Antifungal Activity of Benzoquinones Produced by Tribolium castaneum in Maize-Associated Fungi
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Benzoquinones
2.2. Fungal Species
2.3. Disk Diffusion Assays
2.4. Evaluation of Inhibitory/Lethal Activities
2.5. Statistical Analyses
3. Results
3.1. Disk Diffusion Assays
3.2. Lethal Assays
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tribolium Genome Sequencing Consortium. The genome of the model beetle Tribolium castaneum. Nature 2008, 452, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Hagstrum, D.W.; Subramanyam, B.H. Stored-Product Insect Resource; AACC International: St. Paul, MN, USA, 2009. [Google Scholar]
- Zettler, L.J. Pesticide resistance in Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae) from flour mills in the United States. J. Econom. Entomol. 1991, 84, 763–767. [Google Scholar] [CrossRef]
- Boyer, S.; Zhang, H.; Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 2012, 102, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Opit, G.P.; Phillips, T.W.; Aikins, M.J.; Hasan, M.M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 2012, 105, 1107–1114. [Google Scholar] [CrossRef]
- Upadhyay, N.; Dwivedy, A.K.; Kumar, M.; Prakash, B.; Dubey, N.K. Essential oils as eco-friendly alternatives to synthetic pesticides for the control of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Essent. Oil-Bear. Plants 2018, 21, 282–297. [Google Scholar] [CrossRef]
- Gautam, S.G.; Opit, G.P. Phosphine resistance in eggs of Tribolium castaneum and Plodia interpunctella from almond storage facilities in the Central Valley of California. IOBC/WPRS Bull. 2015, 111, 41–49. [Google Scholar]
- Unruh, L.M.; Xu, R.; Kramer, K.J. Benzoquinone levels as a function of age and gender of the red flour beetle, Tribolium castaneum. Insect Biochem. Mol. Biol. 1998, 28, 969–977. [Google Scholar] [CrossRef]
- Loconti, J.D.; Roth, L.M. Composition of the odorous secretion of Tribolium castaneum. Ann. Entomol. Soc. Am. 1953, 46, 281–289. [Google Scholar] [CrossRef]
- Villaverde, M.L.; Juarez, M.P.; Mijailovsky, S. Detection of Tribolium castaneum (Herbst) volatile defensive secretions by solid phase microextraction–capillary gas chromatography (SPME-CGC). J. Stored Prod. Res. 2007, 43, 540–545. [Google Scholar] [CrossRef]
- IARC and WHO (Group 3) (International Agency for Research on Cancer and World Health Organization). Summaries & Evaluations. 1,4-benzoquinone (para-quinone) (Group 3); CAS No.: 106-51-4; IARC: Lyon, France, 1999; pp. 1245–1250. [Google Scholar]
- Yezerski, A.; Ciccone, C.; Rozitski, J.; Volingavage, B. The effects of a naturally produced benzoquinone on microbes common to flour. J. Chem. Ecol. 2007, 33, 1217–1225. [Google Scholar] [CrossRef]
- Rafaluk-Mohra, C.; Wagner, S.; Joop, G. Cryptic changes in immune response and fitness in Tribolium castaneum as a consequence of coevolution with Beauveria bassiana. J. Invertebr. Pathol. 2018, 152, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Schildknecht, H.; Holoubek, K.; Weis, K.H.; Krämer, H. Defensive substances of arthropods, their isolation and identification. Angew. Chem. Internat. 1964, 3, 73–156. [Google Scholar] [CrossRef]
- Tschinkel, W.R. A comparative study of the chemical defensive system of tenebrionid beetles: Chemistry of the secretions. J. Insect Physiol. 1975, 21, 753–783. [Google Scholar] [CrossRef]
- Blum, M.S. Chemical Defenses of Arthropods; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Howard, R.W. Chemosystematic studies of the Triboliini (Coleoptera: Tenebrionidae): Phylogenetic inferences from the defensive chemicals of eight Tribolium spp., Palorus ratzeburgi (Wissmann), and Latheticus oryzae Waterhouse. Ann. Entomol. Soc. Am. 1987, 80, 398–405. [Google Scholar] [CrossRef]
- Eisner, T.; Eisner, M.; Attygalle, A.B.; Deyrup, M.; Meinwald, J. Rendering the inedible edible: Circumvention of a millipede’s chemical defense by a predaceous beetle larva (Phengodidae). Proc. Natl. Acad. Sci. USA 1998, 95, 1108–1113. [Google Scholar] [CrossRef]
