Spores of Trichoderma Strains over P. vulgaris Beans: Direct Effect on Insect Attacks and Indirect Effect on Agronomic Parameters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Strains
2.2. Insect Collection and Rearing
2.3. Design of Experiments
2.3.1. Effects of Beans Sprayed with Spores of the Trichoderma Strains on Insects
2.3.2. Effect of the Fungal Strains on the Biological Development of the Insects
2.3.3. Determination of Germination Capacity of Beans Attacked by Insects
2.4. Statistical Analysis
3. Results
3.1. Effect of Beans Sprayed with Spores of Trichoderma Strains on the Survival Rate of Insects
3.2. Effect of Trichoderma Strains on the Biological Development of Insects
3.2.1. Daily Emergence Curves of Insects Exposed to Different Trichoderma Strains
3.2.2. Fungal Growth on Insect Cadavers
3.3. Effect of Insects on the Germination of Beans
3.4. Other Parameters Evaluated in the Plants after 45 Days
3.4.1. The Effect of Fungal Strains on the Agronomic Parameters of the Plants Grown from Treated Beans
3.4.2. The Effect of Seed Condition on the Agronomic Parameters of the Plants Obtained from the Treated Beans
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, H.; Qin, C.S.; Chen, Y.M.; Zhang, G.Y.; Dong, L.H.; Wan, S.Q. Persistence of Metarhizium (Hypocreales: Clavicipitaceae) and Beauveria bassiana (Hypocreales: Clavicipitaceae) in tobacco soils and potential as Biocontrol Agents of Spodoptera litura (Lepidoptera: Noctuidae). Environ. Entomol. 2019, 48, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barra, P.; Rosso, L.; Nesci, A.; Etcheverry, M. Isolation and identification of entomopathogenic fungi and their evaluation against Tribolium confusum, Sitophilus zeamais, and Rhyzopertha dominica in stored maize. J. Pest Sci. 2013, 86, 217–226. [Google Scholar] [CrossRef]
- Dal Bello, G.; Padín, S.; Juárez, P.; Pedrini, N.; De Giusto, M. Biocontrol of Acanthoscelides obtectus and Sitophilus oryzae with diatomaceous earth and Beauveria bassiana on stored grains. Bio. Sci. Technol. 2006, 16, 215–220. [Google Scholar] [CrossRef]
- Cherry, A.J.; Abalo, P.; Hell, K. A laboratory assessment of the potential of different strains of the entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metschnikoff) to control Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in stored cowpea. J. Stored Prod. Res. 2005, 41, 295–309. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Vayias, B.J.; Tsakiri, J.B.; Mikeli, N.H.; Meletsis, C.M.; Tomanovic´, Z. Persistence and efficacy of Metarhizium anisopliae (Metschnikoff) Sorokin (Deuteromycotina: Hyphomycetes) and diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) on wheat and maize. Crop Prot. 2008, 27, 1303–1311. [Google Scholar]
- Batta, Y.A. Control of rice weevil (Sitophilus oryzae L., Coleoptera: Curculionidae) with various formulations of Metarhizium anisopliae. Crop Prot. 2004, 23, 103–108. [Google Scholar] [CrossRef]
- Atanasova, L.; Le Crom, S.; Gruber, S.; Coulpier, F.; Seidl-Seiboth, V.; Kubicek, C.P.; Druzhinina, I.S. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genom. 2013, 14, 121. [Google Scholar] [CrossRef] [Green Version]
- Kubicek, C.P.; Komon-Zelazowska, M.; Druzhinina, I.S. Fungal genus Hypocrea/Trichoderma: From barcodes to biodiversity. J. Zhejiang Univ. Sci. B 2008, 9, 753–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species-opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Shoresh, M.; Harman, G.E.; Mastouri, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Ann. Rev. Phytopathol. 2010, 48, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Howell, C.R. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Dis. 2003, 87, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Cardoza, R.; Hermosa, R.; Vizcaíno, J.; Sanz, L.; Monte, E.; Gutiérrez, S. Secondary metabolites produced by Trichoderma and their importance in the biocontrol process. Res. Signpost Indian 2005, 661, 207. [Google Scholar]
