Characterization of Molting Process during the Different Developmental Stages of the Diamondback Moth Plutella xylostella
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Maintenance of P. xylostella
2.2. Observation and Staging of the Molting Process
2.2.1. Egg Hatching
2.2.2. Larval–Larval and Larval–Pupal Ecdysis
2.2.3. Eclosion and Post-Eclosion Behavior
2.3. Photography and Videography
2.4. Statistics
3. Results
3.1. The Egg Development and Hatching Process
3.2. The Larval–Larval Ecdysis
3.3. The Larval–Pupal Metamorphosis
3.4. The Pupal Development and Adult Eclosion
3.5. The Post-Eclosion Behavior of P. xylostella Moth
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ewer, J.; Reynolds, S. Neuropeptide Control of Molting in Insects. In Hormones, Brain and Behavior, 1st ed.; Pfaff, D.W., Ed.; Academic Press: London, UK, 2002; Volume 3, pp. 1–92. [Google Scholar]
- Truman, J.W. Hormonal Control of Insect Ecdysis: Endocrine Cascades for Coordinating Behavior with Physiology. Vitam. Horm. 2005, 73, 1–30. [Google Scholar]
- Reynolds, S.E.; Taghert, P.H.; Truman, J.W. Eclosion Hormone and Bursicon Titers and the Onset of Hormonal Responsiveness During the Last Day of Adult Development in Manduca sexta (L). J. Exp. Biol. 1979, 78, 77–86. [Google Scholar] [CrossRef]
- Mesce, K.A.; Truman, J.W. Metamorphosis of the Ecdysis Motor Pattern in the Hawkmoth, Manduca Sexta. J. Comp. Physiol. A 1988, 163, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Truman, J.W.; Endo, P.T. Physiology of Insect Ecdysis: Neural and Hormonal Factors Involved in Wing Spreading Behaviour of Moths. J. Exp. Biol. 1974, 61, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Žitňan, D.; Hollar, L.; Spalovská, I.; Takáč, P.; Žitňanová, I.; Gill, S.S.; Adams, M.E. Molecular Cloning and Function of Ecdysis-Triggering Hormones in the Silkworm Bombyx mori. J. Exp. Biol. 2002, 205, 3459–3473. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.A.; Dahlman, D.L. Developmental Pathology of Heliothis virescens Larvae Parasitized Bymicroplitis Croceipes: Parasite-Mediated Host Developmental Arrest. Arch. Insect Biochem. Physiol. 1985, 2, 131–143. [Google Scholar] [CrossRef]
- Strand, M.R. Characterization of Larval Development in Pseudoplusia includens (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 1990, 83, 538–544. [Google Scholar] [CrossRef]
- Jones, D.; Jones, G.; Hammock, B.D. Growth Parameters Associated with Endocrine Events in Larval Trichoplusia ni (Hübner) and Timing of These Events with Developmental Markers. J. Insect Physiol. 1981, 27, 779–788. [Google Scholar] [CrossRef]
- Williams, C.M.; Adkisson, P.L. Physiology of Insect Diapause. Xiv. An Endocrine Mechanism for the Photoperiodic Control of Pupal Diapause in the Oak Silkworm, Antheraea pernyi. Biol. Bull. 1964, 127, 511–525. [Google Scholar] [CrossRef]
- Truman, J.W. Physiology of Insect Ecdysis I. The Eclosion Behaviour of Saturniid Moths and Its Hormonal Release. J. Exp. Biol. 1971, 54, 805–814. [Google Scholar] [CrossRef]
- Fatzinger, C.W.; Asher, W.C. Observations on the Pupation and Emergence Behavior of Dioryctria abietella (Lepidoptera: Pyralidae (Phycitinae)). Ann. Entomol. Soc. Am. 1971, 64, 413–418. [Google Scholar] [CrossRef]
- Blest, A.D.; Bastock, M. An Analysis of Behaviour Sequences in Automeris aurantiaca Weym (Lepidoptera). Behaviour 1958, 12, 243–283. [Google Scholar] [CrossRef]
- Callahan, P.S. Behavior of the Imago of the Corn Earworm, Heliothis zea (Boddie), with Special Reference to Emergence and Reproduction. Ann. Entomol. Soc. Am. 1958, 51, 271–283. [Google Scholar] [CrossRef]
