The Contribution of Silk Fibroin in Biomedical Engineering
Abstract
:Simple Summary
Abstract
1. Introduction
2. SF—Overview
3. SF Key Properties
3.1. Biocompatibility
3.2. Biodegradability
3.3. Mechanical Properties
3.4. Biologically Functional Properties
3.5. Enhanced SF by Genetic Engineering
Exogenous Gene | Enhanced SF | Reference |
---|---|---|
Insulin-like Growth factor-1 | Displays improved strength, elongation and tenacity | [95] |
Human acidic fibroblast growth factor | Promotes cell proliferation | [96] |
Human basic fibroblast growth factor and transforming growth factor-b1 | Promotes cell proliferation and exhibits anti-inflammatory activity | [97] |
Cecropin B and moricin | Antimicrobial activity | [98] |
Green fluorescent protein and cecropin | Antibacterial activity and fluorescence | [99] |
Enhanced green fluorescent protein, DsRed monomer fluorescent protein and monomeric Kusabira orange | Exhibits fluorescence | [100] |
Laminin and fibronectin peptide adhesive fragments | Exhibits increased adhesive activity | [101] |
Polyalanine motifs | Displays improved mechanical properties | [102] |
Collagen and fibronectin | Improves cell adhesive properties | [103] |
4. SF as a Green Material
5. SF and Tissue Engineering
6. SF Involved in the Treatment of the Eye, Bone and Skin Regeneration
6.1. SF Involved in the Treatment of the Eye
6.2. SF Used in the Treatment of the Bone
6.3. SF Involved in the Treatment of Skin Regeneration
7. SF in Cancer Therapy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ozkale, B.; Selman, M.; Mooney, D.J. Active Biomaterials for Mechanobiology. Biomaterials 2021, 267, 120497. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Gregory, D.A.; Tomeh, M.A.; Zhao, X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 1499. [Google Scholar] [CrossRef] [PubMed]
- Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F.P. The Biomedical Use of Silk: Past, Present, Future. Adv. Healthc. Mater. 2019, 8, 800465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunija, A.J. Biomaterials and Biotechnological Schemes Utilizing TiO2 Nanotube Arrays—A Review. In Fundamental Biomaterials: Metals; Elsevier Ltd: Amsterdam, The Netherlands, 2018; pp. 175–196. [Google Scholar] [CrossRef]
- Shanmugam, K.; Sahadevan, R. Bioceramics—An Introductory Overview; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Sionkowska, A. Current Research on the Blends of Natural and Synthetic Polymers as New Biomaterials: Review. Prog. Polym. Sci. 2011, 36, 1254–1276. [Google Scholar] [CrossRef]
- Ullah, S.; Chen, X. Fabrication, Applications and Challenges of Natural Biomaterials in Tissue Engineering. Appl. Mater. Today 2020, 20, 100656. [Google Scholar] [CrossRef]
- Wu, R.; Li, H.; Yang, Y.; Zheng, Q.; Li, S.; Chen, Y. Bioactive Silk Fibroin-Based Hybrid Biomaterials for Musculoskeletal Engineering: Recent Progress and Perspectives. ACS Appl. Bio Mater. 2021, 4, 6630–6646. [Google Scholar] [CrossRef]
- Kostag, M.; Jedvert, K.; El, O.A. Engineering of Sustainable Biomaterial Composites from Cellulose and Silk Fibroin: Fundamentals and Applications. Int. J. Biol. Macromol. 2021, 167, 687–718. [Google Scholar] [CrossRef]
- Yang, X.; Fan, L.; Ma, L.; Wang, Y.; Lin, S.; Yu, F.; Pan, X.; Luo, G.; Zhang, D.; Wang, H. Green Electrospun Manuka Honey/Silk Fibroin Fibrous Matrices as Potential Wound Dressing. Mater. Des. 2017, 119, 76–84. [Google Scholar] [CrossRef]
- Tao, G.; Cai, R.; Wang, Y.; Liu, L.; Zuo, H.; Zhao, P.; Umar, A.; Mao, C.; Xia, Q.; He, H. Bioinspired Design of AgNPs Embedded Silk Sericin-Based Sponges for Efficiently Combating Bacteria and Promoting Wound Healing. Mater. Des. 2019, 180, 107940. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Fauzi, A.; Aziz, M.; Akbari, M.; Hadisi, Z.; Omidi, M.; Chen, X. Development of the PVA/CS Nano Fibers Containing Silk Protein Sericin as a Wound Dressing: In Vitro and in Vivo Assessment. Int. J. Biol. Macromol. 2020, 149, 513–521. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, K.; Lu, F.; Lan, G.; Dai, F.; Shang, S.; Hu, E. Minimizing Antibiotic Dosage through in Situ Formation of Gold Nanoparticles across Antibacterial Wound Dressings: A Facile Approach Using Silk Fabric as the Base Substrate. J. Clean. Prod. 2020, 243, 118604. [Google Scholar] [CrossRef]
- Patil, P.P.; Reagan, M.R.; Bohara, R.A. Silk Fibroin and Silk-Based Biomaterial Derivatives for Ideal Wound Dressings. Int. J. Biol. Macromol. 2020, 164, 4613–4627. [Google Scholar] [CrossRef]
- Zakeri-Siavashani, A.; Chamanara, M.; Nassireslami, E.; Shiri, M.; Hoseini-Ahmadabadi, M.; Paknejad, B. Three Dimensional Spongy Fibroin Scaffolds Containing Keratin/Vanillin Particles as an Antibacterial Skin Tissue Engineering Scaffold. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 220–231. [Google Scholar] [CrossRef]
- DeBari, M.L.; King, C.I.; Altgold, T.A.; Abbott, R.D. Silk Fibroin as a Green Material. ACS Biomater. Sci. Eng. 2021, 7, 3530–3544. [Google Scholar] [CrossRef]
- Benfenati, V.; Toffanin, S.; Chieco, C.; Sagnella, A.; Virgilio, N. Di; Posati, T.; Varchi, G.; Natali, M.; Ruani, G.; Muccini, M.; et al. Silk Fibroin Based Technology for Industrial Biomanufacturing. In Factories of the Future; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 409–430. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Lu, W.; Wei, L.; Zhang, Y.; Xia, Q. Molecular Nature of Dominant Naked Pupa Mutation Reveals Novel Insights into Silk Production in Bombyx mori. Insect Biochem. Mol. Biol. 2019, 109, 52–62. [Google Scholar] [CrossRef]
- Song, J.; Chen, Z.; Liu, Z.; Yi, Y.; Tsigkou, O.; Li, J.; Li, Y. Controllable Release of Vascular Endothelial Growth Factor (VEGF) Bywheel Spinning Alginate/Silk Fibroin Fibers for Wound Healing. Mater. Des. 2021, 212, 110231. [Google Scholar] [CrossRef]
- Pérez-Rigueiro, J.; Ruiz, V.; Cenis, J.L.; Elices, M.; Pugno, N.M. Lessons From Spider and Silkworm Silk Guts. Front. Mater. 2020, 7, 1–8. [Google Scholar] [CrossRef]
- Xu, J.; Dong, Q.; Yu, Y.; Niu, B.; Ji, D.; Li, M.; Huang, Y.; Chen, X. Mass Spider Silk Production through Targeted Gene Replacement in Bombyx mori. Proc. Natl. Acad. Sci. USA 2018, 115, 8757–8762. [Google Scholar] [CrossRef] [Green Version]
