Mitogenomics of the Olive Seed Weevil, Anchonocranus oleae Marshall and Implications for Its Phylogenetic Position in Curculionidae
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Collection and Morphological Identification
2.2. DNA Barcoding of Anchonocranus oleae
2.3. Mitogenome Sequencing: Assembly and Annotation
2.4. Phylogenetic Analysis
3. Results and Discussion
3.1. DNA Barcoding of Anchonocranus oleae
3.2. The Mitochondrial Genome of Anchonocranus oleae
3.3. Phylogenetic Position of Anchonocranus oleae
3.4. Notes on Host Plants of Anchonocranus oleae
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Walton, V.M.; Hoelmer, K.A.; Pickett, C.H.; Blanchet, A.; Straser, R.K.; Kirk, A.A.; Daane, K.M. Exploration for olive fruit fly parasitoids across Africa reveals regional distributions and dominance of closely associated parasitoids. Sci. Rep. 2021, 11, 6182. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, F. Report of an expedition to Africa in search of the natural enemies of fruit flies (Trypaneidae) with descriptions, observations and biological notes. Hawaii Board Agric. For. Div. Entomol. Bull. 1914, 3, 1–146. [Google Scholar]
- Neuenschwander, P. Searching parasitoids of Dacus oleae (Gmel.) (Dipt., Tephritidae) in South Africa. Z. Für Angew. Entomol. 1982, 94, 509–522. [Google Scholar] [CrossRef]
- Bon, M.C.; Hoelmer, K.A.; Pickett, C.H.; Kirk, A.A.; He, Y.; Mahmood, R.; Daane, K.M. Populations of Bactrocera oleae (Diptera: Tephritidae) and its parasitoids in Himalayan Asia. Ann. Entomol. Soc. Am. 2016, 109, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Daane, K.M.; Johnson, M.W. Olive fruit fly: Managing an ancient pest in modern times. Annu. Rev. Entomol. 2010, 55, 151–169. [Google Scholar] [CrossRef]
- Marshall, G.A.K. On a new species of Curculionidae injurious to olives in South Africa. Boll. Lab. Zool. Gen. Agrar. R. Sc. Super. D’agricoltura Portici 1912, 6, 3–4. [Google Scholar]
- Silvestri, F. Contributo alla conoscenza degli insetti dell’olivo dell’ritrea e dell’Africa meridionale. Fam. Aleyrodiae. Boll. Lab. Zool. Gen. Agrar. R. Sc. Super. d’Agricoltura Portici 1915, 9, 240–334. [Google Scholar]
- Copeland, R.; White, I.; Okumu, M.; Machera, P.; Wharton, R. Insects associated with fruits of the Oleaceae (Asteridae, Lamiales) in Kenya, with special reference to the Tephritidae (Diptera). Bish. Mus. Bull. Entomol. 2004, 12, 135–164. [Google Scholar]
- Mkize, N.; Hoelmer, K.A.; Villet, M.H. A survey of fruit-feeding insects and their parasitoids occurring on wild olives, Olea europaea ssp. cuspidata, in the Eastern Cape of South Africa. Biocontrol Sci. Technol. 2008, 18, 991–1004. [Google Scholar] [CrossRef]
- Teixeira da Costa, L.; Powell, C.; van Noort, S.; Costa, C.; Sinno, M.; Caleca, V.; Rhode, C.; Kennedy, R.J.; van Staden, M.; van Asch, B. The complete mitochondrial genome of Bactrocera biguttula (Bezzi) (Diptera: Tephritidae) and phylogenetic relationships with other Dacini. Int. J. Biol. Macromol. 2019, 126, 130–140. [Google Scholar] [CrossRef]
