Flubendiamide Resistance and Its Mode of Inheritance in Tomato Pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Collection
2.2. Insecticides Formulations and Flubendiamide Selection of Insects
2.3. Bioassay of Larvae
2.4. Genetic Reciprocal and Back Crosses
2.5. Maternal Effects and Sex Linkage
2.6. Degree of Dominance
2.7. Number of Loci Influencing the Inheritance
2.8. Statistical Analysis
3. Results
3.1. Field Strains’ Resistance Evaluation
3.2. Laboratory Selection of Resistance to Flubendiamide
3.3. Maternal Effects
3.4. Loci Influencing Inheritance for Monogenic Fit Test
3.5. Degree of Dominance
3.6. Concentration Mortality Response of Different Insecticides
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Desneux, N.; Wajnberg, E.; Wyckhuys, K.A.G.; Burgio, G.; Arpaia, S.; Narvaez-Vasquez, C.A.; Gonzalez-Cabrera, J.; Ruescas, D.C.; Frandon, J.; Prizzol, J.; et al. Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. J. Pest Sci. 2010, 83, 197–215. [Google Scholar] [CrossRef]
- Desneux, N.; Luna, M.G.; Guillemaud, T.; Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: The new threat to tomato world production. J. Pest Sci. 2011, 84, 403–408. [Google Scholar] [CrossRef]
- Biondi, A.; Guedes, R.N.C.; Wan, F.H.; Desneux, N. Ecology, world-wide spread, and management of the invasive South American Tomato Pinworm, Tuta absoluta: Past, present, and future. Annu. Rev. Entomol. 2018, 63, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Guillemaud, T.; Blin, A.; Le Goff, I.; Desneux, N.; Reyes, M.; Tabone, E.; Tsagkarakou, A.; Ninõ, L.; Lombaert, E. The tomato borer, Tuta absoluta, invading the Mediterranean Basin, originates from a single introduction from Central Chile. Sci. Rep. 2015, 5, 8371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guedes, R.N.C.; Siqueira, H.A.A. The tomato borer Tuta absoluta: Insecticide resistance and control failure. CABI Rev. 2012, 7, 1–7. [Google Scholar] [CrossRef]
- Campos, M.R.; Rodrigues, A.R.S.; Silva, W.M.; Silva, T.B.M.; Silva, V.R.F.; Guedes, R.N.C.; Siqueira, H.E.A.A.; Zhang, Y.J. Spinosad and the tomato borer Tuta absoluta: A bioinsecticide, an invasive pest threat, and high insecticide resistance. PLoS ONE 2014, 9, 103235. [Google Scholar] [CrossRef] [Green Version]
- Desneux, N.; Han, P.; Mansour, R.; Arnó, J.; Brévault, T.; Campos, M.R.; Chailleux, A.; Guedes, R.N.C.; Karimi, J.; Konan, K.A.J.; et al. Integrated pest management of Tuta absoluta: Practical implementations across different world regions. J. Pest Sci. 2022, 95, 17–39. [Google Scholar] [CrossRef]
- Pfeiffer, D.G.; Muniappan, R.; Sall, D.; Diatta, P.; Diongue, A.; Dieng, E.O. First record of Tuta absoluta (Lepidoptera: Gelechiidae) in Senegal. Fla. Entomol. 2013, 96, 661–662. [Google Scholar] [CrossRef]
- Brévault, T.; Sylla, S.; Diatte, M.; Bernadas, G.; Diarra, K. Tuta absoluta Meyrick (Lepidoptera: Gelechiidae): A new threat to tomato production in Sub-Saharan Africa. Afr. Entomol. 2014, 22, 441–444. [Google Scholar] [CrossRef]
- Tonnang, H.E.Z.; Mohamed, S.F.; Khamis, F.; Ekesi, S. Identification and risk assessment for worldwide invasion and spread of Tuta absoluta with a focus on Sub-Saharan Africa: Implications for phytosanitary measures and management. PLoS ONE 2015, 10, e0135283. [Google Scholar] [CrossRef]
