Silencing Transglutaminase Genes TGase2 and TGase3 Has Infection-Dependent Effects on the Heart Rate of the Mosquito Anopheles gambiae
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquito Rearing, Maintenance and Manipulation
2.2. Synthesis of Double-Stranded RNA (dsRNA) and RNA Interference (RNAi)
2.3. Mosquito Treatments: Uninfected and Infected with E. coli
2.4. cDNA Synthesis and Quantitative RT-PCR (qPCR) for RNAi Efficiency Determination
2.5. Measurement of Heart Contractions
3. Results
3.1. General Experimental Design and the Efficiency of RNAi-Based Silencing of Transglutaminases
3.2. RNAi-Based Silencing of Transglutaminases Has Infection-Dependent Effects on the Heart Rate at 24 h after Treatment
3.3. The Infection-Dependent Cardiac Effect of Silencing Transglutaminases Is Recapitulated at 4 h after Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eckert, R.L.; Kaartinen, M.T.; Nurminskaya, M.; Belkin, A.M.; Colak, G.; Johnson, G.V.; Mehta, K. Transglutaminase regulation of cell function. Physiol. Rev. 2014, 94, 383–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorand, L.; Graham, R.M. Transglutaminases: Crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 2003, 4, 140–156. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.D. Insect hemolymph immune complexes. Subcell Biochem. 2020, 94, 123–161. [Google Scholar] [CrossRef] [PubMed]
- Dziedziech, A.; Shivankar, S.; Theopold, U. Drosophila melanogaster responses against entomopathogenic nematodes: Focus on hemolymph clots. Insects 2020, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Baxter, R.H.; Contet, A.; Krueger, K. Arthropod innate immune systems and vector-borne diseases. Biochemistry 2017, 56, 907–918. [Google Scholar] [CrossRef] [Green Version]
- Shibata, T.; Kawabata, S.I. Pluripotency and a secretion mechanism of Drosophila transglutaminase. J. Biochem. 2018, 163, 165–176. [Google Scholar] [CrossRef]
- Schmid, M.R.; Dziedziech, A.; Arefin, B.; Kienzle, T.; Wang, Z.; Akhter, M.; Berka, J.; Theopold, U. Insect hemolymph coagulation: Kinetics of classically and non-classically secreted clotting factors. Insect Biochem. Mol. Biol. 2019, 109, 63–71. [Google Scholar] [CrossRef]
- Lindgren, M.; Riazi, R.; Lesch, C.; Wilhelmsson, C.; Theopold, U.; Dushay, M.S. Fondue and transglutaminase in the Drosophila larval clot. J. Insect Physiol. 2008, 54, 586–592. [Google Scholar] [CrossRef]
- Shibata, T.; Sekihara, S.; Fujikawa, T.; Miyaji, R.; Maki, K.; Ishihara, T.; Koshiba, T.; Kawabata, S. Transglutaminase-catalyzed protein-protein cross-linking suppresses the activity of the NF-kappaB-like transcription factor relish. Sci. Signal. 2013, 6, ra61. [Google Scholar] [CrossRef]
- Maki, K.; Shibata, T.; Kawabata, S.I. Transglutaminase-catalyzed incorporation of polyamines masks the DNA-binding region of the transcription factor Relish. J. Biol. Chem. 2017, 292, 6369–6380. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wilhelmsson, C.; Hyrsl, P.; Loof, T.G.; Dobes, P.; Klupp, M.; Loseva, O.; Morgelin, M.; Ikle, J.; Cripps, R.M.; et al. Pathogen entrapment by transglutaminase—A conserved early innate immune mechanism. PLoS Pathog. 2010, 6, e1000763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekihara, S.; Shibata, T.; Hyakkendani, M.; Kawabata, S.I. RNA interference directed against the transglutaminase gene triggers dysbiosis of gut microbiota in Drosophila. J. Biol. Chem. 2016, 291, 25077–25087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Liu, L.; Zhou, W.; Cai, Q.; Huang, Q. Roles of selenoprotein T and transglutaminase in active immunization against entomopathogenic fungi in the termite Reticulitermes chinensis. J. Insect Physiol. 2020, 125, 104085. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.R.; Clark, K.D. Bombyx mori and Aedes aegypti form multi-functional immune complexes that integrate pattern recognition, melanization, coagulants, and hemocyte recruitment. PLoS ONE 2017, 12, e0171447. [Google Scholar] [CrossRef] [Green Version]