- Etebari, K.; Mirhoseini, S.Z.; Matindoost, L. A Study on Interaspecific Biodiversity of Eight Groups of Silkworm (Bombyx mori) by Biochemical Markers. Insect Sci. 2005, 12, 87–94. [Google Scholar] [CrossRef]
- Abdelli, N.; Peng, L.; Keping, C. Silkworm, Bombyx mori, as an Alternative Model Organism in Toxicological Research. Environ. Sci. Pollut. Res. 2018, 25, 35048–35054. [Google Scholar] [CrossRef]
- Xu, H.; O’Brochta, D.A. Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model lepidopteran insect. Proc. R. Soc. B Biol. Sci. 2015, 282, 20150487. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Imada, T.; Asakura, T. Preparation and Characterization of Regenerated Fiber from the Aqueous Solution of Bombyx mori Cocoon Silk Fibroin. Mater. Chem. Phys. 2009, 117, 430–433. [Google Scholar] [CrossRef]
- Marín, C.B.; Fitzpatrick, V.; Kaplan, D.L.; Landoulsi, J.; Guénin, E.; Egles, C. Silk Polymers and Nanoparticles: A Powerful Combination for the Design of Versatile Biomaterials. Front. Chem. 2020, 8, 1–22. [Google Scholar] [CrossRef]
- Wang, F.; Guo, C.; Yang, Q.; Li, C.; Zhao, P.; Xia, Q.; Kaplan, D.L. Protein Composites from Silkworm Cocoons as Versatile Biomaterials. Acta Biomater. 2021, 121, 180–192. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, H.; Wei, K.; Yang, Y.; Zheng, R.Y.; Kim, I.S.; Zhang, K.Q. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. Int. J. Mol. Sci. 2017, 18, 237. [Google Scholar] [CrossRef]
- Wang, J.; Yan, S.; Lu, C.; Bai, L. Biosynthesis and Characterization of Typical Fibroin Crystalline Polypeptides of Silkworm Bombyx mori. Mater. Sci. Eng. C 2009, 29, 1321–1325. [Google Scholar] [CrossRef]
- Ma, Y.; Luo, Q.; Ou, Y.; Tang, Y.; Zeng, W.; Wang, H.; Hu, J. New Insights into the Proteins Interacting with the Promoters of Silkworm Fibroin Genes. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Lotz, B.; Cesari, F.C. The Chemical Structure and the Crystalline Structures of Bombyx mori Silk Fibroin. Biochimie 1979, 61, 205–214. [Google Scholar] [CrossRef]
- Vidya, M.; Rajagopal, S. Silk Fibroin: A Promising Tool for Wound Healing and Skin Regeneration. Int. J. Polym. Sci. 2021, 2021, 9069924. [Google Scholar] [CrossRef]
- Koh, L.D.; Cheng, Y.; Teng, C.P.; Khin, Y.W.; Loh, X.J.; Tee, S.Y.; Low, M.; Ye, E.; Yu, H.D.; Zhang, Y.W.; et al. Structures, Mechanical Properties and Applications of Silk Fibroin Materials. Prog. Polym. Sci. 2015, 46, 86–110. [Google Scholar] [CrossRef]
- Dong, Z.; Zhao, P.; Zhang, Y.; Song, Q.; Zhang, X.; Guo, P. Analysis of Proteome Dynamics inside the Silk Gland Lumen of Bombyx mori. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leem, J.W.; Fraser, M.J.; Kim, Y.L. Transgenic and Diet-Enhanced Silk Production for Reinforced Biomaterials: A Metamaterial Perspective. Annu. Rev. Biomed. Eng. 2020, 22, 79–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panda, D.; Konar, S.; Bajpai, S.K.; Arockiarajan, A. Thermodynamically-Consistent Constitutive Modeling of Aligned Silk Fibroin Sponges: Theory and Application to Uniaxial Compression. Int. J. Solids Struct. 2018, 138, 144–154. [Google Scholar] [CrossRef]
- Michelle, G.; Agostini, M.; Moraes, D.; Cecília, A.; Rodas, D.; Zazuco, O.; Masumi, M. Hydrogels from Silk Fibroin Metastable Solution: Formation and Characterization from a Biomaterial Perspective. Mater. Sci. Eng. C 2011, 31, 997–1001. [Google Scholar] [CrossRef]
- Bassani, G.A.; Vincoli, V.; Biagiotti, M.; Valsecchi, E.; Zucca, M.V.; Clavelli, C.; Alessandrino, A.; Freddi, G. A Route to Translate a Silk-Based Medical Device from Lab to Clinic: The Silk Biomaterials Srl Experience. Insects 2022, 13, 212. [Google Scholar] [CrossRef]
- Ghalei, S.; Handa, H. A Review on Antibacterial Silk Fibroin-Based Biomaterials: Current State and Prospects. Mater. Today Chem. 2022, 23, 100673. [Google Scholar] [CrossRef]
- Khademolqorani, S.; Tavanai, H.; Chronakis, I.S.; Boisen, A. The Determinant Role of Fabrication Technique in Final Characteristics of Scaffolds for Tissue Engineering Applications: A Focus on Silk Fibroin-Based Scaffolds. Mater. Sci. Eng. C 2021, 122, 111867. [Google Scholar] [CrossRef]
- Jo, Y.; Kweon, H.; Kim, D.; Baek, K.; Chae, W.; Kang, Y.; Oh, J.; Kim, S.; Garagiola, U. Silk Sericin Application Increases Bone Morphogenic Protein-2/4 Expression via a Toll-like Receptor-Mediated Pathway. Int. J. Biol. Macromol. 2021, 190, 607–617. [Google Scholar] [CrossRef]
- Teuschl, A.; Griensven, M. Van; Redl, H.; Teuschl, A.H.; Bioreactors, E. Sericin Removal from Raw Bombyx mori Silk Scaffolds of High Hierarchical Order. Tissue Eng. Part C Methods 2014, 20, 1–25. [Google Scholar] [CrossRef]
- Gholipourmalekabadi, M.; Sapruc, S.; Samadikuchaksaraei, A.; Reis, R.L.; Kaplan, D.L.; Subhas, C.K. Silk Fibroin for Skin Injury Repair: Where Do Things Stand? Adv. Drug Deliv. Rev. 2019, 153, 28–53. [Google Scholar] [CrossRef]
- Crakes, K.R.; Herrera, C.; Morgan, J.L.; Olstad, K.; Hessell, A.J.; Ziprin, P.; Liwang, P.J.; Dandekar, S. Efficacy of Silk Fibroin Biomaterial Vehicle for in Vivo Mucosal Delivery of Griffithsin and Protection against HIV and SHIV Infection Ex Vivo. J. Int. AIDS Soc. 2020, 23, 1–12. [Google Scholar] [CrossRef]
- Madden, P.W.; Klyubin, I.; Ahearne, M.J. Silk Fibroin Safety in the Eye: A Review That Highlights a Concern. BMJ Open Ophtalmol. 2020, 5, 1–10. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Ding, F.; Zhang, P.; Liu, J.; Gu, X. Biocompatibility Evaluation of Silk Fibroin with Peripheral Nerve Tissues and Cells in Vitro. Biomaterials 2007, 28, 1643–1652. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, H.; Ju, R.; Chen, K.; Li, S.; Wang, W.; Yan, Y. In Vivo Biocompatibility and Hemocompatibility of a Polytetra Fl Uoroethylene Small Diameter Vascular Graft Modified with Sulfonated Silk Fibroin. Am. J. Surg. 2017, 213, 87–93. [Google Scholar] [CrossRef]