- Reino, J.L.; Guerrero, R.F.; Hernández-Galan, R.; Collado, I.G. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev. 2008, 7, 89–123. [Google Scholar] [CrossRef]
- Keszler, A.; Forgács, E.; Kótai, L.; Vizcaíno, J.A.; Monte, E.; García-Acha, I. Separation and identification of volatile components in the fermentation broth of Trichoderma atroviride by solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr. Sci. 2000, 38, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Rubio, M.B.; Hermosa, R.; Reino, J.L.; Collado, I.G.; Monte, E. Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genet. Biol. 2009, 46, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Yu, G.; Wang, P.; Wei, Z.; Fu, L.; Shen, Q.; Chen, W. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol. Bioch. 2013, 73, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Vizcaino, J.A.; Sanz, L.; Basilio, A.; Vicente, F.; Gutierrez, S.; Hermosa, M.R.; Monte, E. Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycol. Res. 2005, 109, 1397–1406. [Google Scholar] [CrossRef]
- Vizcaíno, J.A.; González, F.J.; Suárez, M.B.; Redondo, J.; Heinrich, J.; Delgado-Jarana, J.; Hermosa, R.; Gutiérrez, S.; Monte, E.; Llobell, A.; et al. Generation, annotation and analysis of ESTs from Trichoderma harzianum CECT 2413. BMC Genom. 2006, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Cardoza, R.E.; Malmierca, M.G.; Hermosa, M.R.; Alexander, N.J.; McCormick, S.P.; Proctor, R.H.; Tijerino, A.M.; Rumbero, A.; Monte, E.; Gutiérrez, S. Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Appl. Environ. Microbiol. 2011, 77, 4867–4877. [Google Scholar] [CrossRef] [Green Version]
- Malmierca, M.G.; Cardoza, R.E.; Alexander, N.J.; McCormick, S.P.; Hermosa, R.; Monte, E.; Gutiérrez, S. Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl. Environ. Microbiol. 2012, 78, 4856–4868. [Google Scholar] [CrossRef] [Green Version]
- Malmierca, M.G.; Cardoza, R.E.; Alexander, N.J.; McCormick, S.P.; Collado, I.G.; Hermosa, R.; Monte, E.; Gutiérrez, S. Relevance of trichothecenes in fungal physiology: Disruption of tri5 in Trichoderma arundinaceum. Fungal Genet. Biol. 2013, 53, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R.H.; McCormick, S.P.; Kim, H.-S.; Cardozar, R.E.; Stanley, A.M.; Lindo, L.; Kelly, A.; Brown, D.W.; Lee, T.; Vaughan, M.M.; et al. Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLoS Pathog. 2018, 14, e1006946. [Google Scholar] [CrossRef] [PubMed]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Woo, S.L.; Lorito, M. Trichoderma-plant-pathogen interactions. Soil Biol. Biochem. 2008, 40, 1–10. [Google Scholar] [CrossRef]
- Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 2007, 3, 408–414. [Google Scholar] [CrossRef]
- Drakulic, J.; Kahar, M.; Ajigboye, O.; Bruce, T.; Ray, R. Contrasting roles of deoxynivalenol and nivalenol in host-mediated interactions between Fusarium graminearum and Sitobion avenae. Toxins 2016, 8, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmierca, M.G.; Mccormick, S.P.; Cardoza, R.E.; Alexander, N.J.; Monte, E.; Gutiérrez, S. Production of trichodiene by Trichoderma harzianum alters the perception of this biocontrol strain by plants and antagonized fungi. Environ. Microbiol. 2015, 17, 2628–2646. [Google Scholar] [CrossRef]
- McCormick, S.P.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: From simple to complex mycotoxins. Toxins 2011, 3, 802–814. [Google Scholar] [CrossRef] [PubMed]
