperiled: The Encyclopedia of Conservation; Elsevier: Oxford, UK, 2021. [Google Scholar] [CrossRef]
- Gould, S.J. Un-enchanted evening. Nat. Hist. 1991, 4–14. [Google Scholar]
- Bieler, R.; Slapcinsky, J. A case study for the development of an island fauna: Recent terrestrial mollusks of Bermuda. Nemouria 2000, 44, 1–100. [Google Scholar]
- Outerbridge, M.E.; Ovaska, K.; Garcia, G. Back from the brink—Recovery efforts for endemic land snails of Bermuda. Tentacle 2019, 27, 16–18. [Google Scholar]
- Outerbridge, M.E.; Ovaska, K.; Garcia, G. Recovery efforts for endemic Bermuda land snails continue. Tentacle 2021, 29, 9–12. [Google Scholar]
- Griffiths, O.; Cook, A.; Wells, S.M. The diet of the introduced carnivorous snail Euglandina rosea in Mauritius and its implications for threatened island gastropod faunas. J. Zool. 1993, 229, 79–89. [Google Scholar] [CrossRef]
- Muniappan, R.; Duhamel, G.; Santiago, R.M.; Acay, D.R. Giant African snail control in Bugsuk Island, Philippines, by Platydemus manokwari. Oléagineux 1986, 41, 181–186. [Google Scholar]
- Muniappan, R. Biological control of the giant African snail, Achatina fulica Bowdich, in the Maldives. FAO Plant. Bull. 1987, 35, 127–133. [Google Scholar]
- Muniappan, R. Use of the planarian, Platydemus manokwari, and other natural enemies to control the giant African snail. In The Use of Natural Enemies to Control Agricultural Pests; Bay-Peterson, J., Ed.; Food and Fertilizer Technology Center for the Asian and Pacific Region: Taipei, Taiwan, 1990; pp. 179–183. ISBN 978-9-57953-901-2. [Google Scholar]
- Muniappan, R. Biological control of the Giant African Snail. Alafua Agric. Bull. 1983, 8, 43–46. [Google Scholar]
- Purea, M.; Matalevea, S.; Bourke, T.; Hunter, D. Platydemus manokwari de Beauchamp, a flatworm predator of the giant African snail (Achatina fulica Bowdich) recorded in Samoa. J. S. Pac. Agric. 1998, 5, 71–72. [Google Scholar]
- Mori, H.; Inada, M.; Chiba, S. Conservation programmes for endemic land snails in the Ogasawara Islands: Captive breeding and control of invasive species. Tentacle 2020, 28, 23–27. [Google Scholar]
- Okochi, I.; Sato, H.; Ohbayashi, T. The cause of mollusk decline in the Ogasawara Islands. Biodivers. Conserv. 2004, 13, 1465–1475. [Google Scholar] [CrossRef]
- Ohbayashi, T.; Okochi, I.; Sato, H.; Ono, T. Food habit of Platydemus manokwari De Beauchamp, 1961 (Tricladida: Terricola: Rhynchodemidae), known as a predatory flatworm of land snails in the Ogasawara (Bonin) Islands, Japan. Appl. Entomol. Zool. 2005, 40, 609–614. [Google Scholar] [CrossRef] [Green Version]
- Ohbayashi, T.; Okochi, I.; Sato, H.; Ono, T.; Chiba, S. Rapid decline of endemic snails in the Ogasawara Islands, western Pacific Ocean. Appl. Entomol. Zool. 2007, 42, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, S.; Okochi, I.; Tamada, H. High predation pressure by an introduced flatworm on land snails on the oceanic Ogasawara Islands. Biotropica 2006, 38, 700–703. [Google Scholar] [CrossRef]
- Sugiura, S.; Yamaura, Y. Potential impacts of the invasive flatworm Platydemus manokwari on arboreal snails. Biol. Invasions 2009, 11, 737–742. [Google Scholar] [CrossRef]
- Iwai, N.; Sugiura, S.; Chiba, S. Predation impacts of the invasive flatworm Platydemus manokwari on eggs and hatchlings of land snails. J. Molluscan Stud. 2010, 76, 275–278. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, S. Prey preference and gregarious attacks by the invasive flatworm Platydemus manokwari. Biol. Invasions 2010, 12, 1499–1507. [Google Scholar] [CrossRef]
- Justine, J.-L.; Winsor, L.; Barrière, P.; Fanai, C.; Gey, D.; Han, A.W.K.; La Quay-Velazquez, G.; Lee, B.P.Y.-H.; Lefevre, J.-M.; Meyer, J.-Y.; et al. The invasive land planarian Platydemus manokwari (Platyhelminthes, Geoplanidae): Records from six new localities, including the first in the USA. PeerJ 2015, e1037:1–e1037:20. [Google Scholar] [CrossRef] [Green Version]
- EDDMapS. New Guinea Flatworm. Platydemus manokwari De Beauchamp. 1963. Early Detection & Distribution Mapping System. The University of Georgia—Center for Invasive Species and Ecosystem Health. 2020. Available online: http://www.eddmaps.org/ (accessed on 23 September 2020).