- Langley, J.; Cornwall, M.; Powell, C.; Costa, C.; Allsopp, E.; van Noort, S.; Guilbert, E.; van Asch, B. First report of the lace bug Neoplerochila paliatseasi (Rodrigues,1981) (Hemiptera: Tingidae) infesting cultivated olive trees in South Africa, and its complete mitochondrial sequence. Zootaxa 2020, 4722, 443–462. [Google Scholar] [CrossRef] [PubMed]
- Powell, C.; Caleca, V.; Knipe, M.; Rhode, C.; Allsopp, E.; van Asch, B. DNA-based identification of larvae offers insights into the elusive lifestyles of native olive seed wasps in South Africa. Afr. Entomol. 2020, 28, 433–446. [Google Scholar] [CrossRef]
- Hlaka, V.; Guilbert, É.; Smit, S.J.; van Noort, S.; Allsopp, E.; Langley, J.; van Asch, B. Species diversity and phylogenetic relationships of olive lace bugs (Hemiptera: Tingidae) found in South Africa. Insects 2021, 12, 830. [Google Scholar] [CrossRef]
- Caleca, V.; Giacalone, C.; Allsopp, E.; Costa, C.; Tortorici, F.; Laudonia, S.; van Asch, B.; Colonnelli, E. Wild olive seed weevil in South Africa, Anchonocranus oleae Marshall (Coleoptera: Curculionidae), a rediscovery after a century. In Proceedings of the Integrated Protection of Olive Crops IOBC-WPRS Bulletin, Bragança, Portugal, 10–12 October 2019; Volume 141, pp. 132–136. [Google Scholar]
- Klima, A. Curculionidae: Erirrhininae. In Coleopterorum Catalogus; Junk, W., Schenkling, S., Eds.; Springer: ’s-Gravenhage, The Netherlands, 1934; p. 167. [Google Scholar]
- Alonso-Zarazaga, M.A.; Lyal, C.H.C. A World Catalogue of Families and Genera of Curculionoidea (Insecta Coleoptera) (Excepting Scolytidae and Platypodidae). Entomopraxis: Barc. 1999, 34, 397–401. [Google Scholar]
- Hustache, A. Synopsis des Curculionides de Madagascar. Troisième Supplement. Bull. L’académie Malgache (NS) 1956, 33, 65–210. [Google Scholar]
- Caldara, R.; Franz, N.M.; Oberprieler, R.G. Handbook of Zoology. Arthropoda: Insecta. Coleoptera, Beetles. Volume 3: Morphology and Systematics (Phytophaga); Leschen, R.A.B., Beutel, R.G., Eds.; Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2014; pp. 589–628. [Google Scholar]
- Pullen, K.R.; Jennings, D.; Oberprieler, R.G. Annotated catalogue of Australian weevils (Coleoptera: Curculionoidea). Zootaxa 2014, 3896, 1–481. [Google Scholar] [CrossRef] [Green Version]
- Friedman, A.L.L. Blossom weevils of Israel (Curculionidae: Curculioninae: Anthonomini). Isr. J. Entomol. 2016, 46, 57–76. [Google Scholar]
- Oberprieler, R.G. New taxa of Ochyromerina from Africa, with comments on the subtribe and description of immature stages (Coleoptera: Curculionidae: Curculioninae: Tychiini). J. Afr. Zool. 1993, 107, 217–252. [Google Scholar]
- Cameron, S.L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef] [Green Version]
- Gillett, C.P.D.T.; Crampton-Platt, A.; Timmermans, M.J.T.N.; Jordal, B.H.; Emerson, B.C.; Vogler, A.P. Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea). Mol. Biol. Evol. 2014, 31, 2223–2237. [Google Scholar] [CrossRef] [Green Version]
