Temporal Viability of Aedes aegypti and Aedes albopictus Eggs Using Two Hygroscopic Substances as Preservatives under a Sterile Insect Technique (SIT) Program in Southern Mexico
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquito Rearing
2.2. Treatments
2.3. Egg Collections
2.4. Statistical Analysis
3. Results
3.1. Hatching Tendency of Eggs over Time
3.2. Dependency of Hyalurosmooth® and Hydrolyzed Collagen on Aedes Eggs
3.3. Temporal Viability of Aedes Eggs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilder-Smith, A.; Gubler, D.J.; Weaver, S.C.; Monath, T.P.; Heymann, D.L.; Scott, T.W. Epidemic arboviral diseases: Priorities for research and public health. Lancet Infect. Dis. 2017, 17, e101–e106. [Google Scholar] [CrossRef] [Green Version]
- Powell, J.R. Perspective piece mosquito-borne human viral diseases: Why Aedes aegypti? Am. J. Trop. Med. Hyg. 2018, 98, 1563–1565. [Google Scholar] [CrossRef]
- Rochlin, I.; Faraji, A.; Ninivaggi, D.V.; Barker, C.M.; Kilpatrick, A.M. Anthropogenic impacts on mosquito populations in North America over the past century. Nat. Commun. 2016, 7, 1–14. [Google Scholar] [CrossRef]
- Brown, J.E.; Evans, B.R.; Zheng, W.; Obas, V.; Barrera-Martinez, L.; Egizi, A.; Zhao, H.; Caccone, A.; Powell, J.R. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution 2014, 68, 514–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, M.U.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.; Shearer, F.M.; Barker, C.M.; Moore, C.H.; Carvalho, R.G.; Coelho, G.E.; Bortel, W.V.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 2015, 4, 1–18. [Google Scholar] [CrossRef]
- Achee, N.L.; Gould, F.; Perkins, T.A.; Reiner, R.C.; Morrison, A.C.; Ritchie, S.A.; Gubler, D.J.; Teyssou, R.; Scott, T.W. A Critical Assessment of Vector Control for Dengue Prevention. PLoS Negl. Trop. Dis. 2015, 9, 1–19. [Google Scholar] [CrossRef]
- Fernández-Salas, I.; Danis-Lozano, R.; Casas-Martínez, M.; Ulloa, A.; Bond, J.G.; Marina, C.F.; López-Ordóñez, T.; Elizondo-Quiroga, A.; Torres-Monzón, J.A.; Díaz-González, E.E. Historical inability to control Aedes aegypti as a main contributor of fast dispersal of chikungunya outbreaks in Latin America. Antivir. Res. 2015, 124, 30–42. [Google Scholar] [CrossRef]
- Karunamoorthi, K.; Sabesan, S. Insecticide Resistance in Insect Vectors of Disease with Special Reference to Mosquitoes: A Potential Threat to Global Public Health. Health Scope 2013, 2, 4–18. [Google Scholar] [CrossRef] [Green Version]
- Lees, R.S.; Gilles, J.R.; Hendrichs, J.; Vreysen, M.J.; Bourtzis, K. Back to the future: The sterile insect technique against mosquito disease vectors. Curr. Opin. Insect Sci. 2015, 10, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Gouagna, L.C.; Damiens, D.; Oliva, C.F.; Boyer, S.; Le Goff, G.; Brengues, C.; Dehecq, J.-S.; Raude, J.; Simard, F.; Fontenille, D. Strategic Approach, Advances, and Challenges in the Development and Application of the SIT for Area-Wide Control of Aedes albopictus Mosquitoes in Reunion Island. Insects 2020, 11, 770. [Google Scholar] [CrossRef]
- Padmaja, K.; Sundara, G. Chemical nature of the corionic pad of the egg of Aedes aegypti. Mosq. News 1981, 41, 674–676. Available online: https://www.biodiversitylibrary.org/content/part/JAMCA/MN_V41_N4_P674-676.pdf (accessed on 11 July 2021).