- Visser, D.; Uys, V.M.; Nieuwenhuis, R.J.; Pieterse, W. First records of the tomato leaf miner Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) in South Africa. BioInvasions Rec. 2017, 6, 301–305. [Google Scholar] [CrossRef]
- Sylla, S.; Brévault, T.; Bal, A.B.; Chailleux, A.; Diatte, M.; Desneux, N.; Diarra, K. Rapid spread of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), an invasive pest in Sub-Saharan Africa. Entomol. Gen. 2017, 36, 269–283. [Google Scholar] [CrossRef]
- Mansour, R.; Brévault, T.; Chailleux, A.; Cherif, A.; Kaouthar, G.L.; Khalid, H.; Samira, A.M.; Robert, S.N.; Abiola, O.; Serigne, S. Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol. Gen. 2018, 38, 83–112. [Google Scholar] [CrossRef]
- Santana, P.A.; Kumar, L.; Da Silva, R.S.; Picanço, M.C. Global geographic distribution of Tuta absoluta as affected by climate change. J. Pest Sci. 2019, 92, 1373–1385. [Google Scholar] [CrossRef]
- McNitt, J.; Chungbaek, Y.Y.; Mortveit, H.; Marathe, M.; Campos, M.R.; Desneux, N.; Brévault, T.; Muniappan, R.; Adiga, A. Assessing the multi-pathway threat from an invasive agricultural pest: Tuta absoluta in Asia. Proc. R. Soc. B 2019, 286, 20191159. [Google Scholar] [CrossRef] [Green Version]
- Ponti, L.; Gutierrez, A.P.; de Campos, M.R.; Desneux, N.; Biondi, A.; Neteler, M. Biological invasion risk assessment of Tuta absoluta: Mechanistic versus correlative methods. Biol. Invasions 2021, 23, 3809–3829. [Google Scholar] [CrossRef]
- Sankarganesh, E.; Firake, D.M.; Sharma, B.; Verma, V.K.; Behere, G.T. Invasion of the South American tomato pinworm, Tuta absoluta, in northeastern India: A new challenge and biosecurity concerns. Entomol. Gen. 2007, 36, 335–345. [Google Scholar] [CrossRef]
- Sharma, P.L.; Gavkare, O. New distributional record of invasive pest Tuta absoluta (Meyrick) in North-Western Himalayan Region of India. Natl. Acad. Sci. Lett. 2017, 40, 217–220. [Google Scholar] [CrossRef]
- Han, P.; Bayram, Y.; Shaltiel-Harpaz, L.; Sohrabi, F.; Saji, A.; Esenali, U.T.; Jalilov, A.; Ali, A.; Shashank, P.R.; Ismoilov, K.; et al. Tuta absoluta continues to disperse in Asia: Damage, ongoing management and future challenges. J. Pest Sci. 2018, 92, 1317. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Yousaf, H.K.; Xiu, W.; Qian, D.; Gao, X.; Tariq, K.; Han, P.; Desneux, N.; Song, D. Impact of low lethal concentrations of buprofezin on biological traits and expression profile of chitin synthase 1 gene (CHS1) in melon aphid, Aphis gossypii. Sci. Rep. 2019, 9, 12291. [Google Scholar] [CrossRef]
- Li, X.W.; Li, D.; Zhang, Z.J.; Huang, J.; Zhang, J.M.; Hafeez, M.; Wang, L.K.; Guo, W.C.; Lu, Y.B. Super-cooling capacity and cold tolerance of the South American tomato pinworm, Tuta absoluta, a newly invaded pest in China. J. Pest Sci. 2021, 94, 845–858. [Google Scholar] [CrossRef]
- Xian, X.; Han, P.; Wang, S.; Zhang, G.; Liu, W.; Desneux, N.; Wan, F. The potential invasion risk and preventive measures against the tomato leafminer Tuta absoluta in China. Entomol. Gen. 2017, 36, 319–333. [Google Scholar] [CrossRef]
- Han, P.; Zhang, Y.N.; Lu, Z.Z.; Wang, S.; Ma, D.-Y.; Biondi, A.; Desneux, N. Are we ready for the invasion of Tuta absoluta? Unanswered key questions for elaborating an integrated pest management package in Xinjiang, China. Entomol. Gen. 2018, 38, 113–125. [Google Scholar] [CrossRef]
- IRAC. IRAC Tutatast Team Update. International IRAC Mtg USA. 2017. Available online: www.irac-online.org (accessed on 24 November 2020).
