Using MaxEnt to Predict the Potential Distribution of the Little Fire Ant (Wasmannia auropunctata) in China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Species Occurrence Data for W. auropunctata
2.2. Environmental Variable Screening and Data Processing
2.3. Species Distribution Model Establishment, Optimization, and Evaluation
2.4. Hierarchical Classification and Geospatial Analyses of Species Distribution
3. Results
3.1. Analysis of the Accuracy of the Model
3.2. Selection of Key Variables in the Model
3.3. Potential Distribution of W. auropunctata in China
3.4. Low Impact Area
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Kulhanek, S.A.; Leung, B.; Ricciadi, A. Using ecological niche models to predict the abundance and impact of invasive species: Application to the common carp. Ecol. Appl. 2011, 21, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Change Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J. Species-range-size distributions: Patterns, mechanisms and implication. Trends Ecol. Evol 1996, 11, 197–201. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Huntley, B.; Barnard, P.; Altwegg, R.; Chambers, L.; Coetzee, B.W.T.; Gibson, L.; Hockey, P.A.R.; Hole, D.G.; Midgley, G.F.; Underhill, L.G.; et al. Beyond bioclimatic envelopes: Dynamic species’ range and abundance modelling in the context of climatic change. Ecography 2010. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F.; Franklin, J. bioclim: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Norberg, A.; Abrego, N.; Blanchet, F.G.; Adler, F.; Anderson, B.; Anttila, J.; Araujo, M.; Dallas, T.; Dunson, D.; Elith, J.; et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 2019, 89, 1–24. [Google Scholar] [CrossRef]
- Stolar, J.; Nielsen, S.E.; Franklin, J. Accounting for spatially biased sampling effort in presence-only species distribution modelling. Divers. Distrib. 2015, 21, 595–608. [Google Scholar] [CrossRef]
- Vonshak, M.; Dayan, T.; Ionescu-Hirsh, A.; Freidberg, A.; Hefetz, A. The little fire ant Wasmannia auropunctata: A new invasive species in the Middle East and its impact on the local arthropod fauna. Biol. Invasions 2010, 12, 1825–1837. [Google Scholar] [CrossRef]
- Wetterer, J.K.; Porter, S.D. The Little Fire Ant, Wasmannia auropunctata: Distribution, Impact and Control. Sociobiology 2003, 41, 1–41. [Google Scholar]
- Chen, S.-Q.; Zhao, Y.; Lu, Y.-Y.; Ran, H.; Xu, Y.-J. First record of the little fire ant, Wasmannia auropunctata (Hymenoptera: Formicidae), in Chinese mainland. J. Integr. Agric. 2022, 21, 1825–1829. [Google Scholar] [CrossRef]
- Lee, C.-C.; Hsu, P.-W.; Hsu, F.-C.; Shih, C.; Hsiao, Y.-C.; Yang, C.-C.S.; LIN, C.-C. First record of the Invasive little fire ant (Wasmannia auropunctata) (Hymenoptera: Formicidae) in Taiwan: Invasion Status, Colony Structure, and Potential Threats. Formos. Entomol. 2021, 41, 172–181. [Google Scholar] [CrossRef]
- Le Breton, J.; Jourdan, H.; Chazeau, J.; Orivel, J.; Dejean, A. Niche opportunity and ant invasion: The case of Wasmannia auropunctata in a New Caledonian rain forest. J. Trop. Ecol. 2005, 21, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Coulin, C.; de la Vega, G.J.; Chifflet, L.; Calcaterra, L.A.; Schilman, P.E. Linking thermo-tolerances of the highly invasive ant, Wasmannia auropunctata, to its current and potential distribution. Biol. Invasions 2019, 21, 3491–3504. [Google Scholar] [CrossRef]
- Souza, E.; Follett, P.A.; Price, D.K.; Stacy, E.A. Field Suppression of the Invasive Ant Wasmannia auropunctata (Hymenoptera: Formicidae) in a Tropical Fruit Orchard in Hawaii. J. Econ. Entomol. 2008, 101, 1064–1074. [Google Scholar] [CrossRef]
- Dix-luna, O.J.; Montes-Rodríguez, J.M.; Kulikowski, A.J.; Kondo, T. Alecanochiton marquesi (Hemiptera: Coccomorpha: Coccidae), a new record for Colombia and Costa Rica, and description of its first-instar nymph. Zoology 2018, 40, 246–254. [Google Scholar] [CrossRef]
- Araujo, M.B.; Pearson, R.G.; Thuiller, W.; Erhard, M. Validation of species-climate impact models under climate change. Glob. Change Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Yao, L.; Meng, J.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci Total Env. 2018, 634, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Welter, S.; Brunner, K.; Hofstraat, J.W.; De Cola, L. Electroluminescent device with reversible switching between red and green emission. Nature 2003, 421, 54–57. [Google Scholar] [CrossRef]
- Midgley, G.F.; Hannah, L.; Millar, D.; Rutherford, M.C.; Powrie, L.W. Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob. Ecol. Biogeogr. 2002, 11, 445–451. [Google Scholar] [CrossRef]
- Wang, R.; Yang, H.; Wang, M.; Zhang, Z.; Huang, T.; Wen, G.; Li, Q. Predictions of potential geographical distribution of Diaphorina citri (Kuwayama) in China under climate change scenarios. Sci. Rep. 2020, 10, 9202. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model. Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Velasco, J.A.; González-Salazar, C. Akaike information criterion should not be a “test” of geographical prediction accuracy in ecological niche modelling. Ecol. Inform. 2019, 51, 25–32. [Google Scholar] [CrossRef]