- Rocha, O.; Ansari, K.; Doohan, F.M. Effects of trichothecene mycotoxins on eukaryotic cells: A review. Food Addit. Contam. 2005, 22, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Masuda, D.; Ishida, M.; Yamaguchi, K.; Yamaguchi, I.; Kimura, M.; Nishiuchi, T. Phytotoxic effects of trichothecenes on the growth and morphology of Arabidopsis thaliana. J. Exp. Bot. 2007, 58, 1617–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, U.V.; Lossini, J.S.; Edwards, P.J.; Hilbeck, A. Effectiveness of products from four locally grown plants for the management of Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boheman) (Coleoptera: Bruchidae) in stored beans under laboratory and farm conditions in Northern Tanzania. J. Stored Prod. Res. 2009, 45, 97–107. [Google Scholar] [CrossRef]
- Thakur, D.R. Taxonomy, distribution and pest status of indian biotypes of Acanthoscelides obtectus (Coleoptera: Chrysomelidae: Bruchinae)—A new record. Pak. J. Zool. 2012, 44, 189–195. [Google Scholar]
- Vilca-Mallqui, K.S.; Oliveira, E.E.; Guedes, R.N.C. Competition between the bean weevils Acanthoscelides obtectus and Zabrotes subfasciatus in common beans. J. Stored Prod. Res. 2013, 55, 32–35. [Google Scholar] [CrossRef]
- Baier, A.H.; Webster, B.D. Control of Acanthoscelides obtectus Say (Coleoptera: Bruchidae) in Phaseolus vulgaris L. seed stored on small farms—I. Evaluation of damage. J. Stored Prod. Res. 1992, 28, 289–293. [Google Scholar] [CrossRef]
- Gołebiowski, M.; Maliński, E.; Nawrot, J.; Stepnowski, P. Identification and characterization of surface lipid components of the dried-bean beetle Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J. Stored Prod. Res. 2008, 44, 386–388. [Google Scholar] [CrossRef]
- Daglish, G.J.; Hall, E.A.; Zorzetto, M.J.; Lambkin, T.M.; Erbacher, J.M. Evaluation of protectants for control of Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae) in navy beans (Phaseolus vulgaris (L.)). J. Stored Prod. Res. 1993, 29, 215–219. [Google Scholar] [CrossRef]
- Freitas, R.S.; Faroni, L.R.A.; Sousa, A.H. Hermetic storage for control of common bean weevil, Acanthoscelides obtectus (Say). J. Stored Prod. Res. 2016, 66, 1–5. [Google Scholar] [CrossRef]
- Daglish, G.J. Impact of resistance on the efficacy of binary combinations of spinosad, chlorpyrifos-methyl and s-methoprene against five stored-grain beetles. J. Stored Prod. Res. 2008, 44, 71–76. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Rodríguez-González, Á.; Álvarez-García, S.; González-López, Ó.; Da Silva, F.; Casquero, P.A. Insecticidal Properties of Ocimum basilicum and Cymbopogon winterianus against Acanthoscelides obtectus, insect pest of the common bean (Phaseolus vulgaris, L.). Insects 2019, 10, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenda-Piesik, A.; Piesik, D.; Nowak, A.; Wawrzyniak, M. Tribolium confusum responses to blends of cereal kernels and plant volátiles. J. Appl. Entomol. 2016, 140, 558–563. [Google Scholar] [CrossRef]
- Gantner, M.; Najda, A.; Piesik, D. Effect of phenolic acid content on acceptance of hazel cultivars by filbert aphid. Plant Protect. Sci. 2019, 55, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-González, Á.; Mayo, S.; González-López, Ó.; Reinoso, B.; Gutierrez, S.; Casquero, P.A. Inhibitory activity of Beauveria bassiana and Trichoderma spp. on the insect pests Xylotrechus arvicola (Coleoptera: Cerambycidae) and Acanthoscelides obtectus (Coleoptera: Chrisomelidae: Bruchinae). Environ. Monit. Assess. 2017, 189, 12. [Google Scholar] [CrossRef]
- Rodríguez-González, Á.; Casquero, P.A.; Suárez-Villanueva, V.; Carro-Huerga, G.; Álvarez-García, S.; Mayo-Prieto, S.; Lorenzana, A.; Cardoza, R.E.; Gutiérrez, S. Effect of trichodiene production by Trichoderma harzianum on Acanthoscelides obtectus. J. Stored Prod. Res. 2018, 77, 231–239. [Google Scholar] [CrossRef]