- Bond, J.G.; Ramírez-Osorio, A.; Marina, C.F.; Fernández-Salas, I.; Liedo, P.; Dor, A.; Williams, T. Efficiency of two larval diets for mass-rearing of the mosquito Aedes aegypti. PLoS ONE 2017, 12, e0187420. [Google Scholar] [CrossRef] [Green Version]
- Bond, J.G.; Osorio, A.R.; Avila, N.; Gómez-Simuta, Y.; Marina, C.F.; Fernández-Salas, I.; Liedo, P.; Dor, A.; Carvalho, D.O.; Bourtzis, K.; et al. Optimization of irradiation dose to Aedes aegypti and Ae. albopictus in a sterile insect technique program. PLoS ONE 2019, 14, e0212520. [Google Scholar] [CrossRef]
- Christophers, S. Aedes aegypti (L.) the Yellow Fever Mosquito: Its Life History, Bionomics and Structure; Cambridge University Press: London, UK, 1960; pp. 131–157. [Google Scholar]
- Dickerson, C.Z. The Effects of Temperature and Humidity on the Eggs of Aedes aegypti (L.) and Aedes albopictus (Skuse) in Texas. Doctoral Thesis, Texas A&M University, Dallas, TX, USA, 2007. Available online: https://core.ac.uk/download/pdf/147132063.pdf (accessed on 5 August 2021).
- Rao, B.B.; Harikumar, P.S.; Jayakrishnan, T.; George, B. Characteristics of Aedes (Stegomyia) albopictus Skuse (Diptera: Culicidae) breeding sites. Southeast Asian J. Trop. Med. Public Health 2011, 42, 1077–1182. [Google Scholar]
- Ratnasari, A.; Jabal, A.R.; Syahribulan, S.; Idris, I.; Rahma, N.; Rustam, S.N.R.N.; Karmila, M.; Hasan, H.; Wahid, I. Salinity tolerance of larvae Aedes aegypti inland and coastal habitats in Pasangkayu, West Sulawesi, Indonesia. Biodiversitas 2021, 22, 1203–1210. [Google Scholar] [CrossRef]
- Raminani, L.N.; Cupp, E.W. Early embryology of Aedes aegypti (L.) (Diptera: Culicidae). Int. J. Insect Morphol. Embryol. 1975, 4, 517–528. [Google Scholar] [CrossRef]
- Braks, M.A.H.; Honório, N.A.; Lounibos, L.P.; Lourenço-De-Oliveira, R.; Juliano, S.A. Interspecific Competition Between Two Invasive Species of Container Mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Ann. Entomol. Soc. Am. 2004, 97, 130–139. [Google Scholar] [CrossRef]
- Bella, J.; Brodsky, B.; Berman, H.M. Hydration structure of a collagen peptide. Structure 1995, 3, 893–906. [Google Scholar] [CrossRef] [Green Version]
- Alvarado-Castro, V.; Paredes-Solís, S.; Nava-Aguilera, E.; Morales-Pérez, A.; Alarcón-Morales, L.; Balderas-Vargas, N.A.; Andersson, N. Assessing the effects of interventions for Aedes aegypti control: Systematic review and meta-analysis of cluster randomised controlled trials. BMC Public Health 2017, 17, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, M.L.; Zhang, D.J.; Damiens, D.D.; Lees, R.S.; Gilles, J.R.L. Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae)—II—Egg storage and hatching. Parasites Vectors 2015, 8, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO; IAEA. Guidelines for Routine Colony Maintenance of Aedes Mosquito Species, Version 1.0; FAO/IAEA: Vienna, Austria, 2017. Available online: http://www-naweb.iaea.org/nafa/ipc/public/guidelines-for-routine-colony-maintenance-of-Aedes-mosquito-species-v1.0.pdf (accessed on 13 December 2021).
- Medici, A.; Carrieri, M.; Scholte, E.J.; Maccagnani, B.; Dindo, M.L.; Bellini, R. Studies on Aedes albopictus larval mass-rearing optimization. J. Econ. Entomol. 2011, 104, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Munstermann, L.E. Care and Maintenance of Aedes Mosquito Colonies. In The Molecular Biology of Insect Disease Vectors; Springer: Dordrecht, The Netherlands, 2007; pp. 13–20. [Google Scholar]
- Alvarado-Moreno, M.S.; Laguna-Aguilar, M.; Sanchez-Rodriguez, O.S.; Sanchez-Casas, R.M.; Ramirez-Jimenez, R.; Zarate-Nahón, E.A.; Achee, N.; Grieco, J.P.; Fernandez-Salas, I. Potential community-based control by use of plastic film to block Aedes aegypti (L.) egg adhesion. Southwest Entomol. 2013, 38, 605–614. [Google Scholar] [CrossRef] [Green Version]