- Bart Steen, A.C.C.; Tsiamis, K.; Nieto, K.; Engel, J.; Gervasini, E. Modelling hot spot areas for the invasive alien plant Elodea nuttallii in the EU. Manag. Biol. Invasions 2019, 10, 151–170. [Google Scholar] [CrossRef] [Green Version]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P.; McPherson, J. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity forMaxentecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef] [Green Version]
- Swets, J.A. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudı´k, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.-Z.; Zhao, G.-H.; Zhang, M.-Z.; Cui, X.-Y.; Fan, H.-H.; Liu, B. Distribution Pattern of Endangered Plant Semiliquidambar cathayensis (Hamamelidaceae) in Response to Climate Change after the Last Interglacial Period. Forests 2020, 11, 434. [Google Scholar] [CrossRef]
- Liu, C.; Berry, P.M.; Dawson, T.P.; Pearson, R.G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 2005, 28, 385–393. [Google Scholar] [CrossRef]
- Zhou, P.; Qian, Z.; Chen, K.; Qian, Y. Prediction of Sedum aizoon distribution in suitable areas of China under the background of climate change. J. Chin. Med. Mater. 2015, 38, 1379–1383. [Google Scholar]
- Sony, R.K.; Sen, S.; Kumar, S.; Sen, M.; Jayahari, K.M. Niche models inform the effects of climate change on the endangered Nilgiri Tahr (Nilgiritragus hylocrius) populations in the southern Western Ghats, India. Ecol. Eng. 2018, 120, 355–363. [Google Scholar] [CrossRef]
- Federman, R.; Carmel, Y.; Kent, R. Irrigation as an important factor in species distribution models. Basic Appl. Ecol. 2013, 14, 651–658. [Google Scholar] [CrossRef]
- Bertelsmeier, C.; Luque, G.M.; Hoffmann, B.D.; Courchamp, F. Worldwide ant invasions under climate change. Biodivers. Conserv. 2014, 24, 117–128. [Google Scholar] [CrossRef]
- Xu, M.; Xue, X. Analysis on the effects of climate warming on growth and phenology of alpine plants. J. Arid Land Resour. Env. 2013, 27, 137–141. [Google Scholar]
- Qin, J.L.; Yang, X.H.; Yang, Z.W.; Luo, J.T.; Lei, X.F. New technology for using meteorological information in forest insect pest forecast and warning systems. Pest. Manag. Sci. 2017, 73, 2509–2518. [Google Scholar] [CrossRef]
- Jorge, S.; Townsend, P.A. Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodivers. Inform. 2005, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Broennimann, O.; Treier, U.A.; Müller-Schärer, H.; Thuiller, W.; Peterson, A.T.; Guisan, A. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 2007, 10, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Rey, O.; Estoup, A.; Vonshak, M.; Loiseau, A.; Blanchet, S.; Calcaterra, L.; Chifflet, L.; Rossi, J.P.; Kergoat, G.J.; Foucaud, J.; et al. Where do adaptive shifts occur during invasion? A multidisciplinary approach to unravelling cold adaptation in a tropical ant species invading the Mediterranean area. Ecol. Lett. 2012, 15, 1266–1275. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.P.; Peterson, A.T.; Gomez-Laverde, M. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. OIKOS 2002, 98, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Radosavljevic, A.; Anderson, R.P.; Araújo, M. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Wan, S.; Chen, Y.; Wang, Y.; Li, G.; Wang, G.; Liu, L.; Zhang, J.; Liu, Y.; Xu, Z.; Tomsia, A.P.; et al. Ultrastrong Graphene Films via Long-Chain π-Bridging. Matter 2019, 1, 389–401. [Google Scholar] [CrossRef]
Variable | Environmental Variable | Percent Contribution | Permutation Importance |
---|---|---|---|
BIO07 | Annual temperature range | 58.8 | 53.9 |
BIO02 | Mean diurnal range | 12 | 2.2 |
BIO17 | Precipitation of driest quarter | 7.3 | 2.7 |
BIO18 | Precipitation of warmest quarter | 6.1 | 1.5 |
BIO03 | Isothermality | 5.5 | 10.1 |
BIO19 | Precipitation of coldest quarter | 4.5 | 4.9 |
BIO08 | Mean temperature of wettest quarter | 2.3 | 9.7 |
BIO05 | Max temperature of warmest month | 2.1 | 14.1 |
BIO16 | Precipitation of wettest quarter | 1.5 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, M.; Chen, S.; Ke, Z.; Qian, Z.; Xu, Y. Using MaxEnt to Predict the Potential Distribution of the Little Fire Ant (Wasmannia auropunctata) in China. Insects 2022, 13, 1008. https://doi.org/10.3390/insects13111008
Mao M, Chen S, Ke Z, Qian Z, Xu Y. Using MaxEnt to Predict the Potential Distribution of the Little Fire Ant (Wasmannia auropunctata) in China. Insects. 2022; 13(11):1008. https://doi.org/10.3390/insects13111008
Chicago/Turabian StyleMao, Mengfei, Siqi Chen, Zengyuan Ke, Zengqiang Qian, and Yijuan Xu. 2022. "Using MaxEnt to Predict the Potential Distribution of the Little Fire Ant (Wasmannia auropunctata) in China" Insects 13, no. 11: 1008. https://doi.org/10.3390/insects13111008
APA StyleMao, M., Chen, S., Ke, Z., Qian, Z., & Xu, Y. (2022). Using MaxEnt to Predict the Potential Distribution of the Little Fire Ant (Wasmannia auropunctata) in China. Insects, 13(11), 1008. https://doi.org/10.3390/insects13111008