Identity, Prevalence, and Pathogenicity of Entomopathogenic Fungi Infecting Invasive Polistes (Vespidae: Polistinae) Paper Wasps in New Zealand
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site, Sample and Nest Collection
2.2. Fungal Identification
2.2.1. DNA Extraction, Sequencing and Phylogenetics
2.2.2. Morphological Characterisation
2.3. Prevalence of Fungi in Wild Nests
2.4. Infection Bioassays
3. Results
3.1. Fungi Identification
3.2. Prevalence of Fungi in Wild Nests
3.3. Infection Bioassays
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, A.S. Causation and disease: The Henle-Koch postulates revisited. Yale J. Biol. Med. 1976, 49, 175–195. [Google Scholar]
- Fredericks, D.N.; Relman, D.A. Sequence-based identification of microbial pathogens: A reconsideration of Koch’s postulates. Clin. Microbiol. Rev. 1996, 9, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Inglis, T.J.J. Principia ætiologica: Taking causality beyond Koch’s postulates. J. Med. Microbiol. 2007, 56, 1419–1422. [Google Scholar] [CrossRef]
- Hill, A.B. The environment and disease: Association or causation? Proc. R. Soc. Med. 1965, 58, 295–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrd, A.L.; Segre, J.A. Infectious disease: Adapting Koch’s postulates. Science 2016, 351, 224–226. [Google Scholar] [CrossRef] [PubMed]
- May, R.M.; Anderson, R.M. Epidemiology and genetics in the coevolution of parasites and hosts. Proc. R. Soc. B Biol. Sci 1983, 219, 281–313. [Google Scholar] [CrossRef]
- Joop, G.; Vilcinskas, A. Coevolution of parasitic fungi and insect hosts. Zoology 2016, 119, 350–358. [Google Scholar] [CrossRef]
- Lu, H.L.; Leger, R.J., St. Insect immunity to entomopathogenic fungi. In Genetics and Molecular Biology of Entomopathogenic Fungi; Lovett, B., Leger, R.J., St., Eds.; Advances in genetics; Elsevier: Amsterdam, The Netherlands, 2016; Volume 94, pp. 251–285. ISBN 0065-2660. [Google Scholar]
- Woolhouse, M.E.J.; Webster, J.P.; Domingo, E.; Charlesworth, B.; Levin, B.R. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat. Genet. 2002, 32, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Cummings, N.J. Entomopathogenic Fungi in New Zealand Native Forests: The Genera Beauveria and Isaria. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2009. [Google Scholar]
- Rose, E.A.F.; Harris, R.J.; Glare, T.R. Possible pathogens of social wasps (Hymenoptera: Vespidae) and their potential as biological control agents. N. Z. J. Zool. 1999, 26, 179–190. [Google Scholar] [CrossRef]
- Mhlongwe, T.R. The Search for a Biological Control Agent to Control Invasive Polistes dominula Wasps in the Western Cape Region, South Africa. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2018. [Google Scholar]
- Mayorga-Ch, D.; Castro-Cortés, N.C.; Rodríguez, C.; Sarmiento, C.E. Behavioral responses of the social wasp Polistes myersi to prey infected with fungi used in biological control. J. Insect Behav. 2021, 34, 136–149. [Google Scholar] [CrossRef]
- Harris, R.J.; Harcourt, S.J.; Glare, T.R.; Rose, E.A.F.; Nelson, T.J. Susceptibility of Vespula vulgaris (Hymenoptera: Vespidae) to generalist entomopathogenic fungi and their potential for wasp control. J. Invertebr. Pathol. 2000, 75, 251–258. [Google Scholar] [CrossRef]
- Goettel, M.; Eilenberg, J.; Glare, T. Entomopathogenic fungi and their role in regulation of insect populations. In Comprehensive Molecular Insect Science; Gilbert, L.I., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 6, pp. 361–405. ISBN 978-360-444-51924-51925. [Google Scholar]