- Tian, Y.; Wu, Q.; Li, F.; Zhou, Y.; Huang, D.; Xie, R.; Wang, X.; Zheng, Z.; Li, G. A Flexible and Biocompatible Bombyx mori Silk Fibroin/Wool Keratin Composite Scaffold with Interconnective Porous Structure. Colloids Surf. B Biointerfaces 2021, 208, 112080. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Lou, Z.; Zheng, Y.; Wang, K.; Zhao, L.; Han, W.; Jiang, K.; Shen, G. Biomimetic, Biocompatible and Robust Silk Fibroin-MXene Film with STable 3D Cross-Link Structure for Flexible Pressure Sensors. Nano Energy 2020, 78, 105252. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Wang, H.; Dong, Z. Preparation, Characterization and Biocompatibility of Electrospinning Heparin-Modified Silk Fibroin Nanofibers. Int. J. Biol. Macromol. 2011, 48, 345–353. [Google Scholar] [CrossRef]
- Choi, Y.; Cho, D.; Lee, H. Development of Silk Fibroin Scaffolds by Using Indirect 3D-Bioprinting Technology. Micromachines 2022, 13, 43. [Google Scholar] [CrossRef]
- Stoica, A.E.; Chircov, C.; Grumezescu, A.M. Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. Materials 2020, 13, 2853. [Google Scholar] [CrossRef]
- Zheng, L.; Li, S.; Luo, J.; Wang, X. Latest Advances on Bacterial Cellulose-Based Antibacterial Materials as Wound Dressings. Front. Bioeng. Biotechnol. 2020, 8, 1–15. [Google Scholar] [CrossRef]
- Yin, C.; Han, X.; Lu, Q.; Qi, X.; Guo, C.; Wu, X. Rhein Incorporated Silk Fibroin Hydrogels with Antibacterial and Anti-Inflammatory Efficacy to Promote Healing of Bacteria-Infected Burn Wounds. Int. J. Biol. Macromol. 2022, 201, 14–19. [Google Scholar] [CrossRef]
- Mu, Y.; Gage, F.H. Adult Hippocampal Neurogenesis and Its Role in Alzheimer’s Disease. Mol. Neurodegener. 2011, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Wang, M.; Zhan, Y.; Zhang, J.; Yang, X.; Fu, S.; Bi, D.; Gao, F. Single-Nucleus RNA Sequencing Reveals Transcriptional Changes of Hippocampal Neurons in APP23 Mouse Model of Alzheimer’s Disease. Biosci. Biotechnol. Biochem. 2020, 84, 919–926. [Google Scholar] [CrossRef]
- Tang, X.; Ding, F.; Yang, Y.; Hu, N.; Wu, H.; Gu, X. Evaluation on in Vitro Biocompatibility of Silk Fibroin-Based Biomaterials with Primarily Cultured Hippocampal Neurons. J. Biomed. Mater. Res. A 2008, 91, 166–174. [Google Scholar] [CrossRef]
- Reinke, J.; Sorg, H. Wound Repair and Regeneration. Eur. Surg. Res. 2012, 49, 35–43. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, L.; Chen, J.; Wang, L.; Gui, X.; Ran, J. Silk Fibroin Biomaterial Shows Safe and Effective Wound Healing in Animal Models and a Randomized Controlled Clinical Trial. Adv. Healthc. Mater. 2017, 6, 1–16. [Google Scholar] [CrossRef]
- Acharya, C.; Ghosh, S.K.; Kundu, S.C. Silk Fibroin Protein from Mulberry and Non-Mulberry Silkworms: Cytotoxicity, Biocompatibility and Kinetics of L929 Murine Fibroblast Adhesion. J. Mater. Sci. Mater. Med. 2008, 19, 2827–2836. [Google Scholar] [CrossRef]
- Kim, S.H.; Yeon, Y.K.; Lee, J.M.; Chao, J.R.; Lee, Y.J.; Seo, Y.B.; Sultan, T.; Lee, O.J.; Lee, J.S.; Yoon, S.; et al. Precisely Printable and Biocompatible Silk Fibroin Bioink for Digital Light Processing 3D Printing. Nat. Commun. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, B. Biodegradation of Silk Biomaterials. Int. J. Mol. Sci. 2009, 10, 1514–1524. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liu, X.; Li, G.; Wang, P.; Yang, Y. Tailoring Degradation Rates of Silk Fibroin Scaffolds for Tissue Engineering. J. Biomed. Mater. 2019, 107, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, Y.; Wei, Z. Characterization of Undegraded and Degraded Silk Fibroin and Its Significant Impact on the Properties of the Resulting Silk Biomaterials. Int. J. Biol. Macromol. 2021, 176, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fan, S.; Li, Y.; Niu, C.; Li, X.; Guo, Y.; Zhang, J.; Shi, J.; Wang, X. Silk Fibroin/Sodium Alginate Composite Porous Materials with Controllable Degradation. Int. J. Biol. Macromol. 2020, 150, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Zhang, Q.; Shi, M.; Zhang, Y.; Tao, W.; Li, M. Effect of Pore Size on the Biodegradation Rate of Silk Fibroin Scaffolds. Adv. Mater. Sci. Eng. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Li, Q.; Yu, H.; Cheng, J.; Wu, N.; Shi, W.; Zhao, F.; Shao, Z.; Meng, Q.; Chen, H.; et al. Cryo-Self-Assembled Silk Fibroin Sponge as a Biodegradable Platform for Enzyme-Responsive Delivery of Exosomes. Bioact. Mater. 2022, 8, 505–514. [Google Scholar] [CrossRef]
- Catto, V.; Farè, S.; Cattaneo, I.; Figliuzzi, M.; Alessandrino, A.; Freddi, G.; Remuzzi, A.; Cristina, M. Small Diameter Electrospun Silk Fibroin Vascular Grafts: Mechanical Properties, in Vitro Biodegradability, and in Vivo Biocompatibility. Mater. Sci. Eng. C 2015, 54, 101–111. [Google Scholar] [CrossRef]
- Mehrabani, M.G.; Karimian, R.; Mehramouz, B.; Rahimi, M.; Kafil, H.S. Preparation of Biocompatible and Biodegradable Silk Fibroin/Chitin/Silver Nanoparticles 3D Scaffolds as a Bandage for Antimicrobial Wound Dressing. Biol. Macromol. 2018, 114, 961–971. [Google Scholar] [CrossRef]
- Fan, H.; Liu, H.; Toh, S.L.; Goh, J.C.H. Anterior Cruciate Ligament Regeneration Using Mesenchymal Stem Cells and Silk Scaffold in Large Animal Model. Biomaterials 2009, 30, 4967–4977. [Google Scholar] [CrossRef]
- Wang, Y.; Rudym, D.D.; Walsh, A.; Abrahamsen, L.; Kim, H.; Kim, H.S.; Kirker-head, C.; Kaplan, D.L. In Vivo Degradation of Three-Dimensional Silk Fibroin Scaffolds. Biomaterials 2008, 29, 3415–3428. [Google Scholar] [CrossRef] [Green Version]
- Melke, J.; Midha, S.; Ghosh, S.; Ito, K.; Hofmann, S. Silk Fibroin as Biomaterial for Bone Tissue Engineering. Acta Biomater. 2016, 31, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Johari, N.; Moroni, L.; Samadikuchaksaraei, A. Tuning the Conformation and Mechanical Properties of Silk Fibroin Hydrogels. Eur. Polym. J. 2020, 134, 109842. [Google Scholar] [CrossRef]
- Grabska-Zielińska, S.; Sionkowska, A.; Coelho, C.C.; Grabska-zieli, S.; Monteiro, F.J. Silk Fibroin/Collagen/Chitosan Scaffolds Cross-Linked by a Glyoxal Solution as Biomaterials toward Bone Tissue Regeneration. Materials 2020, 13, 3433. [Google Scholar] [CrossRef]
- Eivazzadeh-keihan, R.; Ahmadpour, F.; Aghamirza, H.; Aliabadi, M.; Radinekiyan, F.; Maleki, A.; Madanchi, H.; Mahdavi, M.; Esmail, A.; Lanceros-m, S. Pectin-Cellulose Hydrogel, Silk Fibroin and Magnesium Hydroxide Nanoparticles Hybrid Nanocomposites for Biomedical Applications. Int. J. Biol. Macromol. 2021, 192, 7–15. [Google Scholar] [CrossRef]