- Rodríguez-González, Á.; Carro-Huerga, G.; Mayo-Prieto, S.; Lorenzana, A.; Gutiérrez, S.; Peláez, H.J.; Casquero, P.A. Investigations of Trichoderma spp. and Beauveria bassiana as biological control agent for Xylotrechus arvicola, a major insect pest in Spanish vineyards. J. Econ. Entomol. 2018, 111, 2585–2591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-González, Á.; Casquero, P.A.; Cardoza, R.E.; Gutiérrez, S. Effect of trichodiene synthase encoding gene expresion in Trichoderma strain on their effectiveness in the control of Acanthoscelides obtectus. J. Stored Prod. Res. 2019, 83, 275–280. [Google Scholar] [CrossRef]
- Rodríguez-González, Á.; Porteous-Álvarez, A.J.; Del Val, M.; Casquero, P.A.; Escriche, B. Toxicity of five Cry proteins against the insect pest Acanthoscelides obtectus (Coleoptera: Chrisomelidae: Bruchinae). J. Invertebr. Pathol. 2020, 169, 107295. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-González, Á.; Campelo, M.P.; Lorenzana, A.; Mayo-Prieto, A.; González-López, Ó.; Álvarez-García, S.; Gutiérrez, S.; Casquero, P.A. Spores of Trichoderma strains sprayed over Acanthoscelides obtectus and Phaseolus vulgaris L. beans: Effects in the biology of the bean weevil. J. Stored Prod. Res. 2020, 88, 101666. [Google Scholar] [CrossRef]
- Abdul-Wahid, O.A.; Elbanna, S.M. Evaluation of the insecticidal activity of Fusarium solani and Trichoderma harzianum against cockroaches; Periplaneta americana. Afr. J. Microbiol. Res. 2012, 6, 1024–1032. [Google Scholar] [CrossRef]
- Degenkolb, T.; Dieckmann, R.; Nielsen, K.F.; Gräfenhan, T.; Theis, C.; Zafari, D.; Chaverri, P.; Isamaiel, A.; Brückner, H.; von Döhren, H.; et al. The Trichoderma brevicompactum clade: A separate lineage with new species, new peptabiotics, and mycotoxins. Mycol. Prog. 2008, 7, 177–219. [Google Scholar] [CrossRef] [Green Version]
- Cardoza, R.E.; McCormick, S.P.; Lindo, L.; Kim, H.-S.; Olivera, E.R.; Nelson, D.R.; Proctor, R.H.; Gutierrez, S. A cytochrome P450 monooxygenase gene required for biosynthesis of the trichothecene toxin harzianum A in Trichoderma. Appl. Microbiol. Biotechnol. 2019, 103, 8087–8103. [Google Scholar] [CrossRef]
- Potter, C. An Improved laboratory apparatus for applying direct sprays and surface films, with data on the electrostatic charge on atomized spray fluids. Ann. Appl. Biol. 1952, 39, 1–28. [Google Scholar] [CrossRef]
- Mazzonetto, F.; Vendramim, J.D. Efeito de pos de origem vegetal sobre Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae) em feijao armazenado. Neotrop. Entomol. 2003, 32, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Fouad, H.A.; Faroni, L.R.D.; Ribeiro, R.C.; Tavares, W.D.S.; Petacci, F. Extraction and repellent activity of Lepidoploa aurea and Memora nodosa against stored grain and by product pests. Vie Milieu 2012, 62, 11–15. [Google Scholar]
- Mayo, S.; Gutiérrez, S.; Malmierca, M.G.; Lorenzana, A.; Campelo, M.P.; Hermosa, R.; Casquero, P.A. Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Front. Plant Sci. 2015, 6, 685. [Google Scholar] [CrossRef] [PubMed]
- Mayo, S.; Cominelli, E.; Sparvoli, F.; González-López, O.; Rodríguez-González, A.; Gutiérrez, S.; Casquero, P.A. Development of a qPCR strategy to select bean genes involved in plant defense response and regulated by the Trichoderma velutinum–Rhizoctonia solani interaction. Front. Plant Sci. 2016, 7, 1109. [Google Scholar] [CrossRef] [PubMed]
- Rigaud, J.R.; Puppo, A. Indole 3 acetic acid catabolism by soybean bacteroids. J. Gen. Microbiol. 1975, 88, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Akello, J.; Sikora, R. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biol. Control 2012, 61, 215–221. [Google Scholar] [CrossRef]
- Menjivar Barahona, R.D. The Systemic Activity of Mutualistic Endophytic Fungi in Solanaceae and Cucurbitaceae Plants on the Behaviour of the Phloem-Feeding Insects Trialeurodes vaporariorum, Aphis gossypii and Myzus persicae; Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES): Bonn, Germany, 2010. [Google Scholar]