- Ishtiaq, M.; Sadique, M.; Faried, N.; Naeem-Ullah, U.; Hamza, M.A. First record of tomato Leafminer, Tuta absoluta (Meyrick 1917) (Lepidoptera: Gelechiidae) from Southern part of punjab, pakistan. J. Anim. Plant Sci. 2020, 30, 1604–1611. [Google Scholar] [CrossRef]
- Karadjova, O.; Ilieva, Z.; Krumov, V.; Petrova, E.; Ventsislavov, V. Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae): Potential for entry, establishment and spread in Bulgaria. Bulg. J. Agric. 2013, 19, 563–571. [Google Scholar]
- Tumuhaise, V.; Khamis, F.M.; Agona, A.; Sseruwu, G.; Mohamed, S.A. First record of Tuta absoluta (Lepidoptera: Gelechiidae) in Uganda. Int. J. Trop. Insect Sci. 2016, 36, 135–139. [Google Scholar] [CrossRef]
- Rostami, E.; Madadi, H.; Abbasipour, H.; Allahyari, H.; Cuthbertson, A.G.S. Pest density influences on tomato pigment contents: The South American tomato pinworm scenario. Entomol. Gen. 2020, 40, 195–205. [Google Scholar] [CrossRef]
- Biondi, A.; Desneux, N. Special issue on Tuta absoluta: Recent advances in management methods against the background of an ongoing worldwide invasion. J. Pest Sci. 2019, 92, 1313–1315. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, C.J.A.; Leroy, B.; Bellard, C.; Roiz, D.; Albert, C.; Fournier, A.; Barbet-Massin, M.; Salles, J.M.; Simard, F.; Courchamp, F. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 2016, 7, 12986. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, J.L.; Hoopes, M.F.; Marchetti, M.P. Invasion Ecology, 2nd ed.; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Liebhold, A.M.; Berec, L.; Brockerhoff, E.G.; Epanchin-Niell, R.S.; Yamanaka, T. Eradication of invading insect populations: From concepts to applications. Annu. Rev. Entomol. 2016, 61, 335–352. [Google Scholar] [CrossRef] [Green Version]
- Potting, R.P.; Van Der Gaag, D.J.; Loomans, A. Pest Risk Analysis—Tuta absoluta, Tomato Leaf Miner Moth; Ministry of Agriculture, Nature and Food Quality, Plant Protection Service of the Netherlands: Utrecht, The Netherlands, 2013.
- İnak, E.; Özdemir, E.; Atış, A.E.; RandaZelyüt, F.; İnak, A.; Demir, Ü.; Roditakis, E.; Vontas, J. Population structure and insecticide resistance status of Tuta absoluta populations from Turkey. Pest Manag. Sci. 2021, 77, 4741–4748. [Google Scholar] [CrossRef] [PubMed]
- Paula, D.P.; Lozano, R.E.; Menger, J.; Andow, D.A.; Koch, R.L. Identification of point mutations related to pyrethroidresistance in voltage-gated sodium channelgenes in Aphis glycines. Entomol. Gen. 2021, 41, 243–255. [Google Scholar] [CrossRef]
- Saeed, R.; Abbas, N.; Hafez, A.M. Biological fitness costs in emamectin benzoate-resistant strains of Dysdercus koenigii. Entomol. Gen. 2021, 41, 267–278. [Google Scholar] [CrossRef]
- Santoiemma, G.; Tonina, L.; Marini, L.; Duso, C.; Mori, N. Integrated management of Drosophila suzukii in sweet cherry orchards. Entomol. Gen. 2020, 40, 297–305. [Google Scholar] [CrossRef]
- Shan, J.Q.; Zhu, B.; Gu, S.H.; Liang, P.; Gao, X.W. Development of resistance to chlorantraniliprole represses sex pheromone responses in male Plutella xylostella (L.). Entomol. Gen. 2021, 41, 615–625. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Ullah, F.; Ding, Q.; Gao, X.; Desneux, N.; Song, D. Comparison of full-length transcriptomes of different imidacloprid-resistant strains of Rhopalosiphum padi (L.). Entomol. Gen. 2021, 41, 289–304. