Building International Capacity for Citizen Scientist Engagement in Mosquito Surveillance and Mitigation: The GLOBE Program’s GLOBE Observer Mosquito Habitat Mapper
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The GLOBE Program
2.2. GLOBE Mosquito Habitat Mapper
2.3. Data Collection
2.3.1. Step 1: Larval Habitat Documentation (a)
2.3.2. Step 2: Sample and Count Larvae (b)
2.3.3. Step 3: Taxon Identification (c)
2.3.4. Step 4: Source Reduction (d)
2.4. Data Access
2.5. Information Quality
2.6. Data Collection by Novices: Design Considerations
2.7. Errors Associated with Citizen Scientist Larvae Identifications
2.8. User Errors Resulting in Inaccurate Geospatial Data Reporting
2.9. Challenges Associated with Sampling Bias
2.10. Data Interoperability
3. Results
3.1. Supporting Community Based Research: GLOBE Team Function and Geofencing Tool
3.1.1. Use Case 1: The Tire Removal, Education, Alteration, and Disposal (TREAD) Mosquito Management Project
3.1.2. Use Case 2: Identifying Tree Hole Habitats in Residential Neighborhoods
3.2. Use Case 3: GLOBE Observer Tool Supporting Agency Mosquito Control Operations
3.3. Application of the Mosquito Habitat Mapper to the Tracking of Invasive Species
4. Discussion
4.1. GLOBE Mission Mosquito Campaign: Connecting Citizen Scientists with Training, Education, and Outreach Opportunities
4.2. Student Research
4.3. Public Libraries: Hubs for Community Science
4.3.1. Los Angeles Public Library
4.3.2. LaSalle Public Library, Illinois
4.4. Educational Materials
Toolkit for Informal Educators
4.5. Role of Outreach in Data Collection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monaghan, A.J.; Sampson, K.M.; Steinhoff, D.F.; Ernst, K.C.; Ebi, K.L.; Jones, B.; Hayden, M.H. The Potential Impacts of 21st Century Climatic and Population Changes on Human Exposure to the Virus Vector Mosquito. Clim. Change 2016, 146, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, A.J.; Morin, C.W.; Steinhoff, D.F.; Wilhelmi, O.; Hayden, M.; Quattrochi, D.A.; Reiskin, M.; Lloyd, A.L.; Smith, K.; Schmidt, C.A.; et al. On the Seasonal Occurrence and Abundance of the Zika Virus Vector Mosquito, Aedes Aegypti in the Contiguous United States. PLoS Curr. 2016, 8, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, A.P.; Luther, C.; Moo-Llanes, D.; Ramsey, J.M.; Danis-Lozano, R.; Peterson, A.T. Climate Change Influences on Global Distributions of Dengue and Chikungunya Virus Vectors. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140135. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.; Gayer, M.; Connolly, M. Epidemics after Natural Disasters. Emerg. Infect. Dis. 2007, 13, 1–5. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Control of Neglected Tropical Diseases, Global Malaria Programme, High Impact Epidemics, and Vector Control and Resistance. In Global Vector Control Response 2017–2030; World Health Organization: Geneva, Switzerland, 2017; Available online: https://www.who.int/publications/i/item/9789241512978 (accessed on 1 April 2022).