Ae. aegypti Analysis of Variance for Hatching | Ae. albopictus¥ Analysis of Variance for Hatching | |||||
---|---|---|---|---|---|---|
Degrees of Freedom | F-Value | p-Value | Degrees of Freedom | F-Value | p-Value | |
Treatments | 2 | 10.56 | 0.000 | 2 | 15.23 | 0.000 |
Storage time | 5 | 28.25 | 0.000 | 4 | 23.91 | 0.000 |
Repetitions | 2 | 0.10 | 0.909 | 2 | 0.04 | 0.957 |
Treatment × storage time | 10 | 1.11 | 0.369 | 8 | 3.96 | 0.001 |
Treatment × repetitions | 4 | 0.23 | 0.918 | 4 | 0.18 | 0.949 |
Storage time × repetitions | 10 | 0.29 | 0.980 | 8 | 0.30 | 0.964 |
Treatment × storage time | 20 | 0.49 | 0.962 | 16 | 0.35 | 0.989 |
repetitions | ||||||
Total | 125 | 119 | ||||
R2 | 76.59% | 55.10% | ||||
Coefficient/SE | T-value | p-value | Coefficient/SE | F-Value | p-value | |
Hyalurosmooth® | 0.3719/0.0830 | 4.48 | 0.000 | −0.4656/0.0844 | −5.52 | 0.000 |
Hydrolyzed collagen | 0.0381/0.0830 | 0.46 | 0.647 | 0.0625/0.0888 | 0.59 | 0.556 |
Hatching | ||||||||
---|---|---|---|---|---|---|---|---|
n | Slope ± SE | HT50 (Days) | C.I. (95%) | χ2 | p-Value | Goodness-of-Fit χ2 | p-Value | |
Hyalurosmooth® | ||||||||
0.42% | 33 | −0.0123 ± 0.0016 | 151.03 | 124.80–195.27 | 59.791 | <0.001 | 10.234 | 0.017 |
0.83% | 33 | −0.0128 ± 0.0014 | 131.82 | 111.79–163.16 | 77.796 | <0.001 | 3.695 | 0.296 |
1.67% | 33 | −0.0166 ± 0.0015 | 107.28 | 94.84–124.77 | 131.854 | <0.001 | 14.475 | <0.001 |
Hydrolyzed collagen | ||||||||
1% | 33 | −0.0185 ± 0.0015 | 99.11 | 88.86–113.02 | 159.577 | <0.001 | 5.978 | 0.113 |
3% | 33 | −0.0184 ± 0.0015 | 97.40 | 87.47–110.81 | 167.889 | <0.001 | 17.630 | <0.001 |
5% | 33 | −0.0142 ± 0.0014 | 121.12 | 104.59–145.79 | 97.071 | <0.001 | 16.148 | <0.001 |
Control | 33 | −0.0184 ± 0.0014 | 91.65 | 82.79–103.41 | 183.713 | <0.001 | 1.808 | 0.613 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-García, E.N.; Díaz-González, E.E.; Marina, C.F.; Bond, J.G.; Rodríguez-Rojas, J.J.; Ponce-García, G.; Sánchez-Casas, R.M.; Fernández-Salas, I. Temporal Viability of Aedes aegypti and Aedes albopictus Eggs Using Two Hygroscopic Substances as Preservatives under a Sterile Insect Technique (SIT) Program in Southern Mexico. Insects 2022, 13, 15. https://doi.org/10.3390/insects13010015
Martínez-García EN, Díaz-González EE, Marina CF, Bond JG, Rodríguez-Rojas JJ, Ponce-García G, Sánchez-Casas RM, Fernández-Salas I. Temporal Viability of Aedes aegypti and Aedes albopictus Eggs Using Two Hygroscopic Substances as Preservatives under a Sterile Insect Technique (SIT) Program in Southern Mexico. Insects. 2022; 13(1):15. https://doi.org/10.3390/insects13010015
Chicago/Turabian StyleMartínez-García, Eunice Nayeli, Esteban E. Díaz-González, Carlos F. Marina, J. Guillermo Bond, Jorge J. Rodríguez-Rojas, Gustavo Ponce-García, Rosa M. Sánchez-Casas, and Ildefonso Fernández-Salas. 2022. "Temporal Viability of Aedes aegypti and Aedes albopictus Eggs Using Two Hygroscopic Substances as Preservatives under a Sterile Insect Technique (SIT) Program in Southern Mexico" Insects 13, no. 1: 15. https://doi.org/10.3390/insects13010015
APA StyleMartínez-García, E. N., Díaz-González, E. E., Marina, C. F., Bond, J. G., Rodríguez-Rojas, J. J., Ponce-García, G., Sánchez-Casas, R. M., & Fernández-Salas, I. (2022). Temporal Viability of Aedes aegypti and Aedes albopictus Eggs Using Two Hygroscopic Substances as Preservatives under a Sterile Insect Technique (SIT) Program in Southern Mexico. Insects, 13(1), 15. https://doi.org/10.3390/insects13010015