- Allsopp, E.; Knipe, M.; van Asch, B.; Caleca, V. Eupelmus spermophilus Silvestri (Hymenoptera: Chalcidoidea), an indigenous olive seed wasp potentially harmful to olive growing in the Western Cape, South Africa. Afr. Entomol. 2021, 29, 180–189. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Preparation and analysis of eucariotic genomic DNA. In Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New YorK, NY, USA, 2001; ISBN 0879695773. [Google Scholar]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Bandelt, H.-J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Laslett, D.; Canback, B. ARWEN, a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 2008, 24, 142–175. [Google Scholar] [CrossRef] [Green Version]
- Rozas, J.; Ferrer-Mata, A.; Sanchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Cabrera-Brandt, M.A.; Gaitán-Espitia, J.D. Phylogenetic analysis of the complete mitogenome sequence of the raspberry weevil, Aegorhinus superciliosus (Coleoptera: Curculionidae), supports monophyly of the tribe Aterpini. Gene 2015, 571, 205–211. [Google Scholar] [CrossRef]
- Wang, B.-X.; Xu, Y.-L.; Zhuo, Z.-H.; Xu, X.-L.; Liu, J.; Qiu, J.; Fang, R.; Liu, Y.-K.; Zeng, Z.; Xiao, Q.-G. The complete mitochondrial genome of the fig weevil, Aclees cribratus (Coleoptera: Curculionidae). Mitochondrial DNA Part B 2020, 5, 2599–2600. [Google Scholar] [CrossRef]
- Nan, X.; Wei, C.; He, H. The complete mitogenome of Eucryptorrhynchus brandti (Harold) (Insecta: Coleoptera: Curculionidae). Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2014, 27, 1–2. [Google Scholar] [CrossRef]
- Fang, J.; Qian, L.; Xu, M.; Yang, X.; Wang, B.; An, Y. The complete nucleotide sequence of the mitochondrial genome of the Asian longhorn beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae). Mitochondrial DNA Part A 2015, 27, 3299–3300. [Google Scholar] [CrossRef]
- Xu, Y.-D.; Guan, D.-L.; Xu, S.-Q. Characterization of the complete mitochondrial genome of the Chestnut weevil Curculio davidi (Insecta: Coleoptera: Curculionidae). Conserv. Genet. Resour. 2017, 9, 285–288. [Google Scholar] [CrossRef]
- Fu, Y.; Yu, J.; Fang, X.; Shen, M.; Fu, J.; Xiao, Y. Complete mitochondrial genome of Niphades castanea (Coleoptera: Curculionidae). Mitochondrial DNA Part B Resour. 2020, 5, 2403–2405. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Zhang, L.; He, P.; Zhou, Q.; Wen, Y.; Dai, X.; Wang, J. The complete mitochondrial genome of hawthorn trunk borer, Platypus contaminatus (Coleoptera: Curculionidae: Platypodinae). Mitochondrial DNA Part B Resour. 2019, 4, 891–892. [Google Scholar] [CrossRef] [Green Version]
- Haran, J.; Timmermans, M.J.; Vogler, A.P. Mitogenome sequences stabilize the phylogenetics of weevils (Curculionoidea) and establish the monophyly of larval ectophagy. Mol. Phylogenet. Evol. 2013, 67, 156–166. [Google Scholar] [CrossRef]
- Xu, K.; Chen, X.; Xu, L.; Yang, W.; Wang, Y.; Li, C. The complete mitochondrial genome of a walnut weevil, Alcidodes juglans Chao (Coleoptera: Curculionidae). Mitochondrial DNA Part B Resour. 2018, 4, 27–28. [Google Scholar] [CrossRef] [Green Version]