- Jansen, C.C.; Darbro, J.M.; Birrell, F.A.; Shivas, M.A.; van den Hurk, A.F. Impact of COVID-19 Mitigation Measures on Mosquito-Borne Diseases in 2020 in Queensland, Australia. Viruses 2021, 13, 1150. [Google Scholar] [CrossRef]
- Olive, M.M.; Baldet, T.; Devillers, J.; Fite, J.; Paty, M.C.; Paupy, C.; Quénel, P.; Quillery, E.; Raude, J.; Stahl, J.P.; et al. The COVID-19 Pandemic Should Not Jeopardize Dengue Control. PLoS Negl. Trop. Dis. 2020, 14, e0008716. [Google Scholar] [CrossRef]
- Weiss, D.J.; Bertozzi-Villa, A.; Rumisha, S.F.; Amratia, P.; Arambepola, R.; Battle, K.E.; Cameron, E.; Chestnutt, E.; Gibson, H.S.; Harris, J.; et al. Indirect Effects of the COVID-19 Pandemic on Malaria Intervention Coverage, Morbidity, and Mortality in Africa: A Geospatial Modelling Analysis. Lancet Infect. Dis. 2021, 21, 59–69. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Tissera, H.; Ooi, E.E.; Coloma, J.; Scott, T.W.; Gubler, D.J. Preventing Dengue Epidemics During the COVID-19 Pandemic. Am. J. Trop. Med. Hyg. 2020, 103, 570–571. [Google Scholar] [CrossRef]
- Roiz, D.; Wilson, A.L.; Scott, T.W.; Fonseca, D.M.; Jourdain, F.; Müller, P.; Velayudhan, R.; Corbel, V. Integrated Aedes Management for the Control of Aedes-Borne Diseases. PLoS Negl. Trop. Dis. 2018, 12, e0006845. [Google Scholar] [CrossRef] [Green Version]
- Murindahabi, M.M.; Asingizwe, D.; Poortvliet, M.; van Vliet, A.J.H.; Hakizimana, E.; Mutesa, L.; Takken, W.; Koenraadt, C.J.M. A Citizen Science Approach for Malaria Mosquito Surveillance and Control in Rwanda. NJAS-Wagening. J. Life Sci. 2018, 86–87, 101–110. [Google Scholar] [CrossRef]
- Asingizwe, D.; Murindahabi, M.M.; Poortvliet, M.P.; Koenraadt, C.J.M.; van Vliet, A.J.H.; Ingabire, C.; Mutesa, L.; Feindt, P.H. Applying Citizen Science for Malaria Prevention in Rwanda: An Integrated Conceptual Framework. NJAS-Wagening. J. Life Sci. 2018, 86–87, 111–112. [Google Scholar] [CrossRef]
- Bowser, A.; Cooper, C.; Sherbinin, A.; Wiggins, A.; Brenton, P.; Chuang, T.R.; Faustman, E.; Haklay, M.; Meloche, M. Still in Need of Norms: The State of the Data Incitizen Science. Citiz. Sci. Theory Pract. 2020, 5, 18. [Google Scholar] [CrossRef]
- Callaghan, C.T.; Rowley, J.J.L.; Cornwell, W.K.; Poore, A.G.B.; Major, R.E. Improving Big Citizen Science Data: Moving beyond Haphazard Sampling. PLoS Biol. 2019, 17, e3000357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abourashed, A.; Doornekamp, L.; Escartin, S.; Koenraadt, C.J.; Schrama, M.; Wagener, M.; Bartumeus, F.; van Gorp, E. The Potential Role of School Citizen Science Programs in Infectious Disease Surveillance: A Critical Review. Int. J. Environ. Res. Public. Health 2021, 18, 7019. [Google Scholar] [CrossRef] [PubMed]
- Hamer, S.A.; Curtis-Robles, R.; Hamer, G.L. Contributions of Citizen Scientists to Arthropod Vector Data in the Age of Digital Epidemiology. Curr. Opin. Insect Sci. 2018, 28, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Katapally, T.R. A Global Digital Citizen Science Policy to Tackle Pandemics like COVID-19. J. Med. Internet Res. 2020, 22, e19357. [Google Scholar] [CrossRef]
- Wang, L.; Xia, E.; Li, H.; Wang, W. A Bibliometric Analysis of Crowdsourcing in the Field of Public Health. Int. J. Environ. Res. Public Health 2019, 16, 3825. [Google Scholar] [CrossRef] [Green Version]
- Mukundarajan, H.; Hol, F.J.H.; Castillo, E.A.; Newby, C.; Prakash, M. Using Mobile Phones as Acoustic Sensors for High-Throughput Mosquito Surveillance. eLife 2017, 6, e27854. [Google Scholar] [CrossRef]
- Oltra, A.; Bartumeus, F.; Palmer, J.R. Objective: Capturing the tiger. Mètode Rev. Difusió Investig. 2015–2016, 88, 10–15. Available online: https://metode.org/issues/article-revistes/objective-capturing-the-tiger.html?_ga=2.83717974.1128186075.1654041509-1548170533.1654041509 (accessed on 20 May 2022).