- Chen, T.; Wen, T.; Dai, N.; Hsu, S. Cryogel Hydrogel Biomaterials and Acupuncture Combined to Promote Diabetic Skin Wound Healing through Immunomodulation. Biomaterials 2021, 269, 120608. [Google Scholar] [CrossRef]
- Hoon, D.; Tripathy, N.; Hun, J.; Eun, J.; Geun, J.; Dan, K.; Hum, C.; Khang, G. Enhanced Osteogenesis of B-Tricalcium Phosphate Reinforced Silk Fibroin Scaffold for Bone Tissue Biofabrication. Int. J. Biol. Macromol. 2017, 95, 14–23. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, N.; Wen, J.; Jia, M.; Guo, Y.; Shao, Z.; Zhao, X.; Accepted, J. Porous Three-Dimensional Silk Fibroin Scaffolds for Tracheal Epithelial Regeneration in Vitro and in Vivo. ACS Biomater. Sci. Eng. 2018, 4, 2977–2985. [Google Scholar] [CrossRef]
- Yan, L.-P.; Oliveira, J.M.; Oliveira, A.L.; Caridade, S.G.; Mano, J.F.; Reis, R.L. Macro/Microporous Silk Fibroin Scaffolds with Potential for Articular Cartilage and Meniscus Tissue Engineering Applications. Acta Biomater. 2012, 8, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Vepari, C.; Kaplan, D.L. Silk as a Biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, J.; Ge, H.; Han, L.; Wang, X.; Hao, Y.; Han, C.; Dong, L. Thermal, Mechanical, and Rheological Properties of Polylactide/Poly (1, 2-Propylene Glycol Adipate). Polym. Eng. Sci. 2013, 53, 112–118. [Google Scholar] [CrossRef]
- Bunster, G.F. Polyhydroxyalkanoates: Production and Use in Medicine. In Encyclopedia of Biomedical Polymers and Polymeric Biomaterials; CRC Press: Boca Raton, FL, USA, 2016; pp. 6412–6421. [Google Scholar] [CrossRef]
- Guhados, G.; Wan, W.; Hutter, J.L. Measurement of the Elastic Modulus of Single Bacterial Cellulose Fibers Using Atomic Force Microscopy. Am. Chem. Soc. 2005, 21, 6642–6646. [Google Scholar] [CrossRef]
- Pogorelova, N.; Rogachev, E.; Dige, I.; Chernigova, S.; Nardin, D. Bacterial Cellulose Nanocomposites: Morphology. Materials 2020, 13, 2849. [Google Scholar] [CrossRef]
- Guo, S.; Dipietro, L.A. Factors Affecting Wound Healing. Crit. Rev. Oral Biol. Med. 2010, 89, 219–229. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Zheng, L.; Zhang, H.; Shi, H.; Zhang, X.; Liu, B. Mineralized Self-Assembled Silk Fibroin/Cellulose Interpenetrating Network Aerogel for Bone Tissue Engineering. Mater. Sci. Eng. C 2021, 112549. [Google Scholar] [CrossRef]
- Martınez-Mora, C.; Mrowiec, A.; Marı, E.; Alcaraz, A.; Jose, F. Fibroin and Sericin from Bombyx mori Silk Stimulate Cell Migration through Upregulation and Phosphorylation Of. PLoS ONE 2012, 7, e42271. [Google Scholar] [CrossRef]
- Nikam, V.S.; Punde, D.S.; Bhandari, R.S. Silk Fibroin Nanofibers Enhance Cell Adhesion of Blood-Derived Fibroblast-like Cells—A Potential Application for Wound Healing. Indian J. Pharmacol. 2020, 52, 306–312. [Google Scholar] [CrossRef]
- Gharehnazifam, Z.; Dolatabadi, R.; Baniassadi, M.; Shahsavari, H.; Kajbafzadeh, A.; Abrinia, K.; Baghani, M. Computational Analysis of Vincristine Loaded Silk Fibroin Hydrogel for Sustained Drug Delivery Applications: Multiphysics Modeling and Experiments. Int. J. Pharm. 2021, 609, 121184. [Google Scholar] [CrossRef]
- Kwon, G.; Heo, B.; Kwon, M.J.; Kim, I.; Chu, J.; Kim, B.; Kim, B.; Park, S.S. Effect of Silk Fibroin Biomaterial Coating on Cell Viability and Intestinal Adhesion of Probiotic Bacteria. J. Microbiol. Biotechnol. 2021, 31, 592–600. [Google Scholar] [CrossRef]
- Lee, O.J.; Sultan, M.T.; Hong, H.; Lee, Y.J.; Lee, J.S.; Lee, H.; Kim, S.H.; Park, C.H. Recent Advances in Fluorescent Silk Fibroin. Front. Mater. 2020, 7, 1–12. [Google Scholar] [CrossRef]
- Baci, G.-M.; Cucu, A.-A.; Giurgiu, A.-I.; Muscă, A.-S.; Rațiu, C.A.; Bagameri, L.; Moise, A.R.; Bobiș, O.; Dezmirean, D.S. Advances in Editing Silkworms (Bombyx mori) Genome by Using the CRISPR-Cas System. Insects 2022, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Nagano, A.; Tanioka, Y.; Sakurai, N.; Sezutsu, H.; Kuboyama, N.; Kiba, H. Regeneration of the Femoral Epicondyle on Calcium-Binding Silk Scaffolds Developed Using Transgenic Silk Fibroin Produced by Transgenic Silkworm. Acta Biomater. 2011, 7, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- Kuwana, Y.; Sezutsu, H.; Nakajima, K.I.; Tamada, Y.; Kojima, K. High-Toughness Silk Produced by a Transgenic Silkworm Expressing Spider (Araneus Ventricosus) Dragline Silk Protein. PLoS ONE 2014, 9, e105325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujinaga, D.; Kohmura, Y.; Okamoto, N.; Kataoka, H.; Mizoguchi, A. Insulin-like Growth Factor (IGF)-like Peptide and 20-Hydroxyecdysone Regulate the Growth and Development of the Male Genital Disk through Different Mechanisms in the Silkmoth, Bombyx mori. Insect Biochem. Mol. Biol. 2017, 87, 35–44. [Google Scholar] [CrossRef]
- Wang, F.; Xu, H.; Wang, Y.; Wang, R.; Yuan, L.; Ding, H.; Song, C.; Ma, S.; Peng, Z.; Peng, Z.; et al. Advanced Silk Material Spun by a Transgenic Silkworm Promotes Cell Proliferation for Biomedical Application. Acta Biomater. 2014, 10, 4947–4955. [Google Scholar] [CrossRef]
- Wang, M.; Du, Y.; Huang, H.; Zhu, Z.; Du, S.; Chen, S.; Zhao, H. Silk Fibroin Peptide Suppresses Proliferation and Induces Apoptosis and Cell Cycle Arrest in Human Lung Cancer Cells. Acta Pharmacol. Sin. 2019, 40, 522–529. [Google Scholar] [CrossRef]
- Saviane, A.; Romoli, O.; Bozzato, A.; Freddi, G.; Cappelletti, C.; Rosini, E.; Cappellozza, S.; Tettamanti, G. Intrinsic Antimicrobial Properties of Silk Spun by Genetically Modified Silkworm Strains. Transgenic Res. 2018, 27, 87–101. [Google Scholar] [CrossRef]
- Li, Z.; Cao, G.; Xue, R.; Chengliang, G. Construction of Transgenic Silkworm Spinning Antibacterial Silk with Fluorescence Construction of Transgenic Silkworm Spinning Antibacterial Silk with Fluorescence. Mol. Biol. Rep. 2014, 42, 19–25. [Google Scholar] [CrossRef]
- Iizuka, T.; Sezutsu, H.; Tatematsu, K.; Kobayashi, I.; Yonemura, N.; Uchino, K.; Nakajima, K.; Kojima, K.; Takabayashi, C.; Machii, H.; et al. Colored Fluorescent Silk Made by Transgenic Silkworms. Adv. J. Mater. 2013, 23, 5232–5239. [Google Scholar] [CrossRef]