- Vega, F.; Meyling, N.; Luangsa-Ard, J.; Blackwell, M. Fungal entomopathogens. In Insect Pathology, 2nd ed.; Vega, F.E., Kaya, H.K., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 171–220. ISBN 978-170-112-384984-384987. [Google Scholar]
- Blackwell, M. Fungal evolution and taxonomy. BioControl 2010, 55, 7–16. [Google Scholar] [CrossRef]
- Mora, M.A.E.; Castilho, A.M.C.; Fraga, M.E. Classification and infection mechanism of entomopathogenic fungi. Arq. Inst. Biol. 2018, 84, 0552015. [Google Scholar] [CrossRef] [Green Version]
- Inglis, G.D.; Goettel, M.S.; Butt, T.M.; Strasser, H. Use of hyphomycetous fungi for managing insect pests. In Fungi as Biocontrol Agents: Progress, Problems and Potential; Butt, T.M., Jackson, C., Magan, N., Eds.; CABI Publishing: Wallingford, UK, 2001; pp. 23–69. ISBN 978-971-84593-84300-84595. [Google Scholar]
- Hajek, A.E. Fungi and microsporidia. In Natural Enemies: An Introduction to Biological Control; Cambridge University Press: Cambridge, UK, 2004; pp. 203–214. ISBN 9780511187148. [Google Scholar]
- Khachatourians, G.G.; Qazi, S.S. Entomopathogenic fungi: Biochemistry and molecularbiology. In Human and Animal Relationships; Brakhage, A.A., Zipfel, P.F., Eds.; The Mycota; Springer: Berlin/Heidelberg, Germany, 2008; pp. 33–61. ISBN 978-973-662-10373-10379. [Google Scholar]
- Boucias, D.G.; Pendland, J.C. Attachment of mycopathogens to cuticle: The initial event of mycoses in Arthropod hosts. In The Fungal Spore and Disease Initiation in Plants and Animals; Cole, G.T., Hoch, H.C., Eds.; Springer: Boston, MA, USA, 1991; pp. 101–127. ISBN 978-101-4899-2635-4897. [Google Scholar]
- Pedrini, N. Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: Perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies. Fungal Biol. 2018, 122, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Urquiza, A.; Keyhani, N. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 2013, 4, 357–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannino, M.C.; Huarte-Bonnet, C.; Davyt-Colo, B.; Pedrini, N. Is the insect cuticle the only entry gate for fungal infection? Insights into alternative modes of action of entomopathogenic fungi. J. Fungus 2019, 5, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, D.; Rice, S.; Leemon, D.; Godwin, R.; James, P. Development of a mycoinsecticide bait formulation for the control of house flies, Musca domestica L. Insects 2020, 11, 47. [Google Scholar] [CrossRef] [Green Version]
- Jaronski, S.T. Mass production of entomopathogenic fungi: State of the art. In Mass Production of Beneficial Organisms; Morales-Ramos, J.A., Rojas, M.G., Shapiro-Ilan, D.I., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 357–413. ISBN 978-350-312-391453-391458. [Google Scholar]
- Kumar, K.K.; Sridhar, J.; Murali-Baskaran, R.K.; Senthil-Nathan, S.; Kaushal, P.; Dara, S.K.; Arthurs, S. Microbial biopesticides for insect pest management in India: Current status and future prospects. J. Invertebr. Pathol. 2019, 165, 74–81. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Jaronski, S.T. The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 2016, 32, 117. [Google Scholar] [CrossRef]
- Jaronski, S.T. Ecological factors in the inundative use of fungal entomopathogens. BioControl 2010, 55, 159–185. [Google Scholar] [CrossRef]