- Quadri, S.M.; Prashanth, T.K.; Pongpaichet, S.; Esmin, A.A.; Jain, R. TargetZIKA: Epidemic situation detection and risk preparedness for ZIKA virus. In Proceedings of the 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media), Pattaya, Thailand, 1–4 August 2017; pp. 1–6. [Google Scholar]
- Cochero, J.; Di Battista, C.M.; Campos, R. AppEAR y Caza mosquitos: Dos herramientas de ciencia ciudadana para dispositivos móviles que ayudan a contribuir con proyectos científicos a gran escala. In Proceedings of the XV Congreso de la RedPOP, Conexiones, Nuevas Maneras de Popularizar la Ciencia, Buenos Aires, Argentina, 21–25 August 2017. [Google Scholar]
- Johnson, B.J.; Brosch, D.; Christiansen, A.; Wells, E.D.; Wells, M.; Bhandoola, A.F.; Milne, A.; Garrison, S.; Fonseca, D.M. Neighbors Help Neighbors Control Urban Mosquitoes. Sci. Rep. 2018, 8, 15797. [Google Scholar] [CrossRef]
- Coloma, J.; Suazo, H.; Harris, E.; Holston, J. Dengue chat: A Novel Web and Cellphone Application Promotes Community-Based Mosquito Vector Control. Ann. Glob. Health 2016, 82, 451. [Google Scholar] [CrossRef]
- GO Mosquito Community Challenge. Home Page. Available online: https://mosquito.strategies.org/index.php/en/ (accessed on 24 March 2022).
- Low, R.; Boger, R.; Nelson, P.; Kimura, M. GLOBE Mosquito Habitat Mapper Citizen Science Data 2017–2020. GeoHealth 2021, 5, e2021GH000436. [Google Scholar] [CrossRef] [PubMed]
- Wegner, K.; Henry, K.; Wigbels, L. The GLOBE Zika Education and Prevention Project: Citizen Science for Global Health. In Proceedings of the AGU Fall Meeting Abstracts 2018, Washington, DC, USA, 10–14 December 2018; p. GH13A-07. [Google Scholar]
- Tarter, K.D.; Levy, C.E.; Yaglom, H.D.; Adams, L.E.; Plante, L.; Casal, M.G.; Gouge, D.H.; Rathman, R.; Stokka, D.; Weiss, J.; et al. Using Citizen Science to Enhance Surveillance of Aedes Aegypti in Arizona, 2015–2017. J. Am. Mosq. Control Assoc. 2019, 35, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinka, M.E.; Zilli, D.; Li, Y.; Kiskin, I.; Kirkham, D.; Rafique, W.; Wang, L.; Chan, H.; Gutteridge, B.; Herreros-Moya, E.; et al. HumBug–An Acoustic Mosquito Monitoring Tool for Use on Budget Smartphones. Methods Ecol. Evol. 2021, 12, 1848–1859. [Google Scholar] [CrossRef]
- Schmidt, C.; Phippard, A.; Olsen, J.M.; Wirt, K.; Rivera, A.; Crawley, A.; Waterman, S.; Ernst, K. Public Engagement for Detection and Prevention of Aedes-Borne Viral Diseases. Online J. Public Health Inform. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Kampen, H.; Medlock, J.M.; Vaux, A.G.C.; Koenraadt, C.J.M.; Van Vliet, A.J.H.; Bartumeus, F.; Oltra, A.; Sousa, C.A.; Chouin, S.; Werner, D. Approaches to Passive Mosquito Surveillance in the EU. Parasites Vectors 2015, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Using AI to Track Deadly and Invasive Mosquitoes Home Page. Available online: https://www.inaturalist.org/projects/using-ai-to-track-deadly-and-invasive-mosquitoes/ (accessed on 24 March 2022).