- Xiang, D.; Zhuoga, D.; Zhen, W.; Zang, J. Complete mitochondrial genome analysis of Leptomias sp. (Coleoptera, Curculionidae) from Southeast Tibet of China. Mitochondrial DNA Part B Resour. 2020, 5, 3009–3010. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Yang, X.-Z.; Li, X.-P.; Feng, R.-Q.; Yuan, M.-L. Mitochondrial genome of Sitona callosus (Coleoptera: Curculionidae) and phylogenetic analysis within Entiminae. Mitochondrial DNA Part B Resour 2017, 2, 538–539. [Google Scholar] [CrossRef] [Green Version]
- van de Vossenberg, B.T.L.H.; Warbroek, T.; Ingerson-Mahar, J.; Waalwijk, C.; van der Gouw, L.P.; Eichinger, B.; Loomans, A.J.M. Tracking outbreak populations of the pepper weevil Anthonomus eugenii (Coleoptera; Curculionidae) using complete mitochondrial genomes. PLoS ONE 2019, 14, e0221182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Hong, B.; Chen, Z.-J.; Wang, Y.-Z.; Li, Y.-M.; Zhang, S.-L. The complete mitochondrial genome of Scythropus yasumatsui (Coleoptera: Curculionidae). Mitochondrial DNA Part B Resour. 2017, 2, 718–719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bi, G.; Liu, G.; Du, Q.; Zhao, E.; Yang, J.; Shang, E. Complete mitochondrial genome of Rhynchophorus ferrugineus. Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2015, 28, 208–209. [Google Scholar] [CrossRef]
- Chen, S.-C.; Jiang, H.-Y.; Shang, J.; Hu, X.; Wang, X.-Q. The complete mitochondrial genome of the tea weevil, Myllocerinus aurolineatus (Coleoptera: Curculionidae). Mitochondrial DNA Part B Resour. 2020, 5, 2559–2560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wen, Y.; Lai, S.; He, P.; Li, T.; Zhou, Q.; Wang, J. The complete mitochondrial genome of Scolytus schevyrewi Semenov (Coleoptera: Curculionidae). Mitochondrial DNA Part B Resour. 2020, 5, 1841–1842. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, S.; Zhang, Y.; Zhang, L.; Li, D.; He, L.; Luan, F. Mitochondrial sequence polymorphism in Chinese populations of Hylobitelus xiaoi (Coleoptera: Curculionidae). Appl. Èntomol. Zool. 2017, 52, 247–253. [Google Scholar] [CrossRef]
- Apriyanto, A.; Tambunan, V.B. The complete mitochondrial genome of oil palm pollinating weevil, Elaeidobius kamerunicus Faust. (Coleoptera: Curculionidae). Mitochondrial DNA Part B Resour. 2020, 5, 3432–3434. [Google Scholar] [CrossRef]
- Stewart, J.B.; Beckenbach, A.T. Phylogenetic and genomic analysis of the complete mitochondrial DNA sequence of the spotted asparagus beetle Crioceris duodecimpunctata. Mol. Phylogenet. Evol. 2003, 26, 513–526. [Google Scholar] [CrossRef]
- Narakusumo, R.P.; Riedel, A.; Pons, J. Mitochondrial genomes of twelve species of hyperdiverse Trigonopterus weevils. PeerJ 2020, 8, e10017. [Google Scholar] [CrossRef]
- Andújar, C.; Arribas, P.; Motyka, M.; Bocek, M.; Bocak, L.; Linard, B.; Vogler, A.P. New mitochondrial genomes of 39 soil dwelling Coleoptera from metagenome sequencing. Mitochondrial DNA Part B Resour. 2019, 4, 2447–2450. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Sheffield, N.C.; Cameron, S.L.; Miller, K.B.; Whiting, M.F. When phylogenetic assumptions are violated: Base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics. Syst. Èntomol. 2010, 35, 429–448. [Google Scholar] [CrossRef]