- Rogers, D.W.; Baldini, F.; Battaglia, F.; Panico, M.; Dell, A.; Morris, H.R.; Catteruccia, F. Transglutaminase-mediated semen coagulation controls sperm storage in the malaria mosquito. PLoS Biol. 2009, 7, e1000272. [Google Scholar] [CrossRef] [Green Version]
- Nsango, S.E.; Pompon, J.; Xie, T.; Rademacher, A.; Fraiture, M.; Thoma, M.; Awono-Ambene, P.H.; Moyou, R.S.; Morlais, I.; Levashina, E.A. AP-1/Fos-TGase2 axis mediates wounding-induced Plasmodium falciparum killing in Anopheles gambiae. J. Biol. Chem. 2013, 288, 16145–16154. [Google Scholar] [CrossRef] [Green Version]
- Silveira, H.; Gabriel, A.; Ramos, S.; Palma, J.; Felix, R.; Custodio, A.; Collins, L.V. CpG-containing oligodeoxynucleotides increases resistance of Anopheles mosquitoes to Plasmodium infection. Insect Biochem. Mol. Biol. 2012, 42, 758–765. [Google Scholar] [CrossRef]
- Le, B.V.; Nguyen, J.B.; Logarajah, S.; Wang, B.; Marcus, J.; Williams, H.P.; Catteruccia, F.; Baxter, R.H. Characterization of Anopheles gambiae transglutaminase 3 (AgTG3) and its native substrate plugin. J. Biol. Chem. 2013, 288, 4844–4853. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Ramakrishnan, A.; Estevez-Lao, T.Y.; Hillyer, J.F. Transglutaminase 3 negatively regulates immune responses on the heart of the mosquito, Anopheles gambiae. Sci. Rep. 2022, 12, 6715. [Google Scholar] [CrossRef]
- King, J.G.; Hillyer, J.F. Infection-induced interaction between the mosquito circulatory and immune systems. PLoS Pathog. 2012, 8, e1003058. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Hillyer, J.F. The immune and circulatory systems are functionally integrated across insect evolution. Sci. Adv. 2020, 6, eabb3164. [Google Scholar] [CrossRef] [PubMed]
- King, J.G.; Hillyer, J.F. Spatial and temporal in vivo analysis of circulating and sessile immune cells in mosquitoes: Hemocyte mitosis following infection. BMC Biol. 2013, 11, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigle, L.T.; Hillyer, J.F. Mosquito hemocytes preferentially aggregate and phagocytose pathogens in the periostial regions of the heart that experience the most hemolymph flow. Dev. Comp. Immunol. 2016, 55, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Sigle, L.T.; Hillyer, J.F. Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae. Insect Mol. Biol. 2018, 27, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Hillyer, J.F. Complement-like proteins TEP1, TEP3 and TEP4 are positive regulators of periostial hemocyte aggregation in the mosquito Anopheles gambiae. Insect Biochem. Mol. Biol. 2019, 107, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Sigle, L.T.; Rinker, D.C.; Estevez-Lao, T.Y.; Capra, J.A.; Hillyer, J.F. The IMD and JNK pathways drive the functional integration of the immune and circulatory systems of mosquitoes. bioRxiv 2022. [Google Scholar] [CrossRef]
- Estevez-Lao, T.Y.; Sigle, L.T.; Gomez, S.N.; Hillyer, J.F. Nitric oxide produced by periostial hemocytes modulates the bacterial infection-induced reduction of the mosquito heart rate. J. Exp. Biol. 2020, 223, jeb225821. [Google Scholar] [CrossRef]
- Glenn, J.D.; King, J.G.; Hillyer, J.F. Structural mechanics of the mosquito heart and its function in bidirectional hemolymph transport. J. Exp. Biol. 2010, 213, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Sigle, L.T.; Hillyer, J.F. Structural and functional characterization of the contractile aorta and associated hemocytes of the mosquito Anopheles gambiae. J. Exp. Biol. 2018, 221, jeb181107. [Google Scholar] [CrossRef] [Green Version]
- Barbosa da Silva, H.; Godoy, R.S.M.; Martins, G.F. The basic plan of the adult heart Is conserved across different species of adult mosquitoes, but the morphology of heart-associated tissues varies. J. Med. Entomol. 2019, 56, 984–996. [Google Scholar] [CrossRef]
- Leodido, A.C.M.; Ramalho-Ortigao, M.; Martins, G.F. The ultrastructure of the Aedes aegypti heart. Arthropod. Struct. Dev. 2013, 42, 539–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doran, C.R.; Estevez-Lao, T.Y.; Hillyer, J.F. Mosquito aging modulates the heart rate and the proportional directionality of heart contractions. J. Insect. Physiol. 2017, 101, 47–56. [Google Scholar] [CrossRef]