- Mosquitoes in Hawai’i. Home Page. Available online: https://www.inaturalist.org/projects/mosquitoes-in-hawaii (accessed on 24 March 2022).
- Maki, E.C.; Cohnstaedt, L.W. Crowdsourcing for Large-Scale Mosquito (Diptera:Culicidae) Sampling. Can. Entomol. 2015, 147, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Cohnstaedt, L.W.; Ladner, J.; Campbell, L.R.; Busch, N.; Barrera, R. Determining Mosquito Distribution from Egg Data: The Role of the Citizen Scientist. Am. Biol. Teach. 2016, 78, 317–322. [Google Scholar] [CrossRef]
- Suwanbamrung, C.; Thoutong, C.; Eksirinimit, T.; Tongjan, S.; Thongkew. The Use of the “Lansaka Model” as the Larval Indices Surveillance System for a Sustainable Solution to the Dengue Problem in Southern Thailand. PLoS ONE 2018, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Fernando, O.N.; Rathnayake, V.S.; Vijaykumar, S.; Lwin, M.O.; Foo, S. Mo-Buzz: Socially-Mediated Collaborative Platform for Ubiquitous Location Based Service. In Proceedings of the International Conference on Human Interface and the Management of Information, Berlin, Germany, 21 July 2013; pp. 373–382. [Google Scholar]
- Palmer, J.R.; Oltra, A.; Collantes, F.; Delgado, J.A.; Lucientes, J.; Delacour, S.; Bengoa, M.; Eritja, R.; Bartumeus, F. Citizen Science Provides a Reliable and Scalable Tool to Track Disease-Carrying Mosquitoes. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Babu, A.N.; Niehaus, E.; Shah, S.; Unnithan, C.; Ramkumar, P.S.; Shah, J.; Binoy, V.V.; Soman, B.; Arunan, M.C.; Jose, C.P. Smartphone Geospatial Apps for Dengue Control, Prevention, Prediction, and Education: MOSapp, DISapp, and the Mosquito Perception Index (MPI). Environ. Monit. Assess. 2019, 191, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.D.; Topper, A.J.; Woodward, C.W.; Wood, G.E.; Long, K.L. The Mosquito Census: Tracking New Zealand’s Mosquitoes Using Citizen Science. 2019. Available online: https://digital.wpi.edu/downloads/m900nv116 (accessed on 12 March 2022).
- Guilbaud, C.S.; Guilbaud, T.G. Mosquito Mapper: A Phone Application to Map Urban Mosquitoes. Sci. Phone Apps Mob. Devices 2017, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Vaux, A.G.; Medlock, J.M. Current Status of Invasive Mosquito Surveillance in the UK. Parasites Vectors 2015, 8, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, R.C.; Sorensen, A.E.; Ladeau, S. Citizen Science as a Tool for Mosquito Control. J. Am. Mosq. Control Assoc. 2017, 33, 241–245. [Google Scholar] [CrossRef]
- Pernat, N.; Kampen, H.; Jeschke, J.M.; Werner, D. Citizen Science Versus Professional Data Collection: Comparison of Approaches to Mosquito Monitoring in Germany. J. Appl. 2020, 58, 214–223. [Google Scholar] [CrossRef]
- Sousa, L.B.; Fricker, S.R.; Doherty, S.S.; Webb, C.E.; Baldock, K.L.; Williams, C.R. Citizen Science and Smartphone E-Entomology Enables Low-Cost Upscaling of Mosquito Surveillance. Sci. Total Environ. 2020, 704, 135349. [Google Scholar] [CrossRef]