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Pei, X.G.; Yu, Z.T.; Gao, Y.; Wang, L.X.; Zhang, N.; Song, X.Y.; Wu, S.F.; Gao, C.F. Effects of nicotinic acetylcholine receptor subunit deletion mutants on insecticide susceptibility and fitness in Drosophila melanogaster. Pest Manag. Sci. 2022, 78, 3519–3527. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Campos, M.R.; Silva, T.B.M.; Silva, W.M.; Silva, J.E.; Siqueira, H.A.A. Susceptibility of Tuta absoluta (Lepidoptera: Gelechiidae) Brazilian populations to ryanodine receptor modulators. Pest Manag. Sci. 2015, 71, 537–544. [Google Scholar] [CrossRef]
- Silva, G.A.; Picanço, M.C.; Bacci, L.; Crespo, A.L.B.; Rosado, J.F.; Guedes, R.N.C. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manag. Sci. 2011, 67, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Kaleem, T.; Mah, N.; Elaine, A.B.; Adil, H.; Asad, A.; Wei, P.; Hongyu, Z. The toxicity of flonicamid to cotton leafhopper, Amrasca biguttula (Ishida), is by disruption of ingestion: An electropenetrography study. Pest Manag Sci. 2017, 73, 1661–1669. [Google Scholar]
- Guedes, R.N.C.; Roditakis, E.; Campos, M.R.; Haddi, K.; Bielza, P.; Siqueira, H.A.A.; Vontas, J.; Nauen, R. Insecticide resistance in the tomato pinworm Tuta absoluta: Patterns, spread, mechanisms, management and outlook. J. Pest Sci. 2019, 92, 1329–1342. [Google Scholar] [CrossRef]
- Nauen, R. Insecticide mode of action: Return of the ryanodine receptor. Pest Manag. Sci. 2006, 62, 690–692. [Google Scholar] [CrossRef] [PubMed]
- Lümmen, P. Calcium channels as molecular target sites of novel insecticides. Adv. Insect Physiol. 2013, 44, 287–347. [Google Scholar] [CrossRef]
- Ribeiro, L.M.S.; Wanderley-Teixeira, V.; Ferreira, H.N.; Teixeira, Á.A.C.; Siqueira, H.A.A. Fitness costs associated with field-evolved resistance to chlorantraniliprole in Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 2014, 104, 88–96. [Google Scholar] [CrossRef]
- Ribeiro, L.M.S.; Siqueira, H.A.A.; Silva, J. Field-evolved resistance and cross-resistance of Brazilian Tuta absoluta (Lepidoptera: Gelechiidae) populations to diamide insecticides. J. Econ. Entomol. 2016, 109, 2190–2195. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y. High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella. J. Econ. Entomol. 2012, 105, 1019–1023. [Google Scholar] [CrossRef]
- Uchiyama, T.; Ozawa, A. Rapid development of resistance to diamide insecticides in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae), in the tea fields of Shizuoka Prefecture, Japan. Appl. Entomol. Zool. 2014, 49, 529–534. [Google Scholar] [CrossRef]
- Su, J.Y.; Lai, T.C.; Li, J. Susceptibility of field populations of Spodopteralitura (Fabricius) (Lepidoptera: Noctuidae) in China to chlorantraniliprole and the activities of detoxification. Crop. Prot. 2012, 42, 217–222. [Google Scholar] [CrossRef]
- Che, W.; Shi, T.; Wu, Y.; Yang, Y. Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. J. Econ. Entomol. 2013, 106, 1855–1862. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Yao, R.; Zhang, Z.; Wu, M.; Zhang, S.; Su, J. Susceptibility baseline and chlorantraniliprole resistance monitoring in Chilo suppressalis (Lepidoptera: Pyralidae). J. Econ. Entomol. 2013, 106, 2190–2194. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Liang, P.; Zhou, X.; Gao, X. Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutellaxylostella (L.). Sci. Rep. 2014, 4, 6924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Wang, Y.; Zhou, X.; Li, Z.; Liu, S.; Pei, L.; Gao, X. Functional analysis of a point mutation in the ryanodine receptor of Plutella xylostella (L.) associated with resistance to chlorantraniliprole. Pest Manag. Sci. 2014, 70, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zhang, S.; Yao, R.; Wu, S.; Su, J.; Gao, C. Susceptibility of the rice stem borer, Chilo suppressalis (Lepidoptera: Crambidae), to flubendiamide in China. J. Econ. Entomol. 2014, 107, 1250–1255. [Google Scholar] [CrossRef]