- Ojo, J.A.; Valero, M.C.; Sun, W.; Coates, B.S.; Omoloye, A.A.; Pittendrigh, B.R. Comparison of full mitochondrial genomes for the rice weevil, Sitophilus oryzae and the maize weevil, Sitophilus zeamais (Coleoptera: Curculionidae). Agri Gene 2016, 2, 29–37. [Google Scholar] [CrossRef]
- Wang, B.-X.; Zhuo, Z.-H.; Fang, R.; Yang, H.; Zhang, D.-J.; Zhang, B.-L.; Sui, L.-Y.; Ma, W.-J.; Yang, M.-F.; Yang, W. Complete mitochondrial genome of the olive weevil, Dyscerus cribripennis (Coleoptera: Curculionidae). Mitochondrial DNA Part B Resour. 2021, 6, 43–44. [Google Scholar] [CrossRef] [PubMed]
- Gunter, N.L.; Oberprieler, R.G.; Cameron, S.L. Molecular phylogenetics of Australian weevils (Coleoptera: Curculionoidea): Exploring relationships in a hyperdiverse lineage through comparison of independent analyses. Austral Èntomol. 2015, 55, 217–233. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R.; Teeling, E. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Chernomor, O.; Von Haeseler, A.; Minh, B.Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 2016, 65, 997–1008. [Google Scholar] [CrossRef] [Green Version]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Powell, C.; Caleca, V.; Sinno, M.; van Staden, M.; van Noort, S.; Rhode, C.; Allsopp, E.; van Asch, B. Barcoding of parasitoid wasps (Braconidae and Chalcidoidea) associated with wild and cultivated olives in the Western Cape of South Africa. Genome 2019, 62, 183–199. [Google Scholar] [CrossRef] [Green Version]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, P.M.; Li, W.-H. An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 1986, 24, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Wright, F. The ‘effective number of codons’ used in a gene. Gene 1990, 87, 23–29. [Google Scholar] [CrossRef]
- Yang, W.-J.; Yang, D.-X.; Xu, K.-K.; Cao, Y.; Meng, Y.-L.; Wu, Y.; Li, G.-Y.; Zhang, G.-Z.; Wang, Y.-W.; Li, C. Complete mitochondrial genome of the bamboo snout beetle, Cyrotrachelus buqueti (Coleoptera: Curculionidae). Mitochondrial DNA Part B Resour. 2018, 3, 88–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.-K.; Gao, P.; Ashraf, M.A.; Wen, J.-B. The complete mitochondrial genomes of two weevils, Eucryptorrhynchus chinensis and E. brandti: Conserved genome arrangement in Curculionidae and deficiency of tRNA-Ile gene. Open Life Sci. 2016, 11, 458–469. [Google Scholar] [CrossRef]
- Song, N.; Li, X.; Yin, X.; Li, X.; Yin, S.; Yang, M. The mitochondrial genome of Apion squamigerum (Coleoptera, Curculionoidea, Brentidae) and the phylogenetic implications. PeerJ 2020, 8, e8386. [Google Scholar] [CrossRef]
- Shin, S.; Clarke, D.J.; Lemmon, A.R.; Lemmon, E.M.; Aitken, A.L.; Haddad, S.; Farrell, B.D.; Marvaldi, A.E.; Oberprieler, R.G.; McKenna, D.D. Phylogenomic data yield new and robust insights into the phylogeny and evolution of weevils. Mol. Biol. Evol. 2017, 35, 823–836. [Google Scholar] [CrossRef]