- Pedrini, N.; Villaverde, M.L.; Fuse, C.B.; Bello, G.M.D.; Juárez, M.P. Beauveria bassiana infection alters colony development and defensive secretions of the beetles Tribolium castaneum and Ulomoides dermestoides (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2010, 103, 1094–1099. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, N.; Ortiz-Urquiza, A.; Huarte-Bonnet, C.; Fan, Y.; Juárez, M.P.; Keyhani, N.O. Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen. Proc. Natl. Acad. Sci. USA 2015, 112, 3651–3660. [Google Scholar] [CrossRef]
- Rafaluk, C.; Yang, W.; Mitschke, A.; Rosenstiel, P.; Schulenburg, H.; Joop, G. Highly potent host external immunity acts as a strong selective force enhancing rapid parasite virulence evolution. Environ. Microbiol. 2017, 19, 2090–2100. [Google Scholar] [CrossRef]
- Sawada, M.; Sano, T.; Hayakawa, K.; Sirasoonthorn, P.; Oi, T.; Miura, K. Benzoquinone synthesis-related genes of Tribolium castaneum confer the robust antifungal host defense to the adult beetles through the inhibition of conidial germination on the body surface. J. Invertebr. Pathol. 2020, 169, 107298. [Google Scholar] [CrossRef]
- Mondal, K.A.M.S.H. Response of T. castaneum larvae to aggregation pheromone and quinones produced by adult conspecifics. Int. Pest Control 1985, 27, 64–66. [Google Scholar]
- Thiruppathi, S. Characterization of Volatile Organic Compounds Released by Stored Product Grain Insects. Master’s Thesis, The University of Manitoba, Winnipeg, MB, Canada, 2010. [Google Scholar]
- Verheggen, F.; Ryne, C.; Olsson, P.O.; Arnaud, L.; Lognay, G.; Högberg, H.E.; Persson, D.; Haubruge, E.; Löfstedt, C. Electrophysiological and behavioral activity of secondary metabolites in the confused flour beetle, Tribolium confusum. J. Chem. Ecol. 2007, 33, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Duehl, A.J.; Arbogast, R.T.; Teal, P.E.A. Density-related volatile emissions and responses in the red flour beetle, Tribolium castaneum. J. Chem. Ecol. 2011, 37, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Andersen, B. Food and Indoor Fungi; CBS-KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2010. [Google Scholar]
- Mannaa, M.; Oh, J.Y.; Kim, K.D. Microbe-mediated control of Aspergillus flavus in stored rice grains with a focus on aflatoxin inhibition and biodegradation. Ann. Appl. Biol. 2017, 171, 376–392. [Google Scholar] [CrossRef]
- Faustini, D.L.; Burkholder, W.E. Quinone-aggregation pheromone interaction in the red flour beetle. Anim. Behav. 1987, 35, 601–603. [Google Scholar] [CrossRef]
- Haines, C.P. Insects and Arachnids of Tropical Stored Products: Their Biology and Identification; Natural Resources Institute (NRI): London, UK, 1991. [Google Scholar]
- Hilário, C. Interação Entre Tribolium castaneum (Herbst) e Fungos Produtores de Micotoxinas. Master’s Thesis, Instituto Superior de Agronomia da Universidade de Lisboa, Lisbon, Portugal, 2020. [Google Scholar]
- Tomás, J. Interação Entre Tribolium castaneum (Herbst) (Coleoptera, Tenebrionidae) com Fungos associados a Farinha de Milho Armazenado. Master’s Thesis, Instituto Superior de Agronomia da Universidade de Lisboa, Lisbon, Portugal, 2021. [Google Scholar]
- Ficker, C.E.; Arnason, J.T.; Vindas, P.S.; Alvarez, L.P.; Akpagana, K.; Gbeassor, M.; De Souza, C.; Smith, M.L. Inhibition of human pathogenic fungi by ethnobotanically selected plant extracts. Mycoses 2003, 46, 29–37. [Google Scholar] [CrossRef]
- Goughenour, K.D.; Balada-Llasat, J.-M.; Rappleye, C.A. Quantitative microplate-based growth assay for determination of antifungal susceptibility of Histoplasma capsulatum yeasts. J. Clin. Microbiol. 2015, 53, 3286–3295. [Google Scholar] [CrossRef]
- Castillo, I.F.; Guillén, E.G.; Fuente, J.M.; Silva, F.; Mitchell, S.G. Preventing fungal growth on heritage paper with antifungal and cellulase inhibiting magnesium oxide nanoparticles. J. Mater. Chem. B 2019, 7, 6412–6419. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R. RStudio; PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 15 July 2022).