- Beggs, J.R.; Brockerhoff, E.G.; Corley, J.C.; Kenis, M.; Masciocchi, M.; Muller, F.; Rome, Q.; Villemant, C. Ecological effects and management of invasive alien Vespidae. BioControl 2011, 56, 505–526. [Google Scholar] [CrossRef]
- Howse, M.W.; McGruddy, R.A.; Felden, A.; Baty, J.W.; Haywood, J.; Lester, P.J. The native and exotic prey community of two invasive paper wasps (Hymenoptera: Vespidae) in New Zealand as determined by DNA barcoding. Biol. Invasions 2022, 24, 1797–1808. [Google Scholar] [CrossRef]
- McGruddy, R.A.; Howse, M.W.F.; Haywood, J.; Toft, R.J.; Lester, P.J. Nesting ecology and colony survival of two invasive Polistes wasps (Hymenoptera: Vespidae) in New Zealand. Environ. Entomol. 2021, 50, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- Clapperton, B.K.; Möller, H.; Sandlant, G.R. Distribution of social wasps (Hymenoptera: Vespidae) in New Zealand in 1987. N. Z. J. Zool. 1989, 16, 315–323. [Google Scholar] [CrossRef]
- Clapperton, B.K.; Tilley, J.A.V.; Pierce, R.J. Distribution and abundance of the Asian paper wasp Polistes chinensis antennalis Perez and the Australian paper wasp P. humilis (Fab.) (Hymenoptera: Vespidae) in New Zealand. N. Z. J. Zool. 1996, 23, 19–25. [Google Scholar] [CrossRef]
- Thomas, C.D.; Moller, H.; Plunkett, G.M.; Harris, R.J. The prevalence of introduced Vespula vulgaris wasps in a New Zealand beech forest community. N. Z. J. Ecol. 1990, 13, 63–72. [Google Scholar]
- Lester, P.; Beggs, J.; Brown, R.; Edwards, E.; Groenteman, R.; Toft, R.J.; Twidle, A.; Ward, D. The outlook for control of New Zealand’s most abundant, widespread and damaging invertebrate pests: Social wasps. N. Z. Sci. Rev. 2013, 70, 56–62. [Google Scholar]
- Beggs, J.R.; Jo, S.R. Restructuring of Lepidoptera communities by introduced Vespula wasps in a New Zealand beech forest. Oecologia 1999, 119, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Toft, R.J.; Rees, J.S. Reducing predation of orb-web spiders by controlling common wasps (Vespula vulgaris) in a New Zealand beech forest. Ecol. Entomol. 1998, 23, 90–95. [Google Scholar] [CrossRef]
- Beggs, J.R.; Wardle, D.A. Keystone species: Competition for honeydew among exotic and indigenous species. In Biological Invasions in New Zealand; Allen, R.B., Lee, W.G., Eds.; Ecological Studies; Springer: Berlin, Heidelberg, 2006; pp. 281–294. ISBN 978-283-540-30023-30026. [Google Scholar]
- McGruddy, R.A.; Howse, M.W.F.; Haywood, J.; Ward, C.J.I.; Staufer, T.B.; Hayek-Williams, M.; Toft, R.J.; Lester, P.J. Invasive paper wasps have strong cascading effects on the host plant of monarch butterflies. Ecol. Entomol. 2021, 46, 459–469. [Google Scholar] [CrossRef]
- Toft, R.; Harris, R. Can trapping control Asian paper wasp (Polistes chinensis antennalis) populations? N. Z. J. Ecol. 2004, 28, 279–282. [Google Scholar]
- Brown, R.L. Feasibility of Successful Biological Control of Paper Wasps, Polistes spp.; Manaaki Whenua—Landcare Research: Lincoln, New Zealand, 2021. [Google Scholar]
- Ward, D.; Morgan, F. Modelling the impacts of an invasive species across landscapes: A step-wise approach. Earth Surf. Process. Landf. 2014, 2, e435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- New Zealand Government. Reserves Act. 1977. Available online: https://www.legislation.govt.nz/act/public/1977/0066/latest/DLM444305.html (accessed on 9 September 2021).