- Park, Y.; Filippov, V.; Gill, S.S.; Adams, M.E. Deletion of the Ecdysis-Triggering Hormone Gene Leads to Lethal Ecdysis Deficiency. Development 2002, 129, 493–503. [Google Scholar] [CrossRef]
- Bainbridge, S.P.; Bownes, M. Staging the Metamorphosis of Drosophila melanogaster. J. Embryol. Exp. Morph. 1981, 66, 57–80. [Google Scholar] [CrossRef]
- Kimura, K.; Truman, J.W. Postmetamorphic Cell Death in the Nervous and Muscular Systems of Drosophila melanogaster. J. Neurosci. 1990, 10, 403–411. [Google Scholar] [CrossRef]
- Park, Y.; Žitňan, D.; Gill, S.S.; Adams, M.E. Molecular Cloning and Biological Activity of Ecdysis-Triggering Hormones in Drosophila melanogaster. FEBS Lett. 1999, 463, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Adams, M.E. Ecdysis Triggering Hormone Signaling in the Yellow Fever Mosquito Aedes aegypti. Gen. Comp. Endocrinol. 2009, 162, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Roller, L.; Žitňanová, I.; Dai, L.; Šimo, L.; Park, Y.; Satake, H.; Tanaka, Y.; Adams, M.E.; Žitňan, D. Ecdysis Triggering Hormone Signaling in Arthropods. Peptides 2010, 31, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Arakane, Y.; Li, B.; Muthukrishnan, S.; Beeman, R.W.; Kramer, K.J.; Park, Y. Functional Analysis of Four Neuropeptides, EH, ETH, CCAP and Bursicon, and Their Receptors in Adult Ecdysis Behavior of the Red Flour Beetle, Tribolium castaneum. Mech. Dev. 2008, 125, 984–995. [Google Scholar] [CrossRef]
- Corbet, P.S. The Life History of the Emperor Dragonfly Anax imperator Leach (Odonata: Aeshnidae). J. Anim. Ecol. 1957, 26, 1–69. [Google Scholar] [CrossRef]
- Andrew, R.; Patankar, N. The Process of Moulting During Final Emergence of the Dragonfly Pantala Flavescens (Fabricius) (Anisoptera: Libellulidae). Odonatologica 2010, 39, 141–148. [Google Scholar]
- Ampleford, E.J.; Steel, C.G.H. The Behaviour of Rhodnius prolixus (Stål) During the Imaginal Ecdysis. Can. J. Zool. 1982, 60, 168–174. [Google Scholar] [CrossRef]
- Carlson, J.R.; Bentley, D. Ecdysis: Neural Orchestration of a Complex Behavioral Performance. Science 1977, 195, 1006–1008. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.R. The Imaginal Ecdysis of the Cricket (Teleogryllus oceanicus) I. Organization of Motor Programs. J. Comp. Physiol. A 1977, 115, 299–317. [Google Scholar] [CrossRef]
- Carlson, J.R. The Imaginal Ecdysis of the Cricket (Teleogryllus oceanicus) Ii. The Roles of Identified Motor Units. J. Comp. Physiol. A 1977, 115, 319–336. [Google Scholar] [CrossRef]
- Wadsworth, T.; Carriman, A.; Gutierrez, A.A.; Moffatt, C.; Fuse, M. Ecdysis Behaviors and Circadian Rhythm of Ecdysis in the Stick Insect, Carausius morosus. J. Insect Physiol. 2014, 71, 68–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, B.; Liu, Y.M.; Wang, Q.Y.; Zhang, H.L.; Wang, J.; Dai, J.L.; Huang, J. Morphological Characteristics and Gene Expression of Chrysomya megacephala Eggs in Different Developmental Stages. Chin. J. Parasitol. Parasit. Dis. 2014, 32, 295–298. (In Chinese) [Google Scholar]
- Mo, W.Y.; Wang, F.Y.; Wang, G.X.; Hu, J.R.; Huang, Y.H. Study on the Embryogenesis of Black Soldier Fly (Hermetia illucens L.) and Its Application in Production. J. Environ. Entomol. 2020, 42, 701–706. (In Chinese) [Google Scholar]
- Zhou, Y.M.; Shi, L.Q.; Xie, M.F.; Huang, H.S.; Yang, G. Molting, Eclosion and Hatching Rhythms of Tea Green Leafhopper, Empoasca onukii. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2016, 45, 625–630. (In Chinese) [Google Scholar]
- Madden, A.H.; Chamberlin, F.S. Biology of the Tobacco Hornworm in the Southern Cigar-Tobacco District. USDA 1945, TB-896. Available online: https://handle.nal.usda.gov/10113/CAT86200888 (accessed on 13 March 2022).