- Poveda, J. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biol. Control 2021, 159, 104634. [Google Scholar] [CrossRef]
- Duarte, S.; Magro, A.; Tomás, J.; Hilário, C.; Alvito, P.; Ferreira, R.B.; Carvalho, M.O. The interaction between Tribolium castaneum and mycotoxigenic Aspergillus flavus in maize flour. Insects 2021, 12, 730. [Google Scholar] [CrossRef]
- Sitara, U.; Niaz, I.; Naseem, J.; Sultana, N. Antifungal effect of essential oils on in vitro growth of pathogenic fungi. Pak. Agric. Res. Counc. 2008, 40, 409–414. [Google Scholar]
- Parveen, S.; Wani, A.H.; Ganie, A.A.; Pala, S.A.; Mir, R.A. Antifungal activity of some plant extracts on some pathogenic fungi. Arch. Phytopathol. Plant Prot. 2013, 47, 279–284. [Google Scholar] [CrossRef]
- Abbaszadeh, S.; Sharifzadeh, A.; Shokri, H.; Khosravi, A.R.; Abbaszadeh, A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J. Mycol. Med. 2014, 24, 51–56. [Google Scholar] [CrossRef]
- Simpanya, M.F.; Allotey, J.; Mpuchane, S. Insect and mycoflora interaction in maize flour. Afr. J. Food Sci. 2001, 1, 3–8. [Google Scholar]
- Dunkel, F.V. The relationship of insects to the deterioration of stored grain by fungi. Int. J. Food Microbiol. 1988, 7, 227–244. [Google Scholar] [CrossRef]
- MacFarlane, D.J.; Aitken, E.A.; Ridley, A.W.; Walter, G.H. The dietary relationships of Tribolium castaneum (Herbst) with microfungi. J. Appl. Entomol. 2020, 145, 158–169. [Google Scholar] [CrossRef]
- Lopes, B.R.; Laumann, R.A.; Blassioli-Moraes, M.C.; Borges, M.; Faria, M. The fungistatic and fungicidal effects of volatiles from metathoracic glands of soybean-attacking stink bugs (Heteroptera: Pentatomidae) on the entomopathogen Beauveria bassiana. J. Invertebr. Pathol. 2015, 132, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Clerk, G.C.; Badu-Yeboah, K. A possible mode of dispersal of contaminant fungi of maize grains by Sitophilus zeamais Linn and Tribolium castaneum. Afr. J. Food Sci. 1996, 1, 3–8. [Google Scholar]
- Hubert, J.; Stejskal, V.; Athanassiou, G.C.; Throne, E. Health hazards associated with arthropod infestation of stored product. Ann. Rev. Entomol. 2018, 63, 553–573. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Zhang, L.; He, L.; Zhang, Z.; Zhang, T.; Mu, W.; Lin, J.; Liu, F. Toxicological effects of the fungal volatile compound 1-octen-3-ol against the red flour beetle, Tribolium castaneum (Herbst). Ecotoxicol. Environ. Saf. 2021, 208, 111597. [Google Scholar] [CrossRef] [PubMed]
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef]
- Medina, A.; Rodriguez, A.; Magan, N. Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front. Microbiol. 2014, 5, 348. [Google Scholar] [CrossRef] [PubMed]
- Vasudeva, R.; Sutter, A.; Sales, K.; Dickinson, M.E.; Lumley, A.J.; Gage, M.J. Adaptive thermal plasticity enhances sperm and egg performance in a model insect. eLife 2019, 1, e49452. [Google Scholar] [CrossRef]
T. castaneum Adult (μg) n = 1 | T. castaneum Adult (μg) n = 200 | Final Concentration (μg/μL) | ||