- Hillyer, J.F.; Estevez-Lao, T.Y.; Mirzai, H.E. The neurotransmitters serotonin and glutamate accelerate the heart rate of the mosquito Anopheles gambiae. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 188, 49–57. [Google Scholar] [CrossRef]
- Ellison, H.E.; Estevez-Lao, T.Y.; Murphree, C.S.; Hillyer, J.F. Deprivation of both sucrose and water reduces the mosquito heart contraction rate while increasing the expression of nitric oxide synthase. J. Insect Physiol. 2015, 74, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hillyer, J.F.; Estevez-Lao, T.Y.; de la Parte, L.E. Myotropic effects of FMRFamide containing peptides on the heart of the mosquito Anopheles gambiae. Gen. Comp. Endocrinol. 2014, 202, 15–25. [Google Scholar] [CrossRef]
- Estevez-Lao, T.Y.; Boyce, D.S.; Honegger, H.W.; Hillyer, J.F. Cardioacceleratory function of the neurohormone CCAP in the mosquito Anopheles gambiae. J. Exp. Biol. 2013, 216, 601–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coggins, S.A.; Estevez-Lao, T.Y.; Hillyer, J.F. Increased survivorship following bacterial infection by the mosquito Aedes aegypti as compared to Anopheles gambiae correlates with increased transcriptional induction of antimicrobial peptides. Dev. Comp. Immunol. 2012, 37, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Andereck, J.W.; King, J.G.; Hillyer, J.F. Contraction of the ventral abdomen potentiates extracardiac retrograde hemolymph propulsion in the mosquito hemocoel. PLoS ONE 2010, 5, e12943. [Google Scholar] [CrossRef] [Green Version]
- Hillyer, J.F.; Estevez-Lao, T.Y.; Funkhouser, L.J.; Aluoch, V.A. Anopheles gambiae corazonin: Gene structure, expression and effect on mosquito heart physiology. Insect Mol. Biol. 2012, 21, 343–355. [Google Scholar] [CrossRef]
- Da Silva, R.; da Silva, S.R.; Lange, A.B. The regulation of cardiac activity by nitric oxide (NO) in the Vietnamese stick insect, Baculum extradentatum. Cell Signal 2012, 24, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Broderick, K.E.; Feala, J.; McCulloch, A.; Paternostro, G.; Sharma, V.S.; Pilz, R.B.; Boss, G.R. The nitric oxide scavenger cobinamide profoundly improves survival in a Drosophila melanogaster model of bacterial sepsis. FASEB J. 2006, 20, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Chowanski, S.; Lubawy, J.; Urbanski, A.; Rosinski, G. Cardioregulatory functions of neuropeptides and peptide hormones in insects. Protein Pept. Lett. 2016, 23, 913–931. [Google Scholar] [CrossRef]
- Hillyer, J.F. Insect heart rhythmicity is modulated by evolutionarily conserved neuropeptides and neurotransmitters. Curr. Opin. Insect Sci. 2018, 29, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Hillyer, J.F.; Pass, G. The insect circulatory system: Structure, function, and evolution. Annu. Rev. Entomol. 2020, 65, 121–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, B.M.; Li, J.; Chen, C.C.; Nappi, A.J. Melanization immune responses in mosquito vectors. Trends Parasitol. 2005, 21, 192–199. [Google Scholar] [CrossRef]
- Whitten, M.M.A.; Coates, C.J. Re-evaluation of insect melanogenesis research: Views from the dark side. Pigment. Cell Melanoma Res. 2017, 30, 386–401. [Google Scholar] [CrossRef]
- Dziedziech, A.; Schmid, M.; Arefin, B.; Kienzle, T.; Krautz, R.; Theopold, U. Data on Drosophila clots and hemocyte morphologies using GFP-tagged secretory proteins: Prophenoloxidase and transglutaminase. Data Brief 2019, 25, 104229. [Google Scholar] [CrossRef]
- Khalili, D.; Kalcher, C.; Baumgartner, S.; Theopold, U. Anti-fibrotic activity of an antimicrobial peptide in a Drosophila model. J. Innate Immun. 2021, 13, 376–390. [Google Scholar] [CrossRef]
- Sousa, G.L.; Bishnoi, R.; Baxter, R.H.G.; Povelones, M. The CLIP-domain serine protease CLIPC9 regulates melanization downstream of SPCLIP1, CLIPA8, and CLIPA28 in the malaria vector Anopheles gambiae. PLoS Pathog. 2020, 16, e1008985. [Google Scholar] [CrossRef]