- Justine, J.-L.; Winsor, L.; Gey, D.; Gros, P.; Thévonot, J. The invasive New Guinea flatworm Platydemus manokwari in France, the first record for Europe: Time for action is now. PeerJ 2014, e297:1–e297:22. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Yang, M.; Ye, E.R.; Ye, Y.; Niu, Y. First record of the New Guinea flatworm Platydemus manokwari (Platyhelminthes, Geoplanidae) as an alien species in Hong Kong Island, China. Zookeys 2019, 873, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Justine, J.-L.; Winsor, L. First record of presence of the invasive land flatworm Platydemus manokwari (Platyhelminthes, Geoplanidae) in Guadeloupe. Preprints 2020, 2020050023:1–2020050023:8. [Google Scholar] [CrossRef]
- Knutson, L.V.; Vala, J.-C. Biology of Snail-Killing Sciomyzidae Flies; Cambridge University Press: Cambridge, UK, 2011; ISBN 978-0-521-86785-6. [Google Scholar]
- Berg, C.O. Snail control in trematode diseases: The possible value of sciomyzid larvae, snail-killing Diptera. Adv. Parasitol. 1964, 2, 259–309. [Google Scholar] [CrossRef]
- Barker, G.M.; Knutson, L.; Vala, J.-C.; Coupland, J.B.; Barnes, J.K. Overview of the biology of marsh flies (Diptera: Sciomyzidae), with special reference to predator and parasitoids of terrestrial gastropods. In Natural Enemies of Terrestrial Molluscs; Barker, G.M., Ed.; CAB International: Wallingford, UK, 2004; pp. 159–225. ISBN 978-0-85199-319-5. [Google Scholar]
- Berg, C.O. Sciomyzid larvae that feed in snails. J. Parasitol. 1953, 39, 630–636. [Google Scholar] [CrossRef]
- Berg, C.O. Biological control of snail-borne diseases: A review. Exp. Parasitol. 1973, 33, 318–330. [Google Scholar] [CrossRef]
- Alicata, J.E. Parasitic infections of man and animals in Hawaii. Hawaii Agric. Exp. Stn. Coll. Agric. Univ. Hawaii Tech. Bull. 1964, 61, 1–138. [Google Scholar]
- Alicata, J.E. Observations on parasites of domestic animals in Micronesia. Pac. Sci. 1948, 2, 65–66. [Google Scholar]
- Nafus, D.; Schreiner, I. Biological control activities in the Mariana Islands from 1911 to 1988. Micronesica 1989, 22, 65–106. [Google Scholar]
- Hardy, D.E. Homoneura vs. Sciomyza in Hawaii (Diptera). Proc. Hawaii. Entomol. Soc. 1950, 14, 73. [Google Scholar]
- Hardy, D.E.; Delfinado, M.D. Insects of Hawaii. Volume 13. Diptera: Cyclorrhapha III Series Schizophora, Section Acalypterae, Exclusive of Family Drosophilidae; The University Press of Hawaii: Honolulu, HI, USA, 1980; ISBN 978-0-8248-0341-4. [Google Scholar]
- Christensen, C.C.; Hayes, K.A.; Yeung, N.W. Taxonomy, conservation, and the future of native aquatic snails in the Hawaiian Islands. Diversity 2021, 13, 215. [Google Scholar] [CrossRef]
- United States Fish and Wildlife Service. Endangered and threatened wildlife and plants: Determination of threatened status for Newcomb’s snail from the Hawaiian Islands. Fed. Regist. 2000, 65, 4162–4169. [Google Scholar]
- United States Fish and Wildlife Service. Recovery Plan: Oahu Tree Snails of the Genus Achatinella; U.S. Fish and Wildlife Service, Region 1: Portland, OR, USA, 1993; pp. i–vi, 1–64, A1–A64. [Google Scholar]
- United States Fish and Wildlife Service. Endangered and threatened wildlife and plants; determination of endangered status for 38 species on Molokai, Lanai, and Maui. Final rule. Fed. Regist. 2013, 78, 32014–32065. [Google Scholar]