- Woo, S.L.; Scala, F.; Ruocco, M.; Lorito, M. The molecular biology of the interactions between Trichoderma spp., Phytopathogenic Fungi, and plants. Phytopathology 2006, 96, 181–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakeri, J.; Foster, H.A. Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzyme Microb. Technol. 2007, 40, 961–968. [Google Scholar] [CrossRef]
- El-Katatny, M.H. Virulence potential of some fungal isolates and their control-promise against the Egyptian cotton leaf worm, Spodoptera littoralis. Arch. Phytopathol. Plant Prot. 2010, 43, 332–356. [Google Scholar] [CrossRef]
- Castrillo, L.A.; Griggs, M.H.; Vandenberg, J.D. Granulate ambrosia beetle, Xylosandrus crassiusculus (Coleoptera: Curculionidae), survival and brood production following exposure to entomopathogenic and mycoparasitic fungi. Biol. Control 2013, 67, 220–226. [Google Scholar] [CrossRef]
- Charnley, A.; Collins, S. Entomopathogenic fungi and their role in pest control. In Environmental and Microbial Relationships; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4, pp. 159–187. [Google Scholar]
- Pucheta Díaz, M.; Flores-Macías, A.; Rodríguez-Navarro, S.; De La Torre, M. Mecanismo de acción de los hongos entomopatógenos. Interciencia 2006, 31, 856–860. [Google Scholar]
- Kaoud, H.A.; Saeid, S.; El-dahshan, A.R.; El-behary, A.M. New Methods for the Control of Lesser Grain Borer, Rhyzopertha dominica. Int. J. Eng. 2013, 3, 285–289. [Google Scholar]
- Motta-Delgado, P.A.; Murcia-Ordoñez, B. Hongos entomopatógenos como alternativa para el control biológico de plagas. Rev. Ambiente Agua—Interdiscip. J. Appl. Sci. 2011, 6, 76–90. [Google Scholar]
- Xu, X.-M.; Jeffries, P.; Pautasso, M.; Jeger, M.J. Combined use of biocontrol agentes to manage plant diseases in theory and practice. Phytopathology 2011, 101, 1024–1031. [Google Scholar] [CrossRef] [Green Version]
- Dalzotto, L.; Tortelli, B.; Spitza, F.; Sacon, S.D.; Neumann Silva, V.; Mendes Milanesi, P. Creole bean seeds microbiolization with doses of Trichoderma harzianum. Ciênc. Rural 2020, 50, e20190542. [Google Scholar] [CrossRef]
- Mastouri, F.; Björkman, T.; Harman, G.E. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 2010, 100, 1213–1221. [Google Scholar] [CrossRef]
- López-Bucio, J.; Pelagio-Flores, R.; Herrera-Estrella, A. Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 2015, 196, 109–123. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Fisiologia Vegetal, 4th ed.; Artmed: Porto Alegre, Brazil, 2009; p. 848. [Google Scholar]
- Brotman, Y.; Gupta Kapuganti, J.; Viterbo, A. Trichoderma. Curr. Biol. 2010, 20, 390–391. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.C.; Baker, R.; Klefield, O.; Chet, I. Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. Plant Dis. 1986, 70, 145–148. [Google Scholar] [CrossRef]
- Hermosa, R.; Viterbo, A.; Chet, I.; Monte, E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 2012, 158, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Studholme, D.J.; Harris, B.; LeCocq, K.; Winsbury, R.; Perer, A.V.; Ryder, L.; Ward, J.L.; Beale, M.H.; Thornton, C.R.; Grant, M. Investigating the beneficial traits of Trichoderma hamatum GD 12 for sustainable agriculture-insights from genomics. Front. Plant Sci. 2013, 4, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Björkman, T.; Blanchard, L.M.; Harman, G.E. Growth enhancement ofshrunken-2 sweet corn when colonized with Trichoderma harzianum 1295-22: Effect of environmental stress. ASHS J. 1998, 123, 35–40. [Google Scholar]
- Yedidia, I.; Srivastva, A.K.; Kapulnik, Y.; Chet, I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 2001, 235, 235–242. [Google Scholar] [CrossRef]