Specimen | Life Stage | Collection Date | Region | Latitude | Longitude | Olive Host | Use |
---|---|---|---|---|---|---|---|
W01 | Larva | 24 February 2016 | Stellenbosch | −33.99514287 | 18.870638997 | Cultivated | DNA barcode |
W12 | Larva | 15 July 2016 | Stellenbosch | −33.91391193 | 18.860714412 | Cultivated | DNA barcode |
W13 | Larva | 15 July 2016 | Stellenbosch | −33.91391193 | 18.860714412 | Cultivated | DNA barcode |
W14 | Larva | 15 July 2016 | Stellenbosch | −33.91391193 | 18.860714412 | Cultivated | DNA barcode |
W15 | Larva | 15 July 2016 | Stellenbosch | −33.91391193 | 18.860714412 | Cultivated | DNA barcode |
W16 | Larva | 15 July 2016 | Stellenbosch | −33.91391193 | 18.860714412 | Cultivated | DNA barcode |
WI | Larva | 1 March 2017 | Stellenbosch | −33.99514287 | 18.870638997 | Cultivated | DNA barcode |
WII | Larva | 1 March 2017 | Stellenbosch | −33.99514287 | 18.870638997 | Cultivated | DNA barcode |
WIII | Larva | 1 March 2017 | Stellenbosch | −33.99514287 | 18.870638997 | Cultivated | DNA barcode |
WVI | Larva | 8 March 2017 | Oudtshoorn | −33.49409606 | 22.494753782 | Wild | DNA barcode |
W27 | Adult | 28 April 2016 | Grahamstown | −33.31910297 | 26.518800775 | Wild | Museum deposit/photo |
W29 | Larva | 29 March 2017 | Paarl | −33.68018382 | 18.907568940 | Cultivated | DNA barcode |
W30 | Larva | 4 November 2017 | Stellenbosch | −33.99514287 | 18.870638997 | Cultivated | DNA barcode |
W31 | Larva | 4 November 2017 | Stellenbosch | −33.99514287 | 18.870638997 | Cultivated | DNA barcode |
W32 | Larva | 4 November 2017 | Stellenbosch | −33.99514287 | 18.870638997 | Cultivated | DNA barcode |
W33 | Larva | 4 November 2017 | Stellenbosch | −33.99514287 | 18.870638997 | Cultivated | DNA barcode |
W34 | Larva | 4 April 2017 | Stellenbosch | −33.99514287 | 18.870638997 | Cultivated | DNA barcode |
W35 | Larva | 15 July 2016 | Stellenbosch | −33.91391193 | 18.860714412 | Wild | DNA barcode |
W37 | Larva | 15 July 2016 | Stellenbosch | −33.91391193 | 18.860714412 | Wild | DNA barcode |
W38 | Larva | 15 July 2016 | Stellenbosch | −33.91391193 | 18.860714412 | Wild | DNA barcode |
W39 | Larva | 15 July 2016 | Stellenbosch | −33.91391193 | 18.860714412 | Wild | DNA barcode |
W40 | Larva | 15 July 2016 | Stellenbosch | −33.91391193 | 18.860714412 | Wild | DNA barcode |
W41 | Larva | 7 March 2017 | Prince Albert | −33.30853418 | 22.526805331 | Cultivated | DNA barcode |
W47 | Adult | 13 March 2018 | Stellenbosch | −33.99514287 | 18.870638997 | Cultivated | Mitogenome |
Gene/Region | Code | Coordinates | Strand | Size (bp) | Anticodon | Start | Stop | IGN |
---|---|---|---|---|---|---|---|---|
COI | - | 1–1540 | J | 1540 | - | ATT | T-- | −8 |
tRNALeu2 | L2 | 1541–1606 | J | 66 | TAA | - | - | 0 |
COII | - | 1607–2290 | J | 684 | - | ATT | TAA | 0 |
tRNALys | K | 2307–2378 | J | 72 | CTT | - | - | 16 |
tRNAAsp | D | 2378–2448 | J | 66 | GTC | - | - | −1 |
ATP8 | - | 2444–2599 | J | 156 | - | ATT | TAG | 0 |
ATP6 | - | 2596–3266 | J | 671 | - | ATA | TA- | −4 |