- Asakura, T.; Isozaki, M.; Saotome, T.; Tatematsu, K.; Sezutsu, H.; Kuwabara, N.; Nakazawa, Y. Recombinant Silk Fibroin Incorporated Cell-Adhesive Sequences Produced by Transgenic Silkworm as a Possible Candidate for Use in Vascular Graft. J. Mater. Chem. B Mater. Biol. Med. 2014, 2, 7375–7383. [Google Scholar] [CrossRef]
- Zhao, S.; Ye, X.; Wu, M.; Ruan, J.; Wang, X.; Tang, X.; Zhong, B. Recombinant Silk Proteins with Additional Polyalanine Have Excellent Mechanical Properties. Int. J. Mol. Sci. 2021, 22, 1513. [Google Scholar] [CrossRef]
- Yanagisawa, S.; Zhu, Z.; Kobayashi, I.; Uchino, K.; Tamada, Y.; Tamura, T.; Asakura, T. Improving Cell-Adhesive Properties of Recombinanant Bombyx mori Silk by Incorporation of Collagen or Fibronectin Derived Peptides Produced by Transgenic Silkworms. Biomacromolecules 2007, 8, 3487–3492. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Nguyen, Q.V.; Nguyen, V.; Le, T.; Le, Q.V. Silk Fibroin-Based Biomaterials for Biomedical. Polymers 2019, 11, 1933. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.V.; Paula, K.T.; Andrade, M.B. De; Gomes, E.M.; Marques, L.F.; Ribeiro, S.J.L.; Mendonc, C.R. Direct Femtosecond Laser Printing of Silk Fibroin Microstructures. Appl. Mater. Interfaces 2020, 12, 50033–50038. [Google Scholar] [CrossRef]
- Ho, W.; Jeong, L.; Il, D.; Hudson, S. Effect of Chitosan on Morphology and Conformation of Electrospun Silk Fibroin Nanofibers. Polymer 2004, 45, 7151–7157. [Google Scholar] [CrossRef]
- Çalamak, S.; Erdo, C.; Özalp, M.; Ulubayram, K. Silk Fibroin Based Antibacterial Bionanotextiles as Wound Dressing Materials. Mater. Sci. Eng. C 2014, 43, 11–20. [Google Scholar] [CrossRef]
- Ha, S.; Tonelli, A.E.; Hudson, S.M.; Carolina, N. Structural Studies of Bombyx mori Silk Fibroin during Regeneration from Solutions and Wet Fiber Spinning. Biomacromolecules 2005, 6, 1722–1731. [Google Scholar] [CrossRef]
- Zhang, F.; Ming, J.; Dou, H.; Liu, Z. Silk Dissolution and Regeneration at the Nanofibril Scale. J. Mater. Chem. B 2014, 2, 3879–3885. [Google Scholar] [CrossRef]
- Sato, M.; Nakazawa, Y.; Takahashi, R.; Tanaka, K.; Sata, M.; Aytemiz, D.; Asakura, T. Small-Diameter Vascular Grafts of Bombyx mori Silk Fibroin Prepared by a Combination of Electrospinning and Sponge Coating. Mater. Lett. 2010, 64, 1786–1788. [Google Scholar] [CrossRef]
- Aznar-cervantes, S.; Roca, M.I.; Martinez, J.G.; Meseguer-olmo, L.; Cenis, J.L.; Moraleda, J.M.; Otero, T.F. Fabrication of Conductive Electrospun Silk Fibroin Scaffolds by Coating with Polypyrrole for Biomedical Applications. Bioelectrochemistry 2012, 85, 36–43. [Google Scholar] [CrossRef]
- Aznar-cervantes, S.D.; Vicente-cervantes, D.; Meseguer-olmo, L.; Cenis, J.L.; Lozano-pérez, A.A. Influence of the Protocol Used for Fibroin Extraction on the Mechanical Properties and Fiber Sizes of Electrospun Silk Mats. Mater. Sci. Eng. C 2013, 33, 1945–1950. [Google Scholar] [CrossRef]
- Yamada, H.; Nakao, H.; Takasu, Y.; Tsubouchi, K. Preparation of Undegraded Native Molecular Fibroin Solution from Silkworm Cocoons. Mater. Sci. Eng. C 2001, 14, 41–46. [Google Scholar] [CrossRef]
- Sofia, S.; Mccarthy, M.B.; Gronowicz, G.; Kaplan, D.L.; Al, S.E.T. Functionalized Silk-Based Biomaterials for Bone Formation. J. Biomed. Mater. Res. 2000, 54, 139–148. [Google Scholar] [CrossRef]
- Mathur, A.B.; Tonelli, A.; Rathke, T.; Hudson, S. The Dissolution and Characterization of Bombyx mori Silk Fibroin in Calcium Nitrate-methanol.Pdf. Fiber Polym. Sci. 1998, 42, 61–74. [Google Scholar]
- Kunz, W.; Katharina, H. Some Aspects of Green Solvents. Comptes Rendus Chim. 2018, 21, 572–580. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Wei, Z. Dissolution and Processing of Silk Fibroin for Materials Science. Crit. Rev. Biotechnol. 2021, 41, 406–424. [Google Scholar] [CrossRef] [PubMed]
- Wöltje, M.; Kölbel, A.; Aibibu, D.; Cherif, C. A Fast and Reliable Process to Fabricate Regenerated Silk Fibroin Solution from Degummed Silk in 4 Hours. Int. J. Mol. Sci. 2021, 22, 565. [Google Scholar] [CrossRef] [PubMed]
- Freddi, G.; Pessina, G.; Tsukada, M. Swelling and Dissolution of Silk Fibroin (Bombyx mori) in N -Methyl Morpholine N -Oxide. Biol. Macromol. 1999, 24, 251–263. [Google Scholar] [CrossRef]
- Carissimi, G.; Baronio, C.M.; Montalbán, M.G.; Víllora, G.; Barth, A. On the Secondary Structure of Silk Fibroin Nanoparticles Obtained Using Ionic Liquids: An Infrared Spectroscopy Study. Polymers 2020, 12, 1294. [Google Scholar] [CrossRef] [PubMed]
- Garc, M.; Aznar-Cervantes, S.D.; Lozano-Perez, A.A.; Cenis, L.; Gloria, V. Production of Silk Fibroin Nanoparticles Using Ionic Liquids and High-Power Ultrasounds. J. Appl. Polym. Sci. 2015, 41702, 1–8. [Google Scholar] [CrossRef]
- Phillips, D.M.; Drummy, L.F.; Conrady, D.G.; Fox, D.M.; Naik, R.R.; Stone, M.O.; Trulove, P.C.; Long, H.C. De; Mantz, R.A. Dissolution and Regeneration of Bombyx mori Silk Fibroin Using Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 14350–14351. [Google Scholar] [CrossRef]
- Ajisawa, A. Dissolution Aqueous of Silk Fibroin with Calciumchloride/Ethanol Solution. J. Seric. Sci. Jpn. 1997, 67, 91–94. [Google Scholar]
- Reizabal, A.; Costa, C.M.; Saiz, P.G.; Gonzalez, B.; Perez-Alvarez, L.; Luis, R.F. de; Garcia, A.; Vilas-Vilela, J.; Lanceros-Mendez, S. Processing Strategies to Obtain Highly Porous Silk Fibroin Structures with Tailored Microstructure and Molecular Characteristics and Their Applicability in Water Remediation. J. Hazard. Mater. 2021, 403, 123675. [Google Scholar] [CrossRef]
- Bae, S. Bin; Kim, M.H.; Park, W.H. Electrospinning and Dual Crosslinking of Water-Soluble Silk Fibroin Modified with Glycidyl Methacrylate. Polym. Degrad. Stab. 2020, 179, 109304. [Google Scholar] [CrossRef]
- Mosher, C.Z.; Brudnicki, P.A.P.; Gong, Z.; Childs, H.R.; Lee, S.W.; Antrobus, R.M.; Fang, E.C.; Schiros, T.N.; Lu, H.H. Green Electrospinning for Biomaterials and Biofabrication. Biofabrication 2021, 13, 035049. [Google Scholar] [CrossRef]
- Li, X.; Fan, Q.; Zhang, Q.; Yan, S.; You, R. Freezing-Induced Silk I Crystallization of Silk Fibroin. R. Soc. Chem. 2020, 22, 3884–3890. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Yu, F.; Ma, L.; Pan, X.; Luo, G.; Lin, S.; Mo, X.; Wang, H. Hyaluronic Acid/EDC/NHS-Crosslinked Green Electrospun Silk Fibroin Nanofibrous Scaffolds for Tissue Engineering. R. Soc. Chem. 2016, 6, 99720–99728. [Google Scholar] [CrossRef]