- Ramsar. Ramsar Wetland Convention. Available online: https://www.ramsar.org/wetland/new-zealand (accessed on 9 September 2021).
- Toft, R.; (Entecol Ltd., New Zealand). Preliminary notes from Farewell Spit—Wharariki Bioblitz. Personal communication, 2020. [Google Scholar]
- Trewick, S.; Morgan-Richards, M.; (Massey University, New Zealand). Cape Farewell Bioblitz report. Personal communication, 2020. [Google Scholar]
- Patrick, B.; Patrick, T.; (Wildland Consultants, New Zealand). List of insects from Farewell Spit, Wharariki Bioblitz. Personal communication, 2019. [Google Scholar]
- Tribe, H.M.; Kennedy, D.M. The geomorphology and evolution of a large barrier spit: Farewell Spit, New Zealand. Earth Surf. Process. Landf. 2010, 35, 1751–1762. [Google Scholar] [CrossRef]
- Kelly, G.C. Farewell Spit; DSIR Land Resources: Lower Hutt, New Zealand, 1991. [Google Scholar] [CrossRef]
- Petyt, C. Farewell Spit: A Changing Landscape; Terracottage Books: Takaka, New Zealand, 1999; ISBN 0473055392. [Google Scholar]
- NIWA. CliFlo: NIWA’s National Climate Database on the Web. Available online: http://cliflo.niwa.co.nz/ (accessed on 26 September 2022).
- Ministry for Primary Industries. European Paper wasp. Available online: https://www.pmanz.nz/uploads/5/3/1/0/53106237/european_paper_wasp_fs_sept2016_web.pdf (accessed on 27 July 2021).
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. PNAS 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badotti, F.; Fonseca, P.L.C.; Tomé, L.M.R.; Nunes, D.T.; Góes-Neto, A. ITS and secondary biomarkers in fungi: Review on the evolution of their use based on scientific publications. Rev. Bras. Bot. 2018, 41, 471–479. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.B.; Taylor, J.; Innis, M.A.; Gelfand, D.H.; Sninsky, J.J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; Volume 31, pp. 315–322. ISBN 9780080886718. [Google Scholar]
- McKinnon, A.C.; Glare, T.R.; Ridgway, H.J.; Mendoza-Mendoza, A.; Holyoake, A.; Godsoe, W.K.; Bufford, J.L. Detection of the entomopathogenic fungus Beauveria bassiana in the rhizosphere of wound-stressed Zea mays plants. Front. Microbiol. 2018, 9, 1161. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Imoulan, A.; Wu, H.-J.; Lu, W.-L.; Li, Y.; Li, B.-B.; Yang, R.-H.; Wang, W.-J.; Wang, X.-L.; Kirk, P.M.; Yao, Y.-J. Beauveria medogensis sp. nov., a new fungus of the entomopathogenic genus from China. J. Invertebr. Pathol. 2016, 139, 74–81. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Singh, G.P.; Babu, A.M.; Ahsan, M.M.; Datta, R.K. Germination, penetration, and invasion of Beauveria bassiana on silkworm, Bombyx mori, causing white muscardine. Ital. J. Zool. 1999, 66, 39–43. [Google Scholar] [CrossRef]
- Toledo, A.; Simurro, M.; Balatti, P. Morphological and molecular characterization of a fungus, Hirsutella sp., isolated from planthoppers and psocids in Argentina. J. Insect Sci. 2013, 13, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, D.; Hentz, M.; Meyer, J.; Kriss, A.; Gottwald, T.; Boucias, D. Observations on the entomopathogenic fungus Hirsutella citriformis attacking adult Diaphorina citri (Hemiptera: Psyllidae) in a managed citrus grove. BioControl 2012, 57, 663–675. [Google Scholar] [CrossRef]