- Walther, D.; Kampen, H. The Citizen Science Project ‘Mueckenatlas’ Helps Monitor the Distribution and Spread of Invasive Mosquito Species in Germany. J. Med. Entomol. 2017, 54, 1790–1794. [Google Scholar] [CrossRef]
- Cohnstaedt, L.W.; Snyder, D.; Maki, E.; Schafer, S. Establishing the Cervid Disease Network and the North American Mosquito Project. Vet. Ital. 2016, 52, 195–200. [Google Scholar] [CrossRef]
- Parra, C.; Cernuzzi, L.; Rojas, R.; Denis, D.; Rivas, S.; Paciello, J.; Coloma, J.; Holston, J. Synergies between Technology, Participation, and Citizen Science in a Community-Based Dengue Prevention Program. Am. Behav. Sci. 2020, 64, 1850–1870. [Google Scholar] [CrossRef]
- Vogels, C.B.; van de Peppel, L.J.; van Vliet, A.J.; Westenberg, M.; Ibañez-Justicia, A.; Stroo, A.; Koenraadt, C.J. Winter Activity and Aboveground Hybridization between the Two Biotypes of the West Nile Virus Vector Culex pipiens. Vector-Borne Zoonotic Dis. 2015, 15, 619–626. [Google Scholar] [CrossRef]
- Caputo, B.; Manica, M.; Filipponi, F.; Blangiardo, M.; Cobre, P.; Delucchi, L.; De Marco, C.M.; Iesu, L.; Morano, P.; Petrella, V.; et al. A Scalable Citizen Science Tool to Monitor Perception of Mosquito Abundance and Nuisance in Italy and Beyond. Int. J. Environ. Res. Public. Health 2020, 17, 7872. [Google Scholar] [CrossRef] [PubMed]
- Zika Mozzie Seeker. Home Page. Available online: https://Metrosouth.Health.Qld.Gov.Au/Zika-Mozzie-Seeker (accessed on 12 March 2022).
- Mwangungulu, S.P.; Sumaye, R.D.; Limwagu, A.J.; Siria, D.J.; Kaindoa, E.W.; Okumu, F. Crowdsourcing Vector Surveillance: Using Community Knowledge and Experiences to Predict Densities and Distribution of Outdoor-Biting Mosquitoes in Rural Tanzania. PLoS ONE 2016, 11, e0156388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoener, E.; Zittra, C.; Weiss, S.; Walder, G.; Barogh, B.S.; Weiler, S.; Fuehrer, H.P. Monitoring of Alien Mosquitoes of the Genus Aedes (Diptera: Culicidae) in Austria. Parasitol. Res. 2019, 118, 1633–1638. [Google Scholar] [CrossRef] [Green Version]
- Faraji, A.; Unlu, I. The Eye of the Tiger, the Thrill of the Fight: Effective Larval and Adult Control Measures Against the Asian Tiger Mosquito, Aedes albopictus (Diptera: Culicidae), in North America. J. Med. Entomol. 2016, 53, 1029–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- President’s Malaria Initiative. PMI Action Plan to Respond to the Threat of Anopheles stephensi in Africa, January 2022, Internal Report, United States Agency for International Development and Centers for Disease Control and Prevention. 2022; Unpublished.
- Institute for Global Environmental Strategies. IGES 2021 Annual Report. 2021. Available online: https://strategies.org/products (accessed on 24 March 2022).
- Amos, H.; Starke, M.J.; Rogerson, T.M.; Robles, M.C.; Anderson, T.; Boger, R.; Campbell, B.A.; Low, R.D.; Nelson, P.; Overoye, D.; et al. GLOBE Observer Data: 2016–2019. Earth Space Sci. 2020, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- This News Bites: More Mosquito Days. 29 July 2020. Available online: https://medialibrary.climatecentral.org/resources/more-mosquito-days (accessed on 24 March 2022).