- Fei, X.; Jia, M.; Du, X.; Yang, Y.; Zhang, R.; Shao, Z.; Zhao, X. Green Synthesis of Silk Fibroin-Silver Nanoparticle Composites with Effective Antibacterial and Biofilm-Disrupting Properties. Biomacromolecules 2013, 14, 4483–4488. [Google Scholar] [CrossRef]
- Raho, R.; Nguyen, N.; Zhang, N.; Jiang, W.; Sannino, A.; Liu, H.; Pollini, M.; Paladini, F. Photo-Assisted Green Synthesis of Silver Doped Silk Fibroin/Carboxymethyl Cellulose Nanocomposite Hydrogels for Biomedical Applications. Mater. Sci. Eng. C 2020, 107, 110219. [Google Scholar] [CrossRef]
- El-Sheikh, M.A.; El-Rafie, S.M.; Abdel-Halim, E.S.; El-Rafie, M.H. Green Synthesis of Hydroxyethyl Cellulose-Stabilized Silver Nanoparticles. J. Polym. 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Altman, G.H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R.L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D.L. Silk-Based Biomaterials. Biomaterials 2003, 24, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Kamalathevan, P.; Ooi, P.S.; Loo, Y.L. Silk-Based Biomaterials in Cutaneous Wound Healing: A Systematic Review. Adv. Ski. Wound Care 2018, 31, 565–573. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, X.; Tao, S.; Xia, J.; Xu, S. Differences in Regenerated Silk Fibroin Prepared with Different Solvent Systems: From Structures to Conformational Changes. J. Appl. Polym. Sci. 2015, 132, 1–8. [Google Scholar] [CrossRef]
- Volkov, V.; Ferreira, A.V.; Cavaco-paulo, A. On the Routines of Wild-Type Silk Fibroin Processing Toward Silk-Inspired Materials: A Review. Macromol. Mater. Eng. 2015, 300, 1199–1216. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.C.; Baek, H.S.; Woo, Y.I.; Lee, M.H.; Kim, J.; Park, J.; Park, Y.H.; Lee, S.J. Beneficial Effects of Microwave-Induced Argon Plasma Treatment on Cellular Behaviors of Articular Chondrocytes onto Nanofibrous Silk Fibroin Mesh. Macromol. Res. 2009, 17, 703–708. [Google Scholar] [CrossRef]
- Gu, J.; Yang, X.; Zhu, H. Surface Sulfonation of Silk Fibroin Film by Plasma Treatment and in Vitro Antithrombogenicity Study. Mater. Sci. Eng. C 2002, 20, 199–202. [Google Scholar] [CrossRef]
- Shang, K.; Rnjak-kovacina, J.; Tao, H.; Kaplan, D.L.; Lin, Y.; Hayden, R.S. Accelerated In Vitro Degradation of Optically Clear Low b -Sheet Silk Films by Enzyme-Mediated Pretreatment. Transl. Vis. Sci. Technol. 2013, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Nemoto, R.; Senna, M. Three-Dimensional Porous Network Structure Developed in Hydroxyapatite-Based Nanocomposites Containing Enzyme Pretreated Silk Fibroin. J. Nanopart. Res. 2004, 6, 91–98. [Google Scholar] [CrossRef]
- Li, M.; Ogiso, M.; Minoura, N. Enzymatic Degradation Behavior of Porous Silk Fibroin Sheets. Biomaterials 2003, 24, 357–365. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, Y.; Cui, L.; Yuan, J.; Wang, Q.; Fan, X.; Ding, Y. Enzymatic Grafting of Lactoferrin onto Silk Fibroins for Antibacterial Functionalization. Fibers Polym. 2014, 15, 2045–2050. [Google Scholar] [CrossRef]
- Chi, R.; Cheung, F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef]
- Li, X.; Li, B.; Wang, X.; Zhang, S. Development of a Silk Fibroin/HTCC/PVA Sponge for Chronic Wound Dressing. J. Bioact. Compat. Polym. Biomed. Appl. 2014, 29, 398–411. [Google Scholar] [CrossRef]
- Karahaliloğlu, Z. Curcumin-Loaded Silk Fibroin e-Gel Scaffolds for Wound Healing Applications. Mater. Technol. 2018, 7857, 1–12. [Google Scholar] [CrossRef]
- Thangavel, P.; Ramachandran, B.; Kannan, R.; Muthuvijayan, V. Biomimetic Hydrogel Loaded with Silk and L -Proline for Tissue Engineering and Wound Healing Applications. Soc. Biomater. 2016, 105, 1401–1408. [Google Scholar] [CrossRef]
- Luo, Z.; Jiang, L.; Xu, Y.; Li, H.; Xu, W.; Wu, S.; Wang, Y.; Tang, Z.; Lv, Y.; Yang, L. Biomaterials Mechano Growth Factor (MGF) and Transforming Growth Factor (TGF)—B3 Functionalized Silk Scaffolds Enhance Articular Hyaline Cartilage Regeneration in Rabbit Model. Biomaterials 2015, 52, 463–475. [Google Scholar] [CrossRef]
- Mehrabani, M.G.; Karimian, R.; Rakhshaei, R.; Pakdel, F.; Eslami, H.; Fakhrzadeh, V.; Rahimi, M.; Salehi, R.; Kafil, H.S. Chitin/Silk Fibroin/TiO2 Bio-Nanocomposite as a Biocompatible Wound Dressing Bandage with Strong Antimicrobial Activity. Biol. Macromol. 2018, 116, 966–976. [Google Scholar] [CrossRef]
- Patil, P.P.; Meshram, J.V.; Bohara, R.A. ZnO Nanoparticle-Embedded Silk Fibroin–Polyvinyl Alcohol Composite Film: A Potential Dressing Material for Infected Wounds. R. Soc. Chem. 2018, 42, 14620–14629. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Zhang, J.; You, R.; Qu, J.; Li, M. Functionalized Silk Fibroin Dressing with Topical Bioactive Insulin Release for Accelerated Chronic Wound Healing. Mater. Sci. Eng. C 2017, 72, 394–404. [Google Scholar] [CrossRef]
- Hrynyk, M.; Neufeld, R.J. Insulin and Wound Healing. Burns 2014, 40, 1433–1446. [Google Scholar] [CrossRef]
- Wang, Y.; Kim, U.; Blasioli, D.J.; Kim, H.; Kaplan, D.L. In Vitro Cartilage Tissue Engineering with 3D Porous Aqueous-Derived Silk Scaffolds and Mesenchymal Stem Cells. Biomaterials 2005, 26, 7082–7094. [Google Scholar] [CrossRef]
- Hee, S.; Been, Y.; Kyu, Y.; Jin, Y.; Sang, H.; Sultan, T.; Min, J.; Seung, J.; Joo, O.; Hong, H.; et al. Biomaterials 4D-Bioprinted Silk Hydrogels for Tissue Engineering. Biomaterials 2020, 260, 120281. [Google Scholar] [CrossRef]
- Mallepally, R.R.; Marin, M.A.; Surampudi, V.; Subia, B.; Rao, R.R. Silk Fibroin Aerogels: Potential Scaffolds for Tissue Engineering Applications. Biomed. Mater. 2015, 10, 35002. [Google Scholar] [CrossRef]
- Nazarov, R.; Jin, H.; Kaplan, D.L. Porous 3-D Scaffolds from Regenerated Silk Fibroin. Biomacromolecules 2004, 5, 718–726. [Google Scholar] [CrossRef]
- Pacheco, S.M.; Eiji, G.; Almeida, L. De; Santos, P.; Agostini, M.; Moraes, D. Silk Fibroin/Chitosan/Alginate Multilayer Membranes as a System for Controlled Drug Release in Wound Healing. Int. J. Biol. Macromol. 2020, 152, 803–811. [Google Scholar] [CrossRef]