COIII | - | 3267–4055 | J | 789 | - | ATG | TAA | 0 |
tRNAGly | G | 4076–4141 | J | 66 | TCC | - | - | 20 |
ND3 | - | 4142–4495 | J | 354 | - | ATA | TAA | 0 |
tRNAAla | A | 4498–4562 | J | 65 | TGC | - | - | 2 |
tRNAArg | R | 4563–4631 | J | 69 | TCG | - | - | 0 |
tRNAAsn | N | 4629–4691 | J | 63 | GTT | - | - | −3 |
tRNASer1 | S1 | 4692–4757 | J | 66 | AGA | - | - | 0 |
tRNAGlu | E | 4758–4821 | J | 64 | TTC | - | - | 0 |
tRNAPhe | F | 4831–4897 | N | 67 | GAA | - | - | 9 |
ND5 | - | 4901–6619 | N | 1719 | - | ATT | TAA | 3 |
tRNAHis | H | 6620–6684 | N | 65 | GTG | - | - | 0 |
ND4 | - | 6687–8018 | N | 1332 | - | ATG | TAG | 2 |
ND4L | - | 8012–8296 | N | 285 | - | ATG | TAA | −7 |
tRNAThr | T | 8299–8366 | J | 68 | TGT | - | - | 2 |
tRNAPro | P | 8367–8432 | N | 66 | TGG | - | - | 0 |
ND6 | - | 8433–8935 | J | 503 | - | ATA | TA- | 0 |
CYTB | - | 8936–10075 | J | 1140 | - | ATG | TAA | 0 |
tRNASer2 | S2 | 10,079–10,147 | J | 69 | TGA | - | - | 3 |
ND1 | - | 10,218–11,168 | N | 951 | - | TTG | TAG | 70 |
tRNALeu1 | L1 | 11,169–11,235 | N | 67 | TAG | - | - | 0 |
16s rRNA | - | 11,236–12,534 | N | 1299 | - | - | - | 0 |
tRNAVal | - | 12,535–12,599 | N | 65 | TAC | - | - | 0 |
12s rRNA | - | 12,600–13,378 | N | 779 | - | - | - | 0 |
AT-rich region | - | 13,380–14,151 | - | 772 | - | - | - | 0 |
tRNAIle | I | n.d. | n.d. | n.d. | n.d. | - | - | n.d. |
tRNAGln | Q | 14,154–14,224 | N | 71 | TTG | - | - | 0 |
tRNAMet | M | 14,222–14,291 | J | 70 | CAT | - | - | −3 |
ND2 | - | 14,292–15,305 | J | 1014 | - | ATG | TAA | 0 |
tRNATrp | W | 15,308–15,373 | J | 66 | TCA | - | - | 2 |
tRNACys | C | 15,375–15,436 | N | 62 | GCA | - | - | 1 |
tRNATyr | Y | 15,442–15,497 | N | 64 | GTA | - | - | 5 |
Gene/Region | Strand | A% | C% | G% | T% | A + T% | G + C% | AT-Skew | GC-Skew | Size (bp) | % of Total bp |
---|---|---|---|---|---|---|---|---|---|---|---|
COI | J | 32.14 | 17.86 | 13.96 | 36.04 | 68.18 | 31.82 | −0.06 | −0.12 | 1540 | 9.94 |
COII | J | 35.67 | 16.37 | 10.23 | 37.72 | 73.39 | 26.61 | −0.03 | −0.23 | 684 | 4.41 |
COIII | J | 32.95 | 16.60 | 12.17 | 38.28 | 71.23 | 28.77 | −0.08 | −0.15 | 789 | 5.09 |
CYTB | J | 31.58 | 15.00 | 12.37 | 41.05 | 72.63 | 27.37 | −0.13 | −0.10 | 1140 | 7.36 |
ATP6 | J | 32.64 | 16.39 | 8.94 | 42.03 | 74.66 | 25.34 | −0.13 | −0.29 | 671 | 4.33 |
ATP8 | J | 42.31 | 11.54 | 3.85 | 42.31 | 84.62 | 15.38 | 0.00 | −0.57 | 156 | 1.01 |
ND1 | N | 45.64 | 16.19 | 8.73 | 29.44 | 75.08 | 24.92 | −0.22 | 0.30 | 951 | 6.14 |
ND2 | J | 35.50 | 14.69 | 7.99 | 41.81 | 77.32 | 22.68 | −0.08 | −0.30 | 1014 | 6.54 |
ND3 | J | 36.44 | 11.58 | 8.47 | 43.50 | 79.94 | 20.06 | −0.09 | −0.15 | 354 | 2.28 |
ND4 | N | 47.07 | 13.59 | 9.31 | 30.03 | 77.10 | 22.90 | −0.22 | 0.18 | 1332 | 8.60 |
ND4L | N | 52.63 | 11.23 | 5.61 | 30.53 | 83.16 | 16.84 | −0.27 | 0.33 | 285 | 1.84 |
ND5 | N | 46.48 | 13.26 | 9.54 | 30.72 | 77.20 | 22.80 | −0.21 | 0.16 | 1719 | 11.09 |
ND6 | J | 37.77 | 10.34 | 6.56 | 45.33 | 83.10 | 16.90 | −0.09 | −0.22 | 503 | 3.25 |
PCGs (J) | J | 33.83 | 15.51 | 10.71 | 39.95 | 73.78 | 26.22 | −0.08 | −0.18 | 6828 | 44.06 |