- United States Fish and Wildlife Service. Endangered and threatened wildlife and plants; endangered status for 16 species and threatened status for 7 species in Micronesia. Final rule. Fed. Regist. 2015, 80, 59424–59497. [Google Scholar]
- United States Fish and Wildlife Service. Endangered and threatened wildlife and plants: Endangered status for five species from American Samoa. Final rule. Fed. Regist. 2016, 81, 65466–65508. [Google Scholar]
- United States Fish & Wildlife Service. Recovery Plan for the Newcomb’s Snail (Erinna newcombi); U.S. Fish and Wildlife Service: Portland, OR, USA, 2006; pp. i–vi, 1–52. [Google Scholar]
- Messing, R.H. Alien invaders in Hawaii: Prospects for remediation using biological control. Proc. Hawaii. Entomol. Soc. 2007, 39, 95–98. [Google Scholar]
- Ogden, L.E. Biocontrol 2.0: A shifting risk-benefit balance. BioScience 2020, 70, 17–22. [Google Scholar] [CrossRef]
- Frank, J.H. How risky is biological control? Comment. Ecology 1998, 79, 1829–1834. [Google Scholar] [CrossRef]
- Messing, R.H.; Wright, M.G. Biological control of invasive species: Solution or pollution? Front. Ecol. Environ. 2006, 4, 132–140. [Google Scholar] [CrossRef]
- Babendreier, B. Pros and cons of biological control. In Biological Invasions; Nentwig, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 403–418. ISBN 978-3-540-36920-2. [Google Scholar]
- Fosberg, F.R. Conservation situation in Oceania. In Proceedings of the Ninth Pacific Science Congress of the Pacific Science Association, Bangkok, Thailand, 18 November–9 December 1957; Volume 7, pp. 30–31, Conservation: 1959. [Google Scholar]
- Lai, P.-Y. Biological control: A positive point of view. Proc. Hawaii. Entomol. Soc. 1988, 28, 179–190. [Google Scholar]
- Roskov, Y.; Ower, G.; Orrell, T.; Nicolson, D.; Bailly, N.; Kirk, P.M.; Bourgoin, T.; DeWalt, R.E.; Decock, W.; van Nieukerken, E.; et al. Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist; Species 2000: Leiden, The Netherlands. Available online: www.catalogueoflife.org/annual-checklist/2019 (accessed on 15 May 2021).
- Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.B.; Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 2011, 9, e1001127:1–e1001127:8. [Google Scholar] [CrossRef] [Green Version]
- IPPC (International Plant Protection Convention). Guidelines for the Export, Shipment, Import and Release of Biological Control. Agents and Other Beneficial Organisms; International Standards for Phytosanitary Measures no 3; FAO: Rome, Italy, 2017. [Google Scholar]
- Balciunas, J.K. Code of best practices for classical biological control of weeds. In Proceedings of the X International Symposium on Biological Control of Weeds, Montana State University, Bozeman, MT, USA, 4–14 July 1999; Spencer, N.T., Ed.; United States Department of Agriculture, Agricultural Research Services: Sidney, MT, USA, 2000; p. 435. [Google Scholar]
- Balciunas, J.K. Four years of “Code of Best Practices”: Has it had an impact? In Proceedings of the XI International Symposium on Biological Control of Weeds, Canberra, Australia, 27 April–2 May 2003; Cullen, J.M., Briese, D.T., Kriticos, D.J., Lonsdale, W.M., Morin, L., Scott, J.K., Eds.; CSIRO Entomology: Canberra, Australia, 2004; pp. 258–260. [Google Scholar]
- United States Fish and Wildlife Service. Managing Invasive Plants: Concepts, Principles, and Practices. 2019. Available online: https://www.fws.gov/invasives/stafftrainingmodule/methods/biological/practice.html (accessed on 24 September 2020).