- Harkin, D.G.; George, K.A.; Madden, P.W.; Schwab, I.R.; Hutmacher, D.W.; Chirila, T.V. Biomaterials Silk Fibroin in Ocular Tissue Reconstruction. Biomaterials 2011, 32, 2445–2458. [Google Scholar] [CrossRef]
- Calonge, M.; Nieto-Miguel, T.; Mata, A. De; Galindo, S.; Herreras, J.M.; Marina, L. Goals and Challenges of Stem Cell-Based Therapy for Corneal Blindness Due to Limbal Deficiency. Pharmaceutics 2021, 13, 1483. [Google Scholar] [CrossRef]
- Lee, M.C.; Kim, D.; Lee, O.J.; Kim, J.; Ju, H.W.; Lee, J.M.; Moon, B.M.; Park, H.J.; Kim, D.W.; Kim, S.H.; et al. Fabrication of Silk Fibroin Film Using Centrifugal Casting Technique for Corneal Tissue Engineering. Soc. Biomater. 2016, 104, 508–514. [Google Scholar] [CrossRef]
- Liu, J.; Lawrence, B.D.; Liu, A.; Schwab, I.R.; Oliveira, L.A.; Rosenblatt, M.I. Silk Fibroin as a Biomaterial Substrate for Corneal Epithelial Cell Sheet Generation. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4130–4138. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, G.; Dellambra, E.; Golisano, O.; Martinelli, E.; Fantozzi, I.; Bondanza, S.; Ponzin, D.; Mckeon, F.; Luca, M. De. P63 Identifies Keratinocyte Stem Cells. Proc. Natl. Acad. Sci. USA 2001, 98, 357–394. [Google Scholar] [CrossRef] [Green Version]
- Schermer, A.; Galvin, S. Differentiation-Related Expression of a Major 64K Corneal Keratin In Vivo and In Culture Suggests Limbal Location of Corneal Epithelial Stem Cells. J. Cell Biol. 1986, 103, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B.D.; Marchant, J.K.; Pindrus, M.A.; Omenetto, F.G.; Kaplan, D.L. Biomaterials Silk Film Biomaterials for Cornea Tissue Engineering. Biomaterials 2009, 30, 1299–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malliappan, P.; Alp, A.; Burcu, S.; Demir, E.; Cetinel, S. Bone Tissue Engineering: Anionic Polysaccharides as Promising Scaffolds. Carbohydr. Polym. 2022, 283, 119142. [Google Scholar] [CrossRef]
- Sk, S. Fracture Non-Union: A Review of Clinical Challenges and Future Research Needs. Malays. Orthop. J. 2019, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gillman, C.E.; Jayasuriya, A.C. FDA-Approved Bone Grafts and Bone Graft Substitute Devices in Bone Regeneration. Mater. Sci. Eng. C 2021, 130, 112466. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, X.; Ma, J.; Kang, J.; Zhang, Y.; Guo, Y. Sustained Release of Naringin from Silk- Fibroin-Nanohydroxyapatite Scaffold for the Enhancement of Bone Regeneration. Mater. Today Bio 2022, 13, 100206. [Google Scholar] [CrossRef]
- Meinel, L.; Fajardo, R.; Hofmann, S.; Langer, R.; Chen, J.; Snyder, B.; Vunjak-novakovic, G.; Kaplan, D. Silk Implants for the Healing of Critical Size Bone Defects. Bone 2005, 37, 688–698. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Z.; Wang, S.; Sun, X.; Zhang, X.; Chen, J.; Kaplan, D.L.; Jiang, X. Apatite-Coated Silk Fibroin Scaffolds to Healing Mandibular Border Defects in Canines. Bone 2009, 45, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Hirose, M.; Hamada, K.; Tanaka, T. Nano-Scaled Hydroxyapatite/Silk Fibroin Composites as Mesenchymal Cell Culture Scaffolds. Key Eng. Mater. 2006, 311, 923–926. [Google Scholar] [CrossRef]
- Cui, B.; Liang, L.; Lu, X.; Weng, J. Fabricating HYDROXYAPATITE—SIlk Fibroin Nanocomposite by Bone Bionics. Key Eng. Mater. 2007, 332, 345–348. [Google Scholar] [CrossRef]
- Wen, G.; Wang, J.; Li, M.; Meng, X. Study on Tissue Engineering Scaffolds of Silk Fibroin-Chitosan/Nano-Hydroxyapatite Composite. Key Eng. Mater. 2007, 332, 971–975. [Google Scholar] [CrossRef]
- Sun, B.K.; Siprashvili, Z.; Khavari, P.A. Advances in Skin Grafting and Treatment of Cutaneous Wounds. Science 2014, 346, 941–945. [Google Scholar] [CrossRef]
- Pra, I.D.A.L.; Chiarini, A.; Boschi, A.; Freddi, G.; Armato, U. Novel Dermo-Epidermal Equivalents on Silk Fibroin-Based Formic Acid-Crosslinked Three-Dimensional Nonwoven Devices with Prospective Applications in Human Tissue Engineering/Regeneration/Repair. Int. J. Mol. Med. 2006, 18, 241–247. [Google Scholar]
- Luangbudnark, W.; Viyoch, J.; Laupattarakasem, W.; Surakunprapha, P.; Laupattarakasem, P. Properties and Biocompatibility of Chitosan and Silk Fibroin Blend Films for Application in Skin Tissue Engineering. Sci. World J. 2012, 2012, 697201. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, N.; Sow, W.T.; Devi, D.; Ng, K.W.; Mandal, B.B.; Cho, N.-J. Insight Statement for “Silk Fibroin-Keratin Based 3D Scaffolds as a Dermal Substitute for Skin Repair and Regeneration. Integr. Biol. 2014, 7, 53–63. [Google Scholar] [CrossRef]
- Lyu, J.; Kaur, M.; Dibble, K.E.; Connor, A.E. A National Study of Alcohol Consumption Patterns among Population-Based U. S. Cancer Survivors Compared with Cancer-Free Individuals. Cancer Epidemiol. 2022, 77, 102101. [Google Scholar] [CrossRef]
- Desforges, A.D.; Hebert, C.M.; Spence, A.L.; Reid, B.; Dhaibar, A.; Cruz-topete, D.; Cornett, E.M.; David, A.; Urits, I.; Viswanath, O. Treatment and Diagnosis of Chemotherapy-Induced Peripheral Neuropathy: An Update. Biomed. Pharmacother. 2022, 147, 112671. [Google Scholar] [CrossRef]
- Ma, D.; Wang, Y.; Dai, W. Silk Fibroin-Based Biomaterials for Musculoskeletal Tissue Engineering. Mater. Sci. Eng. C 2018, 89, 456–469. [Google Scholar] [CrossRef]
- Ma, Y.; Canup, B.S.B.; Tong, X.; Dai, F.; Xiao, B.; Wang, J. Multi-Responsive Silk Fibroin-Based Nanoparticles for Drug Delivery. Front. Chem. 2020, 8, 1–5. [Google Scholar] [CrossRef]
- Sun, N.; Lei, R.; Xu, J.; Kundu, S.C. Fabricated Porous Silk Fibroin Particles for PH- Responsive Drug Delivery and Targeting of Tumor Cells. J. Mater. Sci. 2019, 54, 3319–3330. [Google Scholar] [CrossRef]
- Saqr, A. Al; Ud, S.; Wani, D.; Gangadharappa, H.V.; Aldawsari, M.F.; Khafagy, E.; Lila, A.S.A. Enhanced Cytotoxic Activity of Docetaxel-Loaded Silk Fibroin Nanoparticles against Breast Cancer Cells. Polymers 2021, 13, 1–18. [Google Scholar]
- Mottaghitalab, F.; Kiani, M.; Farokhi, M.; Kundu, S.C.; Reis, R.L.; Gholami, M.; Bardania, H.; Dinarvand, R.; Geramifar, P.; Beiki, D.; et al. Targeted Delivery System Based on Gemcitabine Loaded Silk Fibroin Nanoparticles for Lung Cancer Therapy Targeted Delivery System Based on Gemcitabine Loaded Silk Fibroin Nanoparticles for Lung Cancer Therapy. Appl. Mater. Interfaces 2017, 9, 31600–31611. [Google Scholar] [CrossRef]