- Talekar, N.; Shelton, A. Biology, Ecology, and Management of the Diamondback Moth. Annu. Rev. Entomol. 1993, 38, 275–301. [Google Scholar] [CrossRef]
- Furlong, M.J.; Wright, D.J.; Dosdall, L.M. Diamondback Moth Ecology and Management: Problems, Progress, and Prospects. Annu. Rev. Entomol. 2013, 58, 517–541. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Feng, X.; Liu, S.S.; You, M.S.; Furlong, M.J. Biology, Ecology, and Management of the Diamondback Moth in China. Annu. Rev. Entomol. 2016, 61, 277–296. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Chen, F.Z.; Zalucki, M.P. Development and Survival of the Diamondback moth (Lepidoptera: Plutellidae) at Constant and Alternating Temperatures. Environ. Entomol. 2002, 31, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Copenhaver, P.; Truman, J. The Role of Eclosion Hormone in the Larval Ecdyses of Manduca sexta. J. Comp. Physiol. A 1982, 28, 695–701. [Google Scholar] [CrossRef]
- Miles, C.I.; Weeks, J.C. Developmental Attenuation of the Pre-Ecdysis Motor Pattern in the Tobacco Hornworm, Manduca sexta. J. Comp. Physiol. A 1991, 168, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Žitňan, D.; Ross, L.S.; Žitňanova, I.; Hermesman, J.L.; Gill, S.S.; Adams, M.E. Steroid Induction of a Peptide Hormone Gene Leads to Orchestration of a Defined Behavioral Sequence. Neuron 1999, 23, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Žitňan, D.; Adams, M. Neuroendocrine Regulation of Ecdysis. In Insect Endocrinology, 1st ed.; Gilbert, L.I., Ed.; Academic Press: London, UK, 2012; Volume 3, pp. 253–309. [Google Scholar]
- Kammer, A.E.; Kinnamon, S.C. Patterned Muscle Activity During Eclosion in the Hawkmoth Manduca sexta. J. Comp. Physiol. A 1977, 114, 313–326. [Google Scholar] [CrossRef]
- Truman, J.W.; Taghert, P.; Reynolds, S. Physiology of Pupal Ecdysis in the Tobacco Hornworm, Manduca sexta. I. Evidence for Control by Eclosion Hormone. J. Exp. Biol. 1980, 88, 327–337. [Google Scholar] [CrossRef]
Process | Stage | Duration |
---|---|---|
Egg-First instar larva | I | 36 ± 0.2 h |
II | 27 ± 0.3 h | |
III | 3 ± 0.1 h | |
V | 3 ± 0.2 h | |
Hatching | 0.2 ± 0.02 h | |
Total developmental duration of eggs | 69 ± 0.3 h | |
First instar larva-Second instar larva | I | 91 ± 4 min |
II | 72 ± 3 min | |
III | 378 ± 6 min | |
IV | 64 ± 3 min | |
V | 3 ± 0.1 min | |
Total developmental duration of first instar larvae # | 2.0 ± 0.05 d | |
Second instar larva-Third instar larva | I | 86 ± 4 min |
II | 82 ± 2 min | |
III | 342 ± 4 min | |
IV | 76 ± 2 min | |
V | 3 ± 0.1 min | |
Total developmental duration of second instar larva # | 2.2 ± 0.08 d | |
Third instar larva-Fourth instar larva | I | 90 ± 4 min |
II | 96 ± 2 min | |
III | 438 ± 4 min | |
IV | 114 ± 3 min | |
V | 4 ± 0.4 min | |
Total developmental duration of third instar larvae # | 1.5 ± 0.04 d | |
Fourth instar larva-Pupa | I | 172 ± 14 min |
II | 313 ± 11 min | |
III | 217 ± 9 min | |
IV | 459 ± 5 min | |
V | 4 ± 0.4 min | |
Total developmental duration of fourth instar larvae # | 2.0 ± 0.04 d | |
Pupa-Adult | I | 90 ± 1 h |
II | 62 ± 1 min | |
III | 3 ± 0.2 min | |
Total developmental duration of pupae | 91 ± 1 h | |
Post-eclosion behavior of adult | I | 3 ± 0.2 min |
II | 7 ± 0.2 min | |
III | 7 ± 0.3 min | |
IV | 10 ± 0.6 min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, L.; Wu, Z.; Wu, X.; Zhou, Y.; Yang, P.; Ye, X.; Shi, M.; Huang, J.; Chen, X. Characterization of Molting Process during the Different Developmental Stages of the Diamondback Moth Plutella xylostella. Insects 2022, 13, 289. https://doi.org/10.3390/insects13030289
Gu L, Wu Z, Wu X, Zhou Y, Yang P, Ye X, Shi M, Huang J, Chen X. Characterization of Molting Process during the Different Developmental Stages of the Diamondback Moth Plutella xylostella. Insects. 2022; 13(3):289. https://doi.org/10.3390/insects13030289
Chicago/Turabian StyleGu, Licheng, Zhiwei Wu, Xiaotong Wu, Yuenan Zhou, Pei Yang, Xiqian Ye, Min Shi, Jianhua Huang, and Xuexin Chen. 2022. "Characterization of Molting Process during the Different Developmental Stages of the Diamondback Moth Plutella xylostella" Insects 13, no. 3: 289. https://doi.org/10.3390/insects13030289