- Richardson, E.B.; Troczka, B.J.; Gutbrod, O.; Davies, T.G.E.; Nauen, R. Diamide resistance: 10 years of lessons from lepidopteran pests. J. Pest Sci. 2020, 93, 911–928. [Google Scholar] [CrossRef] [Green Version]
- Jallow, M.F.A.; Dahab, A.A.; Albaho, M.S.; Devi, V.Y.; Awadh, D.G.; Thomas, B.M. Baseline susceptibility and assessment of resistance risk to flubendiamide and chlorantraniliprole in Tuta absoluta (Lepidoptera: Gelechiidae) populations from Kuwait. Appl. Entomol. Zool. 2019, 54, 91–99. [Google Scholar] [CrossRef]
- Roditakis, E.; Vasakis, E.; Grispou, M.; Stavrakaki, M.; Nauen, R.; Gravouil, M.; Bassi, A. First report of Tuta absoluta resistance to diamide insecticides. J. Pest Sci. 2015, 88, 9–16. [Google Scholar] [CrossRef]
- Silva, J.E.; Ribeiro, L.M.S.; Vinasco, N.; Guedes, R.N.C.; Siqueira, H.L.A. Field-evolved resistance to chlorantraniliprole in the tomato pinworm Tuta absoluta: Inheritance, cross-resistance profile, and metabolism. J. Pest Sci. 2019, 92, 1421–1431. [Google Scholar] [CrossRef]
- Roditakis, E.; Mavridis, K.; Riga, M.; Vasakis, E.; Morou, E.; Rison, J.L.; Vontas, J. Identification and detection of indoxacarb resistance mutations in the para sodium channel of the tomato leafminer, Tuta absoluta. Pest Manag. Sci. 2017, 73, 1679–1688. [Google Scholar] [CrossRef]
- Roditakis, E.; Steinbach, D.; Moritz, G.; Vasakis, E.; Stavrakaki, M.; Ilias, A.; García-Vidal, L.; del Rosario Martínez-Aguirre, M.; Bielza, P.; Morou, E.; et al. Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). Insect Biochem. Mol. Biol. 2017, 80, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Stone, B. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bull. World Health Organ. 1968, 38, 325. [Google Scholar] [PubMed]
- Wang, Y.H.; Liu, X.G.; Zhu, Y.C.; Wu, S.G.; Li, S.Y.; Chen, W.M.; Shen, J.L. Inheritance mode and realized heritability of resistance to imidacloprid in the brown planthopper, Nilaparvata lugens (Stål)(Homoptera: Delphacidae). Pest Manag. Sci. 2009, 65, 629–634. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Gao, X.; Wang, J.; Zhao, Z.; Liu, N. Genetic analysis of abamectin resistance in Tetranychus cinnabarinus. Pestic. Biochem. Physiol. 2009, 95, 147–151. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, L.; Gao, X. Characterisation of spinosad resistance in the housefly Musca domestica (Diptera: Muscidae). Pest Manag. Sci. 2011, 67, 335–340. [Google Scholar] [CrossRef]
- Lande, R. The minimum number of genes contributing to quantitative variation between and within populations. Genetics 1981, 99, 541–553. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry; WH Freeman and Company: San Francisco, CA, USA, 1981. [Google Scholar]
- Leora. POLO-PC: A User Guide to Probit or Logit Analysis; LeOra Software: Berkeley, CA, USA, 1997. [Google Scholar]
- Finney, D.J. Probit Analysis; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
- Litchfield, J.T.; Wilcoxon, F. A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 1949, 96, 99–103. [Google Scholar]