---|---|---|---|---|
B1 | BQ | 45 | 9000 | 300 |
B2 | EBQ | 27 | 5400 | 180 |
MBQ | 18 | 3600 | 120 |
Fungal Species | Spores Concentration (n.º of Spores/mL) |
---|---|
Aspergillus flavus | 1.1 × 106 |
fumigatus | 1.3 × 106 |
A. niger | 1.9 × 106 |
Fusarium sp. | 3.6 × 106 |
Penicillium sp. | 1.1 × 106 |
Trichoderma sp. | 2.8 × 106 |
Fungi | A. flavus | A. fumigatus | A. niger | Fusarium sp. | Penicillium sp. | Trichoderma sp. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BZQ | B1 | B2 | B1 | B2 | B1 | B2 | B1 | B2 | B1 | B2 | B1 | B2 |
Day 1 | 4.8 ± 0.2 a | 4.4 ± 0.2 a | 5.5 ± 0.3 a | 5.1 ± 0.2 a | 3.4 ± 0.2 a | 3.4 ± 0.2 a | 5.3 ± 0.2 a | 5.0 ± 0.3 a | 5.0 ± 0.1 a | 4.8 ± 0.2 a | 4.7 ± 0.4 a | 4.2 ± 0.2 a |
Day 2 | 3.8 ± 0.2 b | 3.2 ± 0.2 b | 3.9 ± 0.3 b | 3.7 ± 0.3 b | 2.4 ± 0.5 b | 2.6 ± 0.5 b | 4.7 ± 0.2 b | 4.4 ± 0.3 b | 4.6 ± 0.1 b | 4.4 ± 0.2 b | 2.7 ± 0.3 b | 2.6 ± 0.0 b |
Day 3 | 2.8 ± 0.3 c | 2.0 ± 0.7 c | 2.9 ± 0.4 c | 3.0 ± 0.3 c | 1.8 ± 0.8 c | 1.8 ± 0.8 c | 4.0 ± 0.3 c | 3.8 ± 0.4 c | 4.2 ± 0.1 c | 4.1 ± 0.3 bc | 0.0 ± 0.0 c | 0.0 ± 0.0 c |
Day 4 | 1.9 ± 0.3 d | 1.3 ± 0.5 d | 2.3 ± 0.3 d | 2.6 ± 0.2 d | 0.0 ± 0.0 d | 0.0 ± 0.0 d | 3.1 ± 0.2 d | 3.1 ± 0.6 d | 4.0 ± 0.2 d | 3.8 ± 0.5 cd | ||
Day 5 | 1.2 ± 0.6 e | 0.0 ± 0.0 f | 1.9 ± 0.5 e | 2.1 ± 0.3 e | 2.2 ± 0.3 e | 2.3 ± 0.7 e | 3.6 ± 0.4 e | 3.7 ± 0.6 cd | ||||
Day 6 | 0.0 ± 0.0 f | 0.0 ± 0.0 f | 0.0 ± 0.0 f | 0.0 ± 0.0 f | 0.8 ± 0.9 f | 1.1 ± 1.2 fg | 3.1 ± 0.2 f | 3.4 ± 0.8 cd | ||||
Day 7 | 0.2 ± 0.5 fg | 0.5 ± 1.2 g | 2.7 ± 0.3 g | 3.2 ± 0.8 de | ||||||||
Day 8 | 0.0 ± 0.0 g | 0.4 ± 1.1 g | 2.4 ± 0.3 gh | 3.1 ± 0.9 de | ||||||||
Day 9 | 0.0 ± 0.0 g | 0.3 ± 0.9 g | 2.3 ± 0.2 h | 2.8 ± 0.7 e | ||||||||
Day 10 | 0.0 ± 0.0 g | 0.3 ± 0.9 g | 2.3 ± 0.2 h | 2.8 ± 0.7 e |
Fungal Species | BZQ | Peripheral Zone | Transition Zone | Central Zone |
---|---|---|---|---|
Fusarium sp. | B2 | 1 | 1 | 1 |
Penicillium sp. | B1 | 1 | 1 | 1 |
B2 | 1 | 1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, S.; Magro, A.; Tomás, J.; Hilário, C.; Ferreira, R.B.; Carvalho, M.O. Antifungal Activity of Benzoquinones Produced by Tribolium castaneum in Maize-Associated Fungi. Insects 2022, 13, 868. https://doi.org/10.3390/insects13100868
Duarte S, Magro A, Tomás J, Hilário C, Ferreira RB, Carvalho MO. Antifungal Activity of Benzoquinones Produced by Tribolium castaneum in Maize-Associated Fungi. Insects. 2022; 13(10):868. https://doi.org/10.3390/insects13100868
Chicago/Turabian StyleDuarte, Sónia, Ana Magro, Joanna Tomás, Carolina Hilário, Ricardo Boavida Ferreira, and Maria Otília Carvalho. 2022. "Antifungal Activity of Benzoquinones Produced by Tribolium castaneum in Maize-Associated Fungi" Insects 13, no. 10: 868. https://doi.org/10.3390/insects13100868
APA StyleDuarte, S., Magro, A., Tomás, J., Hilário, C., Ferreira, R. B., & Carvalho, M. O. (2022). Antifungal Activity of Benzoquinones Produced by Tribolium castaneum in Maize-Associated Fungi. Insects, 13(10), 868. https://doi.org/10.3390/insects13100868