- Van Driesche, R.G.; Reardon, R. Assessing Host Ranges for Parasitoids and Predators Used for Classical Biological Control: A Guide to Best Practice; U.S. Department of Agriculture Forest Health Technology Enterprise Team: Morgantown, WV, USA, 2004. [Google Scholar]
- Balciunas, J.K.; Coombs, E.M. International code of best practices for classical biological control of weeds. In Biological Control of Invasive Plants in the United States; Oregon State University Press: Corvallis, OR, USA, 2004; pp. 130–136. ISBN 978-0-87071-029-2. [Google Scholar]
- Baker, G.H. The biology and control of White Snails (Mollusca: Helicidae), introduced pets in Australia. Commonw. Sci. Ind. Res. Organ. Aust. Div. Entomol. Tech. Pap. 1986, 25, 1–31. [Google Scholar]
- Baker, G.H. Helicidae and Hygromiidae as pests in cereal crops and pastures in southern Australia. In Molluscs as Crop Pests; Barker, G.M., Ed.; CAB International: Wallingford, UK, 2002; pp. 193–215. ISBN 978-0-85199-320-1. [Google Scholar]
- Coupland, J.B.; Barker, G.M. Diptera as predators and parasitoids of terrestrial gastropods, with emphasis on Phoridae, Calliphoridae, Sarcophagidae, Muscidae and Fanniidae. In Natural Enemies of Terrestrial Molluscs; Barker, G.M., Ed.; CABI Publishing: Wallingford, UK, 2004; pp. 85–158. ISBN 978-0-85199-319-5. [Google Scholar]
- Baker, G.; Charwat, S. Release of fly spells disaster for snails. Farming Ahead 2000, 105, 49. [Google Scholar]
- Coupland, J.B.; Baker, G.H. Search for biological control agents of invasive Mediterranean snails. In Biological Control: A Global Perspective; Vincent, C., Goettel, M.S., Lazarovits, G., Eds.; CABI Publishing: Wallingford, UK, 2007; pp. 7–12. ISBN 978-1-84593-265-7. [Google Scholar]
- Jourdan, M.; Thomann, T.; Kriticos, D.J.; Bon, M.-C.; Sheppard, A.; Baker, G.H. Sourcing effective biological control agents of conical snails, Cochlicella acuta, in Europe and north Africa for release in southern Australia. Biol. Control. 2019, 134, 1–14. [Google Scholar] [CrossRef]
- Thomann, T.; Jourdan, M.; Richet, R.; Sheppard, A.; Baker, G.H. Parasitism of the conical snail, Cochlicella acuta, by the fly, Sarcophaga villeveuveana, in South-Western Europe. BioControl 2020, 65, 673–679. [Google Scholar] [CrossRef]
- Jourdan, M.; Thomann, T.; Richet, R.; Fendane, Y.; Ghamizi, M.; Bon, M.-C.; Sheppard, A.; Baker, G.H. Genetic variability in the parasitic fly, Sarcophaga villeneuveana, in Southwestern Europe and Morocco. BioControl 2020, 65, 59–70. [Google Scholar] [CrossRef]
- Perry, K.; Brodie, H.; Baker, G.; Nash, M.; Muirhead, K.; Micic, S. Movement, Breeding, Baiting and Biocontrol of Mediterranean Snails. Australian Government, Grains Research & Development Corporation. Available online: https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2021/02/movement,-breeding,-baiting-and-biocontrol-of-mediterranean-snails (accessed on 15 May 2021).
- Wilson, M.; Rae, R. Phasmarhabditis hermaphrodita as a control agent for slugs. In Nematode Pathogenesis of Insects and Other Pests; Campos-Herrera, R., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 509–521. ISBN 978-3-319-18265-0. [Google Scholar]
- Tandingan De Ley, I.; McDonnell, R.; Paine, T.D.; De Ley, P. Phasmarhabditis: The slug and snail parasitic nematodes in North America. In Biocontrol Agents. Entomopathogenic and Slug Parasitic Nematodes; Abd-Elgawad, M.M.M., Coupland, J., Eds.; CAB International: Wallingford, UK, 2017; pp. 560–578. ISBN 978-1-78639-000-4. [Google Scholar]
- Rae, R.; Verdun, C.; Grewal, P.S.; Robertson, J.F.; Wilson, M.J. Biological control of terrestrial molluscs using Phasmarhabditis hermaphrodita—Progress and prospects. Pest. Manag. Sci. 2007, 63, 1153–1164. [Google Scholar] [CrossRef]
- Genena, M.A.M.; Mostafa, F.A.M.; Fouly, A.H.; Yousel, A.A. First record for the slug parasitic nematode, Phasmarhabditis hermaphrodita (Schneider) in Egypt. Arch. Phytopathol. Plant. Prot. 2011, 44, 340–345. [Google Scholar] [CrossRef]