- Robertson, J.L.; Preisler, H.K. Pesticide Bioassays with Arthropods; CRC: Boca Raton, FL, USA, 1992. [Google Scholar]
- Georghiou, G.P. Management of resistance in arthropods. In Pest Resistance to Pesticides; Georghiou, G.P., Saito, T., Eds.; Plenum: New York, NY, USA, 1983; pp. 769–792. [Google Scholar]
- Afzal, M.B.S.; Shad, S.A. Resistance inheritance and mechanism to emamectin benzoate in Phenacoccus solenopsis (Homoptera: Pseudococcidae). Crop. Prot. 2015, 71, 60–65. [Google Scholar] [CrossRef]
- Bourguet, D.; Genissel, A.; Raymond, M. Insecticide resistance and dominance levels. J. Econ. Entomol. 2000, 93, 1588–1595. [Google Scholar] [CrossRef]
- Abbas, N.; Khan, H.A.A.; Shad, S.A. Cross-resistance, genetics, and realized heritability of resistance to fipronil in the house fly, Musca domestica (Diptera: Muscidae): A potential vector for disease transmission. Parasitol. Res. 2014, 113, 1343–1352. [Google Scholar] [CrossRef]
- IRAC. MoA Classification v. 7.1.; Insecticide Resistance Action Committee: Brussels, Belgium, 2011. [Google Scholar]
- Ebbinghaus-Kintscher, U.; Luemmen, P.; Lobitz, N.; Schulte, T.; Funke, C.; Fischer, R.; Masaki, T.; Yasokawa, N.; Tohnishi, M. Phthalic acid diamides activate ryanodine-sensitive Ca2+ release channels in insects. Cell Calcium 2006, 39, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Ebbinghaus-Kintscher, U.; Raming, K.; Masaki, T.; Yasokawa, N. Flubendiamide, the first insecticide with a novel mode of action on insect ryanodine receptors. Pflanzenschutz-Nachr. Bayer 2007, 60, 117–140. [Google Scholar]
- Wang, X.; Khakame, S.K.; Ye, C.; Yang, Y.; Wu, Y. Characterisation of field-evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Manag. Sci. 2013, 69, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, H.Á.A.; Guedes, R.N.C.; Picanço, M.C. Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agric. For. Entomol. 2000, 2, 147–153. [Google Scholar] [CrossRef]
- Ferracini, C.; Bueno, V.H.P.; Dindo, M.L.; Ingegno, B.L.; Luna, M.G.; Gervassio, N.G.S.; Sánchez, N.E.; Siscaro, G.; van Lenteren, J.C.; Zappalà, L.; et al. Natural enemies of Tuta absoluta in the Mediterranean basin, Europe and South America. Biocontrol Sci. Technol. 2019, 29, 578–609. [Google Scholar] [CrossRef]
- Uchiyama, T.; Ozawa, A. Inheritance of resistance to diamide insecticides, flubendiamide, and chlorantraniliprole in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae). Jap. J. Appl. Entomol. Zool. 2017, 61, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Roush, R.T. Two-toxin strategies for management of insecticidal transgenic crops: Can pyramiding succeed where pesticide mixtures have not? In Proceedings of the Royal-Society Discussion Meeting on Insecticide Resistance e from Mechanisms to Management, London, UK, 8–9 April 1998; pp. 1777–1786. [Google Scholar]
- Roush, R.T.; McKenzie, J.A. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol. 1987, 32, 361–380. [Google Scholar] [CrossRef]
- McKenzie, J.A.; Anthony, G.; Parker, A.G.; Janet, L.; Yen, J.L. Polygenic and single Moore, J.E. 1983. Control of tomatoleafminer (Scrobipalpula absoluta) in Bolivia, Tropical. Pest Manag. Sci. 1992, 29, 231–238. [Google Scholar] [CrossRef]
- Heckel, D.G.; Gahan, L.J.; Liu, Y.B.; Tabashnik, B.E. Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis. Proc. Natl. Acad. Sci. USA 1999, 96, 8373–8377. [Google Scholar] [CrossRef] [Green Version]