- Inglis, G.D.; Enkerli, J.; Goettel, M.S. Laboratory techniques used for entomopathogenic fungi: Hypocreales. In A Manual of Techniques in Insect Pathology, 2nd ed.; Lacey, L., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 189–253. ISBN 9780123868992. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Therneau, T. A Package for Survival Analysis in R; R Package Version 3.3-1; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Kassambara, A.; Kosinski, M. Przemyslaw Biecek. In Drawing Survival Curves Using ‘ggplot2’, R package version 0.4.9; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Imoulan, A.; Hussain, M.; Kirk, P.M.; El Meziane, A.; Yao, Y.-J. Entomopathogenic fungus Beauveria: Host specificity, ecology and significance of morpho-molecular characterization in accurate taxonomic classification. J. Asia-Pacif. Entomol. 2017, 20, 1204–1212. [Google Scholar] [CrossRef]
- Rehner, S.A.; Aquino de Muro, M.; Bischoff, J.W. Description and phylogenetic placement of Beauveria malawiensis sp. nov. (Clavicipitaceae, Hypocreales). Mycotaxon 2006, 98, 137–145. [Google Scholar]
- Sung, G.-H.; Hywel-Jones, N.L.; Sung, J.-M.; Luangsa-Ard, J.J.; Shrestha, B.; Spatafora, J.W. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 2007, 57, 5–59. [Google Scholar] [CrossRef] [Green Version]
- Quandt, C.A.; Kepler, R.M.; Gams, W.; Araújo, J.P.M.; Ban, S.; Evans, H.C.; Hughes, D.; Humber, R.; Hywel-Jones, N.; Li, Z.; et al. Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. IMA Fungus 2014, 5, 121–134. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, L.; Yao, Y.-J. Non-concerted ITS evolution in fungi, as revealed from the important medicinal fungus Ophiocordyceps sinensis. Mol. Phylogen. Evol. 2013, 68, 373–379. [Google Scholar] [CrossRef]
- Mains, E.B. Entomogenous species of Hirsutella, Tilachlidium and Synnematium. Mycologia 1951, 43, 691. [Google Scholar] [CrossRef]
- Meyer, J.M.; Hoy, M.A.; Boucias, D.G. Morphological and molecular characterization of a Hirsutella species infecting the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), in Florida. J. Invertebr. Pathol. 2007, 95, 101–109. [Google Scholar] [CrossRef]
- Montalva, C.; Rojas, E.; Valenzuela, E.; Humber, R.A. Hirsutella sp. (Hypocreales: Ophiocordycipitaceae) affecting the invasive social wasp Vespula vulgaris (Hymenoptera: Vespidae) in southern Chile. Fla. Entomol. Soc. 2017, 100, 663–666. [Google Scholar] [CrossRef]
- Mollá, Ó.; Shrestha, B.; Sevilla, C.; Rueda, D.; Rivas, F.; Herrera, H.W. First record of Hirsutella saussurei in the Galápagos Islands and first evidence parasitizing the invasive paper wasp, Polistes versicolor. Rev. Bras. Entomol. 2020, 64, e20200031. [Google Scholar] [CrossRef]
- Meiklejohn, K.A.; Damaso, N.; Robertson, J.M. Assessment of BOLD and GenBank—Their accuracy and reliability for the identification of biological materials. PLoS ONE 2019, 14, e0217084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, R.H.; Ryberg, M.; Kristiansson, E.; Abarenkov, K.; Larsson, K.-H.; Kõljalg, U. Taxonomic reliability of DNA sequences in public sequence databases: A fungal perspective. PLoS ONE 2006, 1, e59. [Google Scholar] [CrossRef]
- Ryberg, M.; Kristiansson, E.; Sjökvist, E.; Nilsson, R.H. An outlook on the fungal internal transcribed spacer sequences in GenBank and the introduction of a web—Based tool for the exploration of fungal diversity. New Phytol. 2009, 181, 471–477. [Google Scholar] [CrossRef]