- Björkman, T. Effect of Trichoderma colonization on auxin-mediated regulation of root elongation. Plant Growth Regul. 2004, 43, 89–92. [Google Scholar] [CrossRef]
- Harman, G.E. Multifunctional fungal plant symbionts: New tools to enhance plant growth and productivity. New Phytol. 2011, 189, 647–649. [Google Scholar] [CrossRef]
- Vargas, W.A.; Mandawe, J.C.; Kenerley, C.M. Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol. 2009, 151, 792–808. [Google Scholar] [CrossRef] [Green Version]
- Azarmi, R.; Hajieghrari, B.; Giglou, A. Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. Afr. J. Biotechnol. 2011, 10, 5850–5855. [Google Scholar]
- Pereira, J.L.; Queiroz, R.M.L.; Charneau, S.; Felix, C.R.; Ricart, C.A.; Lopes da Silva, F.; Stecca, A.; Steindorff, C.; Ulhoa, C.J.; Noronha, E.F. Analysis of Phaseolus vulgaris response to its association with Trichoderma harzianum (ALL-42) in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani. PLoS ONE 2014, 9, e98234. [Google Scholar] [CrossRef]
Treatments | Undamaged Beans | Damaged Beans | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dry Weight of the Arial Part (g) | Dry Weight of the Root System (g) | Dry Weight of the Aerial Part (g) | Dry Weight of the Root System (g) | |||||||
Ta37 | 2.96 ± 0.21bB a,b | 0.53 ± 0.05aAB a,b | - | - | ||||||
Ta37 (Control) | 3.63 ± 0.23aAB | 0.56 ± 0.05aA | - | - | ||||||
Δtri23 | 4.22 ± 0.23aA | 0.62 ± 0.05aA | 3.50 ± 0.21aA a,b | 0.40 ± 0.06aA a,b | ||||||
Δtri23 (Control) | 3.10 ± 0.26bB | 0.53 ± 0.05bA | 3.06 ± 0.21aA | 0.34 ± 0.02aA | ||||||
Δtri17 | 2.94 ± 0.26bB | 0.45 ± 0.04aB | 2.85 ± 0.15aA | 0.29 ± 0.05aA | ||||||
Δtri17 (Control) | 3.91 ± 0.35aA | 0.52 ± 0.05aA | 2.74 ± 0.33aA | 0.33 ± 0.07aA | ||||||
Tb41 | 3.53 ± 0.29aB | 0.48 ± 0.04aAB | 3.40 ± 0.10aA | 0.32 ± 0.04aA | ||||||
Tb41 (Control) | 3.44 ± 0.15aAB | 0.57 ± 0.04aA | 3.50 ± 0.18aA | 0.47 ± 0.03aA | ||||||
Trichoderma | Control | Trichoderma | Control | Trichoderma | Control | Trichoderma | Control | |||
F | 6.661 | 2.868 | 2.928 | 0.134 | F | 1.952 | 2.062 | 0.716 | 1.740 | |
df | (3.52) | (3.53) | (3.52) | (3.53) | df | (2.6) | (2.13) | (2.6) | (2.13) | |
p | <0.001 | 0.046 | 0.042 | 0.939 | p | 0.222 | 0.167 | 0.526 | 0.214 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-González, Á.; Carro-Huerga, G.; Guerra, M.; Mayo-Prieto, S.; Porteous-Álvarez, A.J.; Lorenzana, A.; Campelo, M.P.; Fernández-Marcos, A.; Casquero, P.A.; Gutiérrez, S. Spores of Trichoderma Strains over P. vulgaris Beans: Direct Effect on Insect Attacks and Indirect Effect on Agronomic Parameters. Insects 2022, 13, 1086. https://doi.org/10.3390/insects13121086
Rodríguez-González Á, Carro-Huerga G, Guerra M, Mayo-Prieto S, Porteous-Álvarez AJ, Lorenzana A, Campelo MP, Fernández-Marcos A, Casquero PA, Gutiérrez S. Spores of Trichoderma Strains over P. vulgaris Beans: Direct Effect on Insect Attacks and Indirect Effect on Agronomic Parameters. Insects. 2022; 13(12):1086. https://doi.org/10.3390/insects13121086
Chicago/Turabian StyleRodríguez-González, Álvaro, Guzmán Carro-Huerga, Marcos Guerra, Sara Mayo-Prieto, Alejandra Juana Porteous-Álvarez, Alicia Lorenzana, María Piedad Campelo, Alexia Fernández-Marcos, Pedro Antonio Casquero, and Santiago Gutiérrez. 2022. "Spores of Trichoderma Strains over P. vulgaris Beans: Direct Effect on Insect Attacks and Indirect Effect on Agronomic Parameters" Insects 13, no. 12: 1086. https://doi.org/10.3390/insects13121086
APA StyleRodríguez-González, Á., Carro-Huerga, G., Guerra, M., Mayo-Prieto, S., Porteous-Álvarez, A. J., Lorenzana, A., Campelo, M. P., Fernández-Marcos, A., Casquero, P. A., & Gutiérrez, S. (2022). Spores of Trichoderma Strains over P. vulgaris Beans: Direct Effect on Insect Attacks and Indirect Effect on Agronomic Parameters. Insects, 13(12), 1086. https://doi.org/10.3390/insects13121086