- Penz, H. Communicating Climate Change: How (Not) to Touch a Cord with People and Promote Action. Text Talk 2022, 42, 571–590. [Google Scholar] [CrossRef]
- Butler, D.M.; MacGregor, I.D. GLOBE: Science and Education. J. Geosci. Educ. 2003, 51, 9–20. [Google Scholar] [CrossRef]
- Finarelli, M.G. GLOBE: A Worldwide Environmental Science and Education Partnership. J. Sci. Educ. Technol. 1998, 7, 77–84. [Google Scholar] [CrossRef]
- Means, B. Melding Authentic Science, Technology, and Inquiry-Based Teaching: Experiences of the GLOBE Program. J. Sci. Educ. Technol. 1998, 7, 97–102. [Google Scholar] [CrossRef]
- Murphy, A.P.; Coppola, R. GLOBE: A Science/Education Partnership Program. 1997. Available online: https://files.eric.ed.gov/fulltext/ED414155.pdf (accessed on 12 March 2022).
- Colón Robles, M.; Amos, H.M.; Dodson, J.B.; Bouwman, J.; Rogerson, T.; Bombosch, A.; Farmer, L.; Burdick, A.; Taylor, J.; Chambers, L.H. Clouds around the World: How a Simple Citizen Science Data Challenge Became a Worldwide Success. Bull. Am. Meteorol. Soc. 2020, 101, E1201–E1213. [Google Scholar] [CrossRef] [Green Version]
- Pan American Health Organization (PAHO). Caribbean Mosquito Awareness Week 2020. Available online: https://www.paho.org/en/campaigns/caribbean-mosquito-awareness-week-2020 (accessed on 12 March 2022).
- Gu, W.; Regens, J.L.; Beier, J.C.; Novak, R.J. Source Reduction of Mosquito Larval Habitats Has Unexpected Consequences on Malaria Transmission. Proc. Natl. Acad. Sci. USA 2006, 103, 17560–17563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forsyth, J.E.; Mutuku, F.M.; Kibe, L.; Mwashee, L.; Bongo, J.; Egemba, C.; Ardoin, N.M.; LaBeaud, A.D. Source Reduction with a Purpose: Mosquito Ecology and Community Perspectives Offer Insights for Improving Household Mosquito Management in Coastal Kenya. PLoS Negl. Trop. Dis. 2020, 14, 1–14. [Google Scholar] [CrossRef] [PubMed]
- GPS Accuracy. Available online: https://www.gps.gov/systems/gps/performance/accuracy/ (accessed on 11 March 2022).
- Merry, K.; Bettinger, P. Smartphone GPS Accuracy Study in an Urban Environment. PLoS ONE 2019, 14, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Learning to Benefit the Environment (GLOBE). GLOBE Data Information System (DIS). Available online: https://www.globe.gov/globe-data (accessed on 10 March 2022).
- Global Learning to Benefit the Environment (GLOBE). GLOBE Data User Guide, Version 1.0. 2019. Available online: https://www.globe.gov/globe-data/globe-data-user-guide (accessed on 28 February 2022).
- Earth System Data Exploration Portal. Home Page. Available online: https://geospatial.strategies.org (accessed on 24 March 2022).