- Hibbett, D.; Glotzer, D. Where are all the undocumented fungal species? A study of Mortierella demonstrates the need for sequence—Based classification. New Phytol. 2011, 191, 592–596. [Google Scholar] [CrossRef]
- Araújo, J.P.M.; Hughes, D.P. The fungal spore: Myrmecophilous Ophiocordyceps as a case study. In The Fungal Community: Its Organization and Role in the Ecosystem, 4th ed.; Dighton, J., White, J.F., Eds.; CRC Press: Boca Raton, FL, USA, 2017; Volume 32, pp. 359–369. ISBN 9781498706650. [Google Scholar]
- Speare, A.T. On certain entomogenous fungi. Mycologia 1920, 12, 62. [Google Scholar] [CrossRef]
- Hodge, K.T. Revisionary Studies in Hirsutella (Anamorphic Hypocreales: Clavicipitaceae). Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 1998. [Google Scholar]
- Araújo, J.P.M.; Hughes, D.P. Zombie-ant fungi emerged from non-manipulating, beetle-infecting ancestors. Curr. Biol. 2019, 29, 3735–3738. [Google Scholar] [CrossRef]
- Somavilla, A.; Barbosa, B.C.; Prezoto, F.; Oliveira, M.L. Infection and behavior manipulation of social wasps (Vespidae: Polistinae) by Ophiocordyceps humbertii in Neotropical forests: New records of wasp-zombification by a fungus. Stud. Neotrop. Fauna Environ. 2020, 55, 23–28. [Google Scholar] [CrossRef]
- Sobczak, J.; Somavilla, A. Manipulation of wasp (Hymenoptera: Vespidae) behavior by the entomopathogenic fungus Ophiocordyceps humbertii in the Atlantic Forest in Ceará, Brazil. Entomol. News 2020, 129, 98. [Google Scholar] [CrossRef]
- Pennycook, S.R.; Galloway, D.J. Checklist of New Zealand “fungi”. In Fungi of New Zealand, 1st ed.; McKenzie, E.H., Ed.; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- NZOR. Hirsutella saussurei (Cooke) Speare. Available online: https://www.nzor.org.nz/names/e39b6dff-93d4-4490-8f31-276d209626d4 (accessed on 2 May 2022).
- Simmons, D.R.; Kepler, R.M.; Renner, S.A.; Groden, E. Phylogeny of Hirsutella species (Ophiocordycipitaceae) from the USA: Remedying the paucity of Hirsutella sequence data. IMA Fungus 2015, 6, 345–356. [Google Scholar] [CrossRef]
- Somavilla, A.; Bartholomay, P.; Soares, M.; Soares, M. Behavior manipulation of Crabronidae and Pompilidae (Hymenoptera) by the entomopathogenic fungus Ophiocordyceps humbertii (Ascomycota: Hypocreales) in an Amazonian rainforest, Brazil. Rev. Bras. Zool. 2020, 20, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lacey, L.A.; Frutos, R.; Kaya, H.K.; Vail, P. Insect pathogens as biological control agents: Do they have a future? Biol. Control 2001, 21, 230–248. [Google Scholar] [CrossRef] [Green Version]
- Behle, R.; Birthisel, T. Formulations of entomopathogens as bioinsecticides. In Mass Production of Beneficial Organisms; Morales-Ramos, J.A., Rojas, M.G., Shapiro-Ilan, D.I., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 483–517. ISBN 978-480-412-391453-391458. [Google Scholar]
- Pell, J.K.; Eilenberg, J.; Hajek, A.E.; Steinkraus, D.C. Biology, ecology and pest management potential of Entomophthorales. In Fungi as Biocontrol Agents: Progress, Problems and Potential; Butt, T.M., Jackson, C., Magan, N., Eds.; CABI Publishing: Wallingford, UK, 2001; pp. 71–153. ISBN 9780851993560. [Google Scholar]