- Wilson, M.J.; Burch, G.; Tourna, M.; Aalders, L.T.; Barker, G.M. The potential of a New Zealand strain of Phasmarhabditis hermaphrodita for biological control of slugs. N. Z. Plant. Prot. 2012, 65, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Tandingan De Ley, I.; McDonnell, R.D.; Lopez, S.; Paine, T.D.; De Ley, P. Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae), a potential biocontrol agent, isolated for the first time from invasive slugs in North America. Nematology 2014, 16, 1129–1138. [Google Scholar] [CrossRef]
- McDonnell, R.J.; Lutz, M.S.; Howe, D.K.; Denver, D.R. First report of the gastropod-killing nematode, Phasmarhabditis hermaphrodita, in Oregon, U.S.A. J. Nematol. 2018, 50, 77–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morand, S.; Wilson, M.J.; Glen, D.M. Nematode parasites. In Natural Enemies of Terrestrial Molluscs; Barker, G.M., Ed.; CAB International: Wallingford, UK, 2004; pp. 525–557. ISBN 978-0-85199-319-5. [Google Scholar]
- Stevens, G.; Lewis, E. Status of entomopathogenic nematodes in integrated pest management strategies in the USA. In Biocontrol Agents. Entomopathogenic and Slug Parasitic Nematodes; Abd-Elgawan, M.M.M., Coupland, J., Eds.; CAB International: Wallingford, UK, 2017; pp. 289–311. ISBN 978-1-78639-000-4. [Google Scholar]
- Howe, D.K.; Ha, A.D.; Colton, A.; Tandingan De Ley, I.; Rae, R.G.; Ross, J.; Wilson, M.; Nermut, J.; Zhao, Z.; McDonnell, R.J.; et al. Phylogenetic evidence for the invasion of a commercialized European Phasmarhabditis hermaphrodita lineage into North America and New Zealand. PLoS ONE 2020, e0237249. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, R.; Tandingan De Ley, I.T.; Paine, T.D. Susceptibility of neonate Lissachatina fulica (Achatinidae: Mollusca) to a US strain of the nematode Phasmarhabditis hermaphrodita (Rhabditidae: Nematoda). Biocontrol. Sci. Technol. 2018, 28, 1091–1095. [Google Scholar] [CrossRef]
- Brown, A.P.; Barker, A.; Hopkins, A.; Nelson, D. Application of Phasmarhabditis hermaphrodita (Nemaslug) to commercial broad acre crops. IOBC WPRS Bull. 2011, 64, 99–104. [Google Scholar]
- The Environmental Factor. Nemaknights Biological Slug Control. 2020. Available online: https://environmentalfactor.com/product/nemaknights-biological-slug-control (accessed on 6 February 2020).
- Talwana, H.; Sibanda, Z.; Wanjohi, W.; Kimenju, W.; Luambano-Nyoni, N.; Massawe, C.; Manzanilla-López, R.H.; Davies, K.G.; Hunt, D.J.; Sikora, R.A.; et al. Agricultural nematology in East and Southern Africa: Problems, management strategies and stakeholder linkages. Pest. Manag. Sci. 2016, 72, 226–245. [Google Scholar] [CrossRef]
- Tandingan De Ley, I.; Schurkman, J.; Wilan, C.; Dillman, A.R. Mortality of the invasive white garden snail Theba pisana exposed to three US isolates of Phasmarhabditis spp. (P. hermaphrodita, P. californica, and P. papillosa). PLoS ONE 2020, e0228244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, K.S.D.; Stephens, C.; Bistline-East, A.; Williams, C.D.; McDonnell, R.J.; Carnaghi, M.; Huallacháin, D.Ó.; Gormally, M.J. Biological control of pestiferous slugs using Tetanocera elata (Fabricius) (Diptera: Sciomyzidae): Larval behavior and feeding on slugs exposed to Phasmarhabditis hermaphrodita (Schneider, 1859). Biol. Control. 2019, 135, 1–8. [Google Scholar] [CrossRef]
- Bathon, H. Impact of entomopathogenic nematodes on non-target hosts. Biocontrol Sci. Technol. 1996, 6, 421–434. [Google Scholar] [CrossRef]
- Wilson, M.J.; Hughes, L.A.; Hamacher, G.M.; Glen, D.M. Effects of Phasmarhabditis hermaphrodita on non-target molluscs. Pest. Manag. Sci. 2000, 56, 711–716. [Google Scholar] [CrossRef]