PCGs (N) | N | 29.43 | 8.76 | 16.14 | 45.68 | 75.11 | 24.89 | −0.22 | 0.21 | 948 | 6.12 |
Total PCGs | J + N | 32.41 | 13.02 | 11.92 | 42.64 | 75.05 | 24.95 | −0.14 | −0.04 | 11,103 | 71.65 |
16S rRNA | N | 42.57 | 12.93 | 6.08 | 38.41 | 80.99 | 19.01 | 0.05 | −0.36 | 1299 | 8.38 |
12S rRNA | N | 38.38 | 14.38 | 7.45 | 39.79 | 78.18 | 21.82 | −0.02 | −0.32 | 779 | 5.03 |
Total rRNAs | N | 41.00 | 13.47 | 6.59 | 38.93 | 79.93 | 20.07 | 0.03 | −0.34 | 2078 | 13.41 |
Total tRNAs | J + N | 39.93 | 14.03 | 9.42 | 36.62 | 76.55 | 23.45 | 0.04 | −0.20 | 1390 | 8.97 |
AT-rich | 42.95 | 10.87 | 7.89 | 38.16 | 81.24 | 18.76 | 0.06 | −0.16 | 773 | 4.99 | |
Mitogenome | 39.55 | 14.34 | 9.37 | 36.73 | 76.29 | 23.71 | 0.04 | −0.21 | 15,497 | 100.00 |
Codon-AA | Freq | RSCU | Codon-AA | Freq | RSCU | Codon-AA | Freq | RSCU |
---|---|---|---|---|---|---|---|---|
UUU-F | 317 | 1.72 | CCC-P | 16 | 0.50 | GAU-D | 59 | 1.76 |
UUC-F | 51 | 0.28 | CCA-P | 44 | 1.39 | GAC-D | 7 | 0.21 |
UUA-L | 372 | 3.93 | CCG-P | 3 | 0.09 | GAA-E | 65 | 1.69 |
UUG-L | 35 | 0.37 | ACU-T | 73 | 1.68 | GAG-E | 12 | 0.31 |
CUU-L | 65 | 0.69 | ACC-T | 22 | 0.51 | UGU-C | 31 | 1.68 |
CUC-L | 7 | 0.07 | ACA-T | 75 | 1.72 | UGC-C | 6 | 0.32 |
CUA-L | 86 | 0.91 | ACG-T | 4 | 0.09 | UGA-W | 85 | 1.81 |
CUG-L | 3 | 0.03 | GCU-A | 79 | 2.01 | UGG-W | 9 | 0.19 |
AUU-I | 346 | 1.77 | GCC-A | 29 | 0.74 | CGU-R | 15 | 1.13 |
AUC-I | 44 | 0.23 | GCA-A | 47 | 1.20 | CGC-R | 3 | 0.23 |
AUA-M | 257 | 1.86 | GCG-A | 2 | 0.05 | CGA-R | 27 | 2.04 |
AUG-M | 19 | 0.14 | UAU-Y | 141 | 1.56 | CGG-R | 8 | 0.60 |
GUU-V | 73 | 1.76 | UAC-Y | 40 | 0.44 | AGU-S | 30 | 0.70 |
GUC-V | 5 | 0.12 | CAU-H | 54 | 1.57 | AGC-S | 5 | 0.12 |
GUA-V | 84 | 2.02 | CAC-H | 15 | 0.43 | AGA-S | 81 | 1.89 |
GUG-V | 4 | 0.10 | CAA-Q | 57 | 1.78 | AGG-S | 15 | 0.35 |
UCU-S | 112 | 2.62 | CAG-Q | 7 | 0.22 | GGU-G | 40 | 0.86 |
UCC-S | 12 | 0.28 | AAU-N | 169 | 1.77 | GGC-G | 19 | 0.41 |
UCA-S | 83 | 1.94 | AAC-N | 22 | 0.23 | GGA-G | 93 | 2.01 |
UCG-S | 4 | 0.09 | AAA-K | 101 | 1.74 | GGG-G | 33 | 0.71 |
CCU-P | 64 | 2.02 | AAG-K | 15 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smit, S.J.; Allsopp, E.; Nethavhani, Z.; Caleca, V.; Oberprieler, R.G.; van Asch, B. Mitogenomics of the Olive Seed Weevil, Anchonocranus oleae Marshall and Implications for Its Phylogenetic Position in Curculionidae. Insects 2022, 13, 607. https://doi.org/10.3390/insects13070607
Smit SJ, Allsopp E, Nethavhani Z, Caleca V, Oberprieler RG, van Asch B. Mitogenomics of the Olive Seed Weevil, Anchonocranus oleae Marshall and Implications for Its Phylogenetic Position in Curculionidae. Insects. 2022; 13(7):607. https://doi.org/10.3390/insects13070607
Chicago/Turabian StyleSmit, Samuel J., Elleunorah Allsopp, Zwannda Nethavhani, Virgilio Caleca, Rolf G. Oberprieler, and Barbara van Asch. 2022. "Mitogenomics of the Olive Seed Weevil, Anchonocranus oleae Marshall and Implications for Its Phylogenetic Position in Curculionidae" Insects 13, no. 7: 607. https://doi.org/10.3390/insects13070607