- Ingle, P.; Kimura, M.; Bowser, A.; Fisk, J.; Long, A.; Low, R.; Nelson, P. Creating Open-Source Automated Data Cleaning and Flagging Procedures: Examples from the GLOBE Observer Mosquito Habitat Mapper and Land Cover Datasets. In Proceedings of the American Geophysical Union Fall Meeting, New Orleans, LA, USA, 14–17 December 2021. [Google Scholar]
- Muller, C.L.; Chapman, L.; Johnston, S.; Kidd, C.; Illingworth, S.; Foody, G.; Overeem, A.; Leigh, R.R. Crowdsourcing for Climate and Atmospheric Sciences: Current Status and Future Potential. Int. J. Climatol. 2015, 35, 3185–3203. [Google Scholar] [CrossRef] [Green Version]
- Low, R.D.; Nelson, P.V.; Soeffing, C.; Clark, A. SEES 2020 Mosquito Mappers Summer Research Interns. Adopt a Pixel 3 Km: A Multiscale Data Set Linking Remotely Sensed Land Cover Imagery with Field Based Citizen Science Observations. Front. Clim. 2021, 3, 1–7. [Google Scholar] [CrossRef]
- Lawless, J.G.; Rock, B.N. Student Scientist Partnerships and Data Quality. J. Sci. Educ. Technol. 1998, 7, 5–13. [Google Scholar] [CrossRef]
- Lukyanenko, R.; Parsons, J.; Wiersma, Y.F.; Maddah, M. Expecting the Unexpected: Effects of Data Collection Design Choices on the Quality of Crowdsourced User-Generated Content. MIS Q. 2019, 43, 623–647. [Google Scholar] [CrossRef] [Green Version]
- Kosmala, M.; Wiggins, A.; Swanson, A.; Simmons, B. Assessing Data Quality in Citizen Science. Front. Ecol. Environ. 2016, 14, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, E.; Specht, H. Influence of Volunteer and Project Characteristics on Data Quality of Biological Surveys. Conserv. Biol. 2015, 29, 713–723. [Google Scholar] [CrossRef]
- Wiggins, A.; Newman, G.; Stevenson, R.D.; Crowston, K. Mechanisms for Data Quality and Validation in Citizen Science. In Proceedings of the 2011 IEEE Seventh International Conference on E-Science Workshops, Stockholm, Sweden, 5–8 December 2011; pp. 14–19. [Google Scholar] [CrossRef]
- Torre, M.; Nakayama, S.; Tolbert, T.J.; Porfiri, M. Producing Knowledge by Admitting Ignorance: Enhancing Data Quality through an “I Don’t Know” Option in Citizen Science. PLoS ONE 2019, 14, 1–15. [Google Scholar] [CrossRef]
- Carney, R.M.; Mapes, C.; Low, R.D.; Long, A.; Bowser, A.; Durieux, D.; Rivera, K.; Dekramanjian, B.; Bartumeus, R.; Guerrero, D.; et al. Integrating Global Citizen Science Platforms to Enable Next- Generation Surveillance of Invasive and Vector Mosquitoes. Insects 2021, 12. in revision. [Google Scholar]
- Open Geospatial Consortium. Homepage. Available online: https://www.ogc.org/ (accessed on 24 March 2022).
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OGC Sensor Things API. Home Page. Available online: https://www.ogc.org/standards/sensorthings (accessed on 24 March 2022).
- Ingle, P.; Kimura, M.; Bowser, A.; Fisk, J.; Long, A.; Low, R.; Nelson, P. Aligning GLOBE Observer Mosquito Habitat Mapper and Land Cover Citizen Science Datasets to Open Geospatial Consortium Standards. In Proceedings of the American Geophysical Union Fall Meeting, New Orleans, LA, USA, 14–17 December 2021. [Google Scholar]
- Global Earth Challenge Home Page. Available online: https://globalearthchallenge.earthday.org/ (accessed on 24 March 2022).
- Aïkpon, R.; Dramane, G.; Klotoé, J.R.; Brettenny, M.; Lawani, Y.; Aïkpon, G.; Yadouléton, A. Assessment of Population Dynamics and Biting Trends of Aedes Aegypti in Northern Benin: Public Health Implications. Int. J. Entomol. Res. 2019, 4, 57–62. [Google Scholar]
- Yee, D.A. Tires as Habitats for Mosquitoes: A Review of Studies within the Eastern United States. J. Med. Entomol. 2008, 45, 581–593. [Google Scholar] [CrossRef]
- Low, R.; Killingsworth, D. Are Old Tires New Mosquito Condos? Join the GLOBE Mission Mosquito “Spare Tire Blitz” This March through June 2022. Available online: https://observer.globe.gov/de/news-events-and-people/news/-/obsnewsdetail/19589576/are-old-tires-new-mosquito-condos (accessed on 26 March 2022).
- Mitchell, C.J.; Haramis, L.D.; Karabatsos, N.; Smith, G