- MacMillan, K.; Haukeland, S.; Rae, R.; Youg, I.; Crawford, J.; Hapca, S.; Wilson, M. Dispersal patterns and behavior of the nematode Phasmarhabditis hermaphrodita in mineral soils and organic media. Soil Biol. Biochem. 2009, 41, 1483–1490. [Google Scholar] [CrossRef]
- Askary, T.H. Nematodes as biocontrol agents. In Sociology, Organic Farming, Climate Change and Soil Science; Lichtfouse, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 347–378. ISBN 978-90-481-3333-8. [Google Scholar]
- Antzée-Hyllseth, H.; Trandem, N.; Torp, T.; Haukeland, S. Prevalence and parasite load of nematodes in an invasive slug and its susceptibility to a slug parasitic nematode compared to native gastropods. J. Invertebr. Pathol. 2020, 173, 107372:1–107372:7. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, G.; Rae, R. The gastropod parasitic nematode Phasmarhabditis hermaphrodita does not affect non-target freshwater snails Lymnaea stagnalis, Bithynia tentaculata and Planorbarius corneus. Nematology 2015, 17, 679–683. [Google Scholar] [CrossRef]
- Carnaghi, M.; Rae, R.; Tandingan De Ley, I.; Johnston, E.; Kindermann, G.; McDonnell, R.; O’Hanlon, A.; Reich, I.; Sheahan, J.; Williams, C.D.; et al. Nematode associates and susceptibility of a protected slug (Geomalacus maculosus) to four biocontrol nematodes. Biocontrol Sci. Technol. 2017, 27, 294–299. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.J.; Grewal, P.S. Biology, production and formulation of slug-parasitic nematodes. In Nematodes as Biocontrol Agents; Grewal, P.S., Ehlers, R.-U., Shapiro-Ilan, D.I., Eds.; CAB International: Wallingford, UK, 2005; pp. 421–429. ISBN 978-0-85199-017-0. [Google Scholar]
- Mason, C.F. Snail populations, beech litter production and the role of snails in litter decomposition. Oecologia 1970, 5, 215–239. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, T.; Hättenschwiler, S.; Handa, I.T. Snail and millipede complementarily in decomposing Mediterranean forest leaf litter mixtures. Funct. Ecol. 2010, 24, 937–946. [Google Scholar] [CrossRef]
- Meyer, W.M., III; Ostertag, R.; Cowie, R.H. Influence of terrestrial molluscs on litter decomposition and nutrient release in a Hawaiian rain forest. Biotropica 2013, 45, 719–727. [Google Scholar] [CrossRef]
- Hubricht, L. The distributions of the native land mollusks of the eastern United States. Fieldiana Zool. New Ser. 1985, 14, i–viii, 1–191. [Google Scholar]
- Solem, A.; Climo, F.M. Structure and habitat of sympatric New Zealand land snail species. Malacologia 1985, 26, 1–30. [Google Scholar]
- Durkan, T.H.; Yeung, N.W.; Meyer, W.M., III; Hayes, K.A.; Cowie, R.H. Evaluating the efficacy of land snail survey techniques in Hawaii: Implications for conservation throughout the Pacific. Biodivers. Conserv. 2013, 22, 3223–3232. [Google Scholar] [CrossRef]
- McDonnell, R.J.; Colton, A.J.; Howe, D.K.; Denver, D.R. Lethality of four species of Phasmarhabditis (Nematoda: Rhabditidae) to the invasive slug, Deroceras reticulatum (Gastropoda: Agriolimacidae) in laboratory infectivity trials. Biol. Control. 2020, 150, 104349:1–104349:6. [Google Scholar] [CrossRef]
- Egleton, M.; Erdos, Z.; Raymond, B.; Matthews, A.C. Relative efficacy of biological control and cultural management for control of mollusc pests in cool climate vineyards. Biocontrol Sci. Technol. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Bøvre, K. Oxidase positive bacteria in the human nose, incidence and species distribution, as diagnosed by genetic transformation. Acta Pathol. Microbiol. Scand. Sect. B Microbiol. Immunol. 1970, 78, 780–784. [Google Scholar] [CrossRef]
- Adapa, S.; Gumaste, P.; Konala, V.M.; Agrawal, N.; Garcha, A.S.; Dhingra, H. Peritonitis due to Moraxella osloensis: An emerging pathogen. Case Rep. Nephrol. 2018, 4968371:1–4968371:3. [Google Scholar] [CrossRef] [Green Version]
- Yamada, A.; Kasahara, K.; Ogawa, Y.; Samejima, K.; Eriguchi, M.; Yano, H.; Mikasa, K.; Tsuruya, K. Peritonitis due to Moraxella osloensis: A case report and literature review. J. Infect. Chemother. 2019, 25, 1050–1052. [Google Scholar] [CrossRef]