- Yassine, H.; Kamareddine, L.; Chamat, S.; Christophides, G.K.; Osta, M.A. A serine protease homolog negatively regulates TEP1 consumption in systemic infections of the malaria vector Anopheles gambiae. J. Innate Immun. 2014, 6, 806–818. [Google Scholar] [CrossRef] [PubMed]
- Hillyer, J.F. Insect immunology and hematopoiesis. Dev. Comp. Immunol. 2016, 58, 102–118. [Google Scholar] [CrossRef] [Green Version]
- Myllymaki, H.; Valanne, S.; Ramet, M. The Drosophila IMD signaling pathway. J. Immunol. 2014, 192, 3455–3462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleino, A.; Silverman, N. The Drosophila IMD pathway in the activation of the humoral immune response. Dev. Comp. Immunol. 2014, 42, 25–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillyer, J.F.; Estevez-Lao, T.Y. Nitric oxide is an essential component of the hemocyte-mediated mosquito immune response against bacteria. Dev. Comp. Immunol. 2010, 34, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Ortiz, A.; Martinez-Barnetche, J.; Smit, N.; Rodriguez, M.H.; Lanz-Mendoza, H. The effect of nitric oxide and hydrogen peroxide in the activation of the systemic immune response of Anopheles albimanus infected with Plasmodium berghei. Dev. Comp. Immunol. 2011, 35, 44–50. [Google Scholar] [CrossRef]
- Luckhart, S.; Vodovotz, Y.; Cui, L.; Rosenberg, R. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc. Natl. Acad. Sci. USA 1998, 95, 5700–5705. [Google Scholar] [CrossRef] [Green Version]
- Powers, J.C.; Turangan, R.; Joosse, B.A.; Hillyer, J.F. Adult mosquitoes infected with bacteria early in life have stronger antimicrobial responses and more hemocytes after reinfection later in life. Insects 2020, 11, 331. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J.; Jandu, S.; Melucci, S.; Savage, W.; Nandakumar, K.; Kang, S.K.; Barreto-Ortiz, S.; Poe, A.; Rastogi, S.; et al. Probing tissue transglutaminase mediated vascular smooth muscle cell aging using a novel transamidation-deficient Tgm2-C277S mouse model. Cell Death Discov. 2021, 7, 197. [Google Scholar] [CrossRef]
Gene | VectorBase ID a | Application | Sequence (Forward and Reverse) b | Amplicon (bp) c | |
---|---|---|---|---|---|
Transcript | Genomic | ||||
RpS7 | AGAP010592 | qPCR | GACGGATCCCAGCTGATAAA | 132 | 281 |
GTTCTCTGGGAATTCGAACG | |||||
TGase1 | AGAP009100 | qPCR | CTGCACAAGGGACTGTTCCA | 191 | 259 |
AACGCCAAAAAGCCATCCAC | |||||
TGase2 | AGAP009098 | qPCR | CGGTGGACGCTGACTATCAA | 225 | 297 |
GTACTGGCCGAGCTTCCATT | |||||
TGase3 | AGAP009099 | qPCR | TACAGCAGCCAGCGGTTTAG | 236 | 236 |
ATATCGCGCCCAGTGTAGTC | |||||
bla(ApR) | (Bacterial gene) | RNAi | TAATACGACTCACTATAGGGCCGAGCGCAGAAGTGGT | 214 | 214 |
TAATACGACTCACTATAGGGAACCGGAGCTGAATGAA | |||||
TGase1 | AGAP009100 | RNAi | TAATACGACTCACTATAGGGCATTCCGGTTAATCAGT | 361 | 433 |
TAATACGACTCACTATAGGGCGTAGTCGATTGTAAGA | |||||
TGase2 | AGAP009098 | RNAi | TAATACGACTCACTATAGGGTCAGAGCTGTCTAACAAA | 490 | 490 |
TAATACGACTCACTATAGGCGTACCGCTCAACTCC | |||||
TGase3 | AGAP009099 | RNAi | TAATACGACTCACTATAGGGAAAACCTTCCACACGTC | 501 | 501 |
TAATACGACTCACTATAGGGTTGAACAGCACAAACAA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramakrishnan, A.; Hillyer, J.F. Silencing Transglutaminase Genes TGase2 and TGase3 Has Infection-Dependent Effects on the Heart Rate of the Mosquito Anopheles gambiae. Insects 2022, 13, 582. https://doi.org/10.3390/insects13070582
Ramakrishnan A, Hillyer JF. Silencing Transglutaminase Genes TGase2 and TGase3 Has Infection-Dependent Effects on the Heart Rate of the Mosquito Anopheles gambiae. Insects. 2022; 13(7):582. https://doi.org/10.3390/insects13070582
Chicago/Turabian StyleRamakrishnan, Abinaya, and Julián F. Hillyer. 2022. "Silencing Transglutaminase Genes TGase2 and TGase3 Has Infection-Dependent Effects on the Heart Rate of the Mosquito Anopheles gambiae" Insects 13, no. 7: 582. https://doi.org/10.3390/insects13070582
APA StyleRamakrishnan, A., & Hillyer, J. F. (2022). Silencing Transglutaminase Genes TGase2 and TGase3 Has Infection-Dependent Effects on the Heart Rate of the Mosquito Anopheles gambiae. Insects, 13(7), 582. https://doi.org/10.3390/insects13070582