- Pu, X.; Yang, Y.; Wu, S.; Wu, Y. Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella. Pest Manag. Sci. 2010, 66, 371–378. [Google Scholar] [CrossRef]
Field Area | Strains | Year | n a | LC50 (95%FL) (µg/mL) | Fit for Probit Line | RR a | |
---|---|---|---|---|---|---|---|
Slope ± SE | χ2 (df = 8) | ||||||
Lahore | Fluben-S | 2018 | 810 | 0.97 (0.69–1.33) | 1.67 ± 0.32 | 1.26 | 1 |
2019 | 780 | 1.20 (0.89–1.57) | 2.37 ± 0.46 | 1.41 | 1 | ||
2020 | 832 | 1.14 (0.79–1.48) | 1.43 ± 0.52 | 1.23 | 1 | ||
Fluben-R | 2018 | 835 | 49.57 (23.51–69.84) | 2.37 ± 0.82 | 2.29 | 51.10 | |
2019 | 704 | 51.76 (34.65–80.47) | 1.86 ± 0.62 | 2.30 | 43.13 | ||
2020 | 785 | 50.56 (32.31–74.69) | 2.62 ± 0.89 | 1.76 | 44.35 | ||
Faisalabad | Fluben-S | 2018 | 843 | 1.17(0.89–1.62) | 2.59 ± 1.14 | 2.14 | 1 |
2019 | 827 | 0.92 (0.59–1.46) | 1.89 ± 0.59 | 1.57 | 1 | ||
2020 | 794 | 1.15 (0.79–1.69) | 1.62 ± 0.72 | 2.54 | 1 | ||
Fluben-R | 2018 | 806 | 52.35 (33.46–71.23) | 2.60 ± 0.41 | 2.32 | 44.74 | |
2019 | 813 | 51.49 (38.47–71.42) | 2.34 ± 1.03 | 2.50 | 55.96 | ||
2020 | 789 | 50.69 (31.37–76.64) | 1.54 ± 0.72 | 1.07 | 44.07 | ||
Multan | Fluben-S | 2018 | 816 | 1.16 (0.79–1.54) | 2.33 ± 0.65 | 0.97 | 1 |
2019 | 819 | 0.92 (0.57–1.49) | 1.47 ± 0.53 | 1.75 | 1 | ||
2020 | 779 | 1.06 (0.72–1.70) | 2.39 ± 0.81 | 1.41 | 1 | ||
Fluben-R | 2018 | 819 | 54.38 (31.26–91.34) | 2.86 ± 0.93 | 2.92 | 46.87 | |
2019 | 788 | 55.09 (29.65–88.45) | 1.29 ± 0.69 | 1.89 | 59.88 | ||
2020 | 830 | 52.67 (31.04–89.75) | 2.37 ± 1.09 | 1.73 | 49.68 | ||
Sahiwal | Fluben-S | 2018 | 817 | 1.24 (0.69–1.67) | 2.10 ± 0.80 | 2.56 | 1 |
2019 | 790 | 1.09 (0.74–1.51) | 1.35 ± 0.82 | 1.74 | 1 | ||
2020 | 809 | 0.98 (0.48–1.52) | 2.12 ± 0.21 | 2.58 | 1 | ||
Fluben-R | 2018 | 832 | 56.48 (31.37–98.60) | 2.63 ± 1.20 | 1.53 | 45.54 | |
2019 | 821 | 50.58 (27.24–93.46) | 1.28 ± 0.76 | 2.49 | 46.40 | ||
2020 | 798 | 54.72 (29.45–87.65) | 2.37 ± 1.14 | 2.52 | 55.83 |
Generation | Concentration (µg/mL) | No. of Larvae Exposed | No. of Larvae Dead | Mortality (%) |
---|---|---|---|---|
G1 | 80 | 1800 | 1200 | 66.60 |
G2 | 120 | 1000 | 100 | 10.00 |
G3 | 170 | 1100 | 30 | 2.72 |
G4 | 250 | 1050 | 28 | 2.54 |
G5 | 300 | 950 | 20 | 2.10 |
G6 | 450 | 1050 | 14 | 1.33 |
G7 | 500 | 920 | 19 | 2.06 |
G8 | 600 | 1100 | 11 | 1.00 |
G9 | 700 | 950 | 6 | 0.63 |
G10 | 800 | 1100 | 5 | 0.45 |
G11 | 900 | 1000 | 3 | 0.30 |
G12 | 1000 | 950 | 2 | 0.21 |
G13 | 1000 | 1050 | 2 | 0.19 |
Selection | LC50 (95% FL) (µg/mL) | Slope ± SE | χ2 | df | RR |
---|---|---|---|---|---|
Susceptible | 1.29 (0.88–1.79) | 2.81 ± 0.34 | 19.45 | 8 | 1 |
Flubendiamide-sel (G1) | 49.50 (32.03–63.52) | 4.30 ± 0.28 | 16.62 | 8 | 38.37 |
Flubendiamide-sel (G2) | 67.32 (48.28–81.05) | 3.69 ± 0.53 | 18.72 | 8 | 52.18 |
Flubendiamide-sel (G3) | 94.35 (56.46–171.24) | 3.52 ± 0.35 | 13.52 | 8 | 73.13 |
Flubendiamide-sel (G4) | 157.51 (123.61–195.74) | 2.60 ± 0.52 | 14.19 | 8 | 122.10 |
Flubendiamide-sel (G5) | 213.73 (186.36–262.52) | 3.45 ± 0.46 | 9.52 | 8 | 165.68 |
Flubendiamide-sel (G6) | 302.67 (282.46–353.62) | 4.68 ± 0.36 | 39.46 | 8 | 234.62 |
Flubendiamide-sel (G7) | 389.54 (348.55–434.56) | 2.89 ± 0.42 | 33.57 | 8 | 301.96 |
Flubendiamide-sel (G8) | 446.61 (409.24–476.34) | 3.59 ± 0.48 | 28.58 | 8 | 346.20 |
Flubendiamide-sel (G9) | 496.26 (451.91–534.64) | 3.73 ± 0.28 | 8.75 | 8 | 384.69 |
Flubendiamide-sel (G10) | 562.72 (539.63–598.74) | 2.84 ± 0.47 | 7.46 | 8 | 436.21 |
Flubendiamide-sel (G11) | 613.44 (588.36–648.76) | 3.57 ± 0.53 | 9.45 | 8 | 475.53 |