- Brancini, G.T.P.; Bachmann, L.; Braga, G.Ú.L. Timing and duration of light exposure during conidia development determine tolerance to ultraviolet radiation. FEMS Microbiol. Lett. 2021, 368, fnab133. [Google Scholar] [CrossRef]
- Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef]
- Rehner, S.A.; Minnis, A.M.; Sung, G.-H.; Luangsa-Ard, J.J.; Devotto, L.; Humber, R.A. Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 2011, 103, 1055–1073. [Google Scholar] [CrossRef]
- Hajek, A.E.; Gardescu, S.; Delalibera, I. Summary of classical biological control introductions of entomopathogens and nematodes for insect control. BioControl 2021, 66, 167–180. [Google Scholar] [CrossRef]
- McEvoy, P.B. Host specificity and biological pest control. Bioscience 1996, 46, 401–405. [Google Scholar] [CrossRef] [Green Version]
- Pearson, D.E.; Callaway, R.M. Indirect effects of host-specific biological control agents. Trends Ecol. Evol. 2003, 18, 456–461. [Google Scholar] [CrossRef]
- Bidochka, M.; Menzies, F.; Kamp, A. Genetic groups of the insect-pathogenic fungus Beauveria bassiana are associated with habitat and thermal growth preferences. Arch. Microbiol. 2002, 178, 531–537. [Google Scholar] [CrossRef]
- Maurer, P.; Couteaudier, Y.; Girard, P.A.; Bridge, P.D.; Riba, G. Genetic diversity of Beauveria bassiana and relatedness to host insect range. Mycol. Res. 1997, 101, 159–164. [Google Scholar] [CrossRef]
Gene | Primer ref. | Fungal Species | Lab ID | GenBank Accession no. |
---|---|---|---|---|
ITS | [57] | O. humbertii | 1 | ON479659 |
2 | ON479660 | |||
B. malawiensis | 3 | Not submitted | ||
4 | OL347578 | |||
18S | [57] | O. humbertii | 1 | ON458754 |
2 | ON458755 | |||
B. malawiensis | 3 | OL336513 | ||
4 | OL336514 | |||
ef1 a | [58] | B. malawiensis | 3 | OL348210 |
4 | OL348211 |
Fungal Species | Nest ID | ntotal | ndead | Pdead | Days | cfu Wasp−1 | Conidiogenesis |
---|---|---|---|---|---|---|---|
Beauveria malawiensis | 167 | 62 | 34 | 0.55 | 45 | 6.92 × 104 | No |
193 | 81 | 10 | 0.12 | 45 | 5.29 × 104 | Yes | |
Ophiocordyceps humbertii | 277 | 57 | 57 | 0.26 | 45 | 7.52 × 104 | Yes |
293 | 83 | 4 | 0.05 | 15 | 7.33 × 104 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reason, A.; Bulgarella, M.; Lester, P.J. Identity, Prevalence, and Pathogenicity of Entomopathogenic Fungi Infecting Invasive Polistes (Vespidae: Polistinae) Paper Wasps in New Zealand. Insects 2022, 13, 922. https://doi.org/10.3390/insects13100922
Reason A, Bulgarella M, Lester PJ. Identity, Prevalence, and Pathogenicity of Entomopathogenic Fungi Infecting Invasive Polistes (Vespidae: Polistinae) Paper Wasps in New Zealand. Insects. 2022; 13(10):922. https://doi.org/10.3390/insects13100922
Chicago/Turabian StyleReason, Aiden, Mariana Bulgarella, and Philip J. Lester. 2022. "Identity, Prevalence, and Pathogenicity of Entomopathogenic Fungi Infecting Invasive Polistes (Vespidae: Polistinae) Paper Wasps in New Zealand" Insects 13, no. 10: 922. https://doi.org/10.3390/insects13100922
APA StyleReason, A., Bulgarella, M., & Lester, P. J. (2022). Identity, Prevalence, and Pathogenicity of Entomopathogenic Fungi Infecting Invasive Polistes (Vespidae: Polistinae) Paper Wasps in New Zealand. Insects, 13(10), 922. https://doi.org/10.3390/insects13100922