- Maayen, H.; Cohen-Poradosu, R.; Helperin, E.; Rudensky, B.; Schlesinger, Y.; Yinnon, A.M.; Raveh, D. Infective endodarditis due to Moraxella lacunata: Report of 4 patients and review of published cases of Moraxella endocarditis. Scand. J. Infect. Dis. 2004, 36, 878–881. [Google Scholar] [CrossRef]
- Gagnard, J.-C.; Hidri, N.; Grillon, A.; Jesel, L.; Denes, E. Moraxella osloensis, an emerging pathogen of endocarditis in immunocompromised patients? Swiss Med. Wkly. 2015, 145, w14185:1–w14185:4. [Google Scholar] [CrossRef]
- Roh, K.H.; Kim, C.K.; Koh, E.; Kim, M.S.; Yong, D.; Park, S.C.; Lee, K.; Chong, Y. Three cases of Moraxella osloensis meningitis: A difficult experience in species identification and determination of clinical significance. J. Korean Med. Sci. 2010, 25, 501–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox-Lewis, A.; Coltart, G.; Rice, S.; Sen, R.; Gourtsoyannis, Y.; Hyare, H.; Gupta, R.K. Extensive subclinical sinusitis leading to Moraxella osloensis meningitis. IDCases 2016, 6, 39–42. [Google Scholar] [CrossRef] [Green Version]
- Sugarman, B.; Clarridge, J. Osteomyelitis caused by Moraxella osloensis. J. Clin. Microbiol. 1982, 15, 1148–1149. [Google Scholar] [CrossRef] [Green Version]
- Alkhatib, N.J.; Younis, M.H.; Alobaidi, A.S.; Shaath, N.M. An unusual osteomyelitis caused by Moraxella osloensis: A case report. Int. J. Surg. Case Rep. 2017, 41, 146–149. [Google Scholar] [CrossRef] [PubMed]
- McSwiney, T.J.; Knowles, S.J.; Murphy, C.C. Clinical and microbiological characteristics of Moraxella keratitis. Br. J. Opthalmol. 2019, 103, 1704–1709. [Google Scholar] [CrossRef]
- LaCroce, S.J.; Wilson, M.N.; Romanowski, J.E.; Newman, J.D.; Jhanji, V.; Shanks, R.M.Q.; Kowaski, R.P. Moraxella nonliquefaciens and M. osloensis are important Moraxella species that cause ocular infections. Microorganisms 2019, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.S.; Ruth, A.; Coffin, S.E. Infection due to Moraxella osloensis: Case report and review of the literature. Clin. Infect. Dis. 2000, 30, 179–181. [Google Scholar] [CrossRef]
- Graham, D.R.; Band, J.D.; Thornberry, C.; Hollis, D.G.; Weaver, R.E. Infection caused by Moraxella, Moraxella urethralis, Moraxella-like groups M-5 and M-6, and Kingella kingae in the United States, 1953–1980. Rev. Infect. Dis. 1990, 12, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Nickle, W.R.; Drea, J.J.; Coulson, J.R. Guidelines for introducing beneficial insect-parasitic nematodes into the United States. Ann. Appl. Nematol. 1988, 2, 50–56. [Google Scholar]
- Kaya, H.K.; Gaugler, R. Entomopathogenic nematodes. Annu. Rev. Entomol. 1993, 38, 181–206. [Google Scholar] [CrossRef]
- Rizvi, A.S.; Hennessey, R.; Knott, D. Legislation on the introduction of exotic nematodes in the US. Biocontrol Sci. Technol. 1996, 6, 477–480. [Google Scholar] [CrossRef]
- Gaugler, R. Ecological considerations in the biological control of soil-inhabiting insects with entomopathogenic nematodes. Agric. Ecosyst. Environ. 1988, 24, 351–360. [Google Scholar] [CrossRef]
- Barbercheck, M.E.; Millar, L.C. Environmental impacts of entomopathogenic nematodes used for biological control in soil. In Nontarget Effects of Biological Control; Follett, P.A., Duan, J.J., Eds.; Kluwer: Boston, MA, USA, 2000; pp. 287–308. ISBN 978-0-7923-7725-2. [Google Scholar]
- Devi, G.; George, J. Formulation of insecticidal nematode. Annu. Res. Rev. Biol. 2018, 24, 1–10. [Google Scholar] [CrossRef]
- Rae, R.G.; Tourna, M.; Wilson, M.J. The slug parasitic nematode Phasmarhabditis hermaphrodita associates with complex and variable bacterial assemblages that do not affect its virulence. J. Invertebr. Pathol. 2010, 104, 222–226. [Google Scholar] [CrossRef]