Flubendiamide-sel (G12) | 658.77 (632.42–691.46) | 3.64 ± 0.56 | 12.70 | 8 | 510.67 |
Flubendiamide-sel (G13) | 709.81 (684.54–742.83) | 4.75 ± 0.61 | 8.79 | 8 | 520.24 |
Strain | LC50 (95% FL) (µg/mL) | Slope ± SE | χ2 (df = 8) |
---|---|---|---|
Susceptible | 1.43 (0.81–1.97) | 4.31 ± 0.73 | 12.31 |
Flubendiamide-sel (G13) | 709.81 (684.54–742.83) | 4.75 ± 0.61 | 8.79 |
Flubendiamide-sel | 50.32 (42.35–61.32) | 3.84 ± 0.27 | 10.43 |
S | 51.74 (40.51–61.86) | 4.52 ± 0.59 | 12.60 |
Strain | LC50(95% FL) (µg/mL) | Slope | χ2 | RR |
---|---|---|---|---|
Susceptible | 1.53 (0.96–2.07) | 4.53 ± 0.26 | 11.32 | 1 |
F1 | 68.63 (47.29–83.13) | 3.96 ± 0.44 | 9.27 | 46 |
F1 | 65.40 (46.27–79.20) | 4.45 ± 0.53 | 8.83 | 43 |
RR | 63.67 (49.88–75.80) | 3.49 ± 0.34 | 11.52 | 42 |
RR | 61.91 (42.36–74.69) | 3.32 ± 0.72 | 8.96 | 40 |
Strain | Actual Mortality (%) | Expected Mortality (%) | χ2 |
---|---|---|---|
F1 | |||
20 | 8.73 | 0.5 | 1 |
40 | 28.56 | 12.31 | 0.49 |
80 | 74.32 | 17.69 | 0.54 |
100 | 100 | 35.43 | 0.26 |
F1 | |||
20 | 7.94 | 0.5 | 1 |
40 | 26.24 | 10.58 | 0.40 |
80 | 73.04 | 19.08 | 0.64 |
100 | 100 | 30.25 | 0.35 |
RR | |||
20 | 7.13 | 1.54 | 0.063 |
40 | 27.03 | 11.32 | 0.21 |
80 | 75.50 | 18.41 | 0.34 |
100 | 100 | 30.31 | 0.52 |
RR | |||
20 | 8.62 | 1.61 | 28.32 |
40 | 27.93 | 11.91 | 0.24 |
80 | 76.37 | 24.72 | 0.62 |
100 | 100 | 31.40 | 0.39 |
Concentration | Strain | Survival % | Fitness | D |
---|---|---|---|---|
Susceptible | 53.08 | 0.4 | ||
0.5 | Flubendiamide-sel | 100 | 1 | 1 |
F1 | 100 | 1 | Complete dominant | |
Susceptible | 2.17 | 0.72 | ||
2.5 | Flubendiamide-sel | 100 | 1 | 0.72 |
F1 | 100 | 1 | In-complete dominant | |
Susceptible | 0 | 0 | ||
35 | Flubendiamide-sel | 51.32 | 1 | 0.62 |
F1 | 21.23 | 0.62 | Co-dominant | |
Susceptible | 0 | 0 | ||
70 | Flubendiamide-sel | 13.41 | 1 | 0.31 |
F1 | 0.41 | 0.31 | Incomplete recessive |
Strain | Insecticide | LC50 (µg/mL) | Slope | χ2 | Df |
---|---|---|---|---|---|
Susceptible | Flubendiamide | 1.19 (0.74–1.89) | 1.81 ± 0.71 | 9.41 | 8 |
Flubendiamide-sel (G13) | Chlorantraniliprole | 132.67 (85.58–213.69) | 3.47 ± 0.78 | 23.56 | 8 |
Thiamethoxam | 188.46 (125.76–246.79) | 3.94 ± 1.46 | 21.46 | 8 | |
Permethrin | 171.69 (134.57–260.48) | 2.70 ± 0.63 | 17.31 | 8 | |
Abamectin | 175.89 (123.81–278.70) | 2.51 ± 1.74 | 21.69 | 8 | |
Tebufenozide | 152.30 (92.60–215.72) | 3.47 ± 1.26 | 16.75 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, L.-S.; Akhtar, Z.R.; Ali, A.; Tariq, K.; Campos, M.R. Flubendiamide Resistance and Its Mode of Inheritance in Tomato Pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Insects 2022, 13, 1023. https://doi.org/10.3390/insects13111023
Zang L-S, Akhtar ZR, Ali A, Tariq K, Campos MR. Flubendiamide Resistance and Its Mode of Inheritance in Tomato Pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Insects. 2022; 13(11):1023. https://doi.org/10.3390/insects13111023
Chicago/Turabian StyleZang, Lian-Sheng, Zunnu Raen Akhtar, Asad Ali, Kaleem Tariq, and Mateus R. Campos. 2022. "Flubendiamide Resistance and Its Mode of Inheritance in Tomato Pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)" Insects 13, no. 11: 1023. https://doi.org/10.3390/insects13111023
APA StyleZang, L.-S., Akhtar, Z. R., Ali, A., Tariq, K., & Campos, M. R. (2022). Flubendiamide Resistance and Its Mode of Inheritance in Tomato Pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Insects, 13(11), 1023. https://doi.org/10.3390/insects13111023