- Moin, A.; Wani, S.U.D.; Osmadi, R.A.; Lila, A.S.A.; Khafagy, E.-S.; Arab, H.H.; Gangaharappa, H.V.; Allam, A.N. Formulation, Characterization, and Cellular Toxicity Assessment of Tamoxifen-Loaded Silk Fibroin Nanoparticles in Breast Cancer. Drug Deliv. 2021, 28, 1626–1636. [Google Scholar] [CrossRef]
- Lu, X.; Sun, Y.; Han, M.; Chen, D.; Wang, A.; Sun, K. Silk Fibroin Double-Layer Microneedles for the Encapsulation and Controlled Release of Triptorelin. Int. J. Pharm. 2022, 613, 121433. [Google Scholar] [CrossRef]
- Dondajewska, E.; Juzwa, W.; Mackiewicz, A.; Dams-, H. Heterotypic Breast Cancer Model Based on a Silk Fibroin Scaffold to Study the Tumor Microenvironment. Oncotarget 2018, 9, 4935–4950. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, Y.; Chen, W.; Yuan, Z.; You, B.; Liu, Y.; Yang, S.; Li, F.; Qu, C.; Zhang, X. A Novel 3D in Vitro Tumor Model Based on Silk Fibroin/Chitosan Sca Ff Olds to Mimic the Tumor Microenvironment. Appl. Mater. Interfaces 2018, 10, 36641–36651. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Song, Y.; Yan, X.; Dong, L.; Xue, J.; Xu, Y.; Wang, B.; Cao, B.; Hou, Q.; Peng, W.; et al. Biomaterials Injectable Ferrimagnetic Silk Fibroin Hydrogel for Magnetic Hyperthermia Ablation of Deep Tumor. Biomaterials 2020, 259, 120299. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.K.; Naskar, D.; Bhattacharjee, P.; Mishra, A.; Kundu, S.C.; Dey, S. Silk Fibroin-Thelebolan Matrix: A Promising Chemopreventive Scaffold for Soft Tissue Cancer. Colloids Surf. B Biointerfaces 2017, 155, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.; Haider, T.; Chandak, A.R.; Chakraborty, A.; Banerjee, S.; Soni, V. Technetium Labeled Doxorubicin Loaded Silk Fibroin Nanoparticles: Optimization, Characterization and in Vitro Evaluation. J. Drug Deliv. Sci. Technol. 2020, 56, 101539. [Google Scholar] [CrossRef]
- Anas, M.; Hadianamrei, R.; Sun, W.; Xu, D.; Brown, S.; Zhao, X. Stiffness-Tuneable Nanocarriers for Controlled Delivery of ASC-J9 into Colorectal Cancer Cells. J. Colloid Interface Sci. 2021, 594, 513–521. [Google Scholar] [CrossRef]
- Talukdar, S.; Kundu, S.C. Engineered 3D Silk-Based Metastasis Models: Interactions Between Human Breast Adenocarcinoma, Mesenchymal Stem Cells and Osteoblast-Like Cells. Adv. Funct. Mater. 2013, 9, 5249–5260. [Google Scholar] [CrossRef]
- Ding, B.; Wahid, M.A.; Zhijun, W.; Chen, X.; Arvind, T.; Sunil, P.; Wang, J. Triptolide and Celastrol Loaded Silk Fibroin Nanoparticles Show Synergistic Effect against Human Pancreatic Cancer Cells. Nanoscale 2017, 9, 11739–11753. [Google Scholar] [CrossRef]
- Toan, D.; Saelim, N.; Tiyaboonchai, W. Alpha Mangostin Loaded Crosslinked Silk Fibroin-Based Nanoparticles for Cancer Chemotherapy. Colloids Surf. B Biointerfaces 2019, 181, 705–713. [Google Scholar] [CrossRef]
- Yucel, T.; Lovett, M.L.; Giangregorio, R.; Coonahan, E.; Kaplan, D.L. Silk Fibroin Rods for Sustained Delivery of Breast Cancer Therapeutics. Biomaterials 2014, 35, 8613–8620. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Song, H.; Canup, B.S.B.; Gou, S. Inhibition of Growth and Lung Metastasis of Breast Cancer by Tumor-Homing Triple-Bioresponsive Nanotherapeutics. J. Control. Release 2020, 328, 454–469. [Google Scholar] [CrossRef]
- Yao, Q.; Lan, Q.; Jiang, X.; Du, C.; Zhai, Y.; Shen, X.; Xu, H. Bioinspired Biliverdin/Silk Fibroin Hydrogel for Antiglioma Photothermal Therapy and Wound Healing. Theranostics 2020, 10, 11739–11753. [Google Scholar] [CrossRef]
- Yu, S.; Yang, W.; Chen, S.; Chen, M.; Liu, Y.; Shao, Z.; Chen, X. Floxuridine-Loaded Silk Fibroin Nanospheres. RSC Adv. 2014, 4, 18171–18177. [Google Scholar] [CrossRef]
- Mishra, D.; Iyyanki, T.S.; Hubenak, J.R.; Zhang, Q.; Mathur, A.B. Silk Fibroin Nanoparticles and Cancer Therapy. In Nanotechnology in Cancer; Elsevier: Amsterdam, The Netherlands, 2017; pp. 19–44. [Google Scholar] [CrossRef]
Polymer | Source | UTS (MPa) | Modulus (GPa) | Breaking Strain (%) | References |
---|---|---|---|---|---|
SF | B. mori | 300–740 | 10–17 | 4–26 | [33] |
Silk | B. mori | 740 | 10 | 20 | [80] |
Silk | N. clavipes | 875 | 10.9 | 16.7 | [33] |
Polylactide | Corn | 69.8 ± 3.2 | 1777 ± 42 | 5.7 ± 0.3 | [81] |
Polyethylene-terephthalate | Synthetic | 56 | 2.2 | 7300 | [82] |
Polypropylene | Synthetic | 34.5 | 1.7 | 400 | [82] |
Cellulose | Bacteria | 11.6 ± 0.8 | 180.3 ± 10.6 | 8.2 ± 0.6 | [83,84] |
Biomaterial | Type of Cancer | Reference |
---|---|---|
SF hydrogels | Hepatocellular carcinoma | [187] |
SF–Thelebolan matrix | Soft tissue carcinoma | [188] |
Doxorubicin loaded SF nanoparticles | Brain cancer | [189] |
SF–Sodium alginate nanocarriers | Colorectal cancer | [190] |
SF-based metastasis model | Breast cancer | [191] |
Triptolide–Celastrol-loaded SF nanoparticles | Pancreatic cancer | [192] |
Alpha-mangostin loaded SF nanoparticles | Colon cancer; Breast cancer | [193] |
SF rods | Breast cancer | [194] |
Quercetin loaded SF nanoparticles | Breast cancer; Lung metastasis | [195] |
Biliverdin–SF hydrogel | Glioma | [196] |
Floxuridine-loaded SF nanospheres | Digestive tract cancer; Lung cancer | [197] |
Curcumin-loaded SF nanoparticles | Breast cancer | [198] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lujerdean, C.; Baci, G.-M.; Cucu, A.-A.; Dezmirean, D.S. The Contribution of Silk Fibroin in Biomedical Engineering. Insects 2022, 13, 286. https://doi.org/10.3390/insects13030286
Lujerdean C, Baci G-M, Cucu A-A, Dezmirean DS. The Contribution of Silk Fibroin in Biomedical Engineering. Insects. 2022; 13(3):286. https://doi.org/10.3390/insects13030286
Chicago/Turabian StyleLujerdean, Cristian, Gabriela-Maria Baci, Alexandra-Antonia Cucu, and Daniel Severus Dezmirean. 2022. "The Contribution of Silk Fibroin in Biomedical Engineering" Insects 13, no. 3: 286. https://doi.org/10.3390/insects13030286
APA StyleLujerdean, C., Baci, G.-M., Cucu, A.-A., & Dezmirean, D. S. (2022). The Contribution of Silk Fibroin in Biomedical Engineering. Insects, 13(3), 286. https://doi.org/10.3390/insects13030286