- Rae, R. My favorite nematode—Phasmarhabditis hermaphrodita. Nematology 2019, 21, 1–4. [Google Scholar] [CrossRef]
- Havens, K.; Jolls, C.L.; Knight, T.M.; Vitt, P. Risks and rewards: Assessing the effectiveness and safety of classical invasive plant biocontrol by arthropods. BioScience 2019, 69, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Britz, R.; Hundsdörfer, A.; Fritz, U. Funding, Training, Permits—The three big challenges of taxonomy. Megataxa 2020, 1, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Régnier, C.; Achaz, G.; Lambert, A.; Cowie, R.H.; Bouchet, P.; Fontaine, B. Mass extinction in poorly known taxa. Proc. Natl. Acad. Sci. USA 2015, 112, 7761–7766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimm, S.L.; Raven, P.H. The state of the World’s biodiversity. In Biological Extinction: New Perspectives; Dasgupta, P., Raven, P.H., McIvor, A.L., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 80–112. ISBN 978-1-108-48228-8. [Google Scholar]
- Heimpel, G.E.; Mills, N.J. Biological Control. Ecology and Applications; Cambridge University Press: Cambridge, UK, 2017; ISBN 9780521845144. [Google Scholar]
- Pointier, J.P. Invading freshwater gastropods: Some conflicting aspects for public health. Malacologia 1999, 41, 403–411. [Google Scholar]
- Pointier, J.P.; Augustin, D. Biological control and invading freshwater snails: A case study. C. R. Acad. Sci. III 1999, 322, 1093–1098. [Google Scholar] [CrossRef]
- Pointier, J.P.; Jourdane, J. Biological control of the snail hosts of schistosomiasis in areas of low transmission: The example of the Caribbean area. Acta Trop. 2000, 77, 53–60. [Google Scholar] [CrossRef]
- Fernandez, M.A.; Thiengo, S.C.; Simone, L.R. Distribution of the introduced freshwater snail Melanoides tuberculatus [sic] (Gastropoda: Thiaridae) in Brazil. Nautilus 2003, 117, 78–82. [Google Scholar]
- Almeida, P.R.S.; Nascimento Filho, S.L.; Viana, G.F.S. Effects of invasive species snails in continental aquatic bodies of Pernambucano semiarid. Acta Limnol. Bras. 2018, 30, e103:1–e103:10. [Google Scholar] [CrossRef] [Green Version]
- Pinto, H.A.; Melo, A.L. A checklist of trematodes (Platyhelminthes) transmitted by Melanoides tuberculata (Mollusca: Thiaridae). Zootaxa 2011, 2799, 15–28. [Google Scholar] [CrossRef] [Green Version]
1. Ensure target weed’s potential impact justifies release of non-endemic agents |
2. Obtain multi-agency approval for target |
3. Select agents with potential to control target |
4. Release safe and approved agents |
5. Ensure only the intended agent is released |
6. Use appropriate protocols for release and documentation |
7. Monitor impact on target |
8. Stop releases of ineffective agents, or when control is achieved |
9. Monitor impacts on potential non-targets |
10. Encourage assessment of changes in plant and animal communities |
11. Monitor interaction among agents |
12. Communicate results to public |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christensen, C.C.; Cowie, R.H.; Yeung, N.W.; Hayes, K.A. Biological Control of Pest Non-Marine Molluscs: A Pacific Perspective on Risks to Non-Target Organisms. Insects 2021, 12, 583. https://doi.org/10.3390/insects12070583
Christensen CC, Cowie RH, Yeung NW, Hayes KA. Biological Control of Pest Non-Marine Molluscs: A Pacific Perspective on Risks to Non-Target Organisms. Insects. 2021; 12(7):583. https://doi.org/10.3390/insects12070583
Chicago/Turabian StyleChristensen, Carl C., Robert H. Cowie, Norine W. Yeung, and Kenneth A. Hayes. 2021. "Biological Control of Pest Non-Marine Molluscs: A Pacific Perspective on Risks to Non-Target Organisms" Insects 12, no. 7: 583. https://doi.org/10.3390/insects12070583
APA StyleChristensen, C. C., Cowie, R. H., Yeung, N. W., & Hayes, K. A. (2021). Biological Control of Pest Non-Marine Molluscs: A Pacific Perspective on Risks to Non-Target Organisms. Insects, 12(7), 583. https://doi.org/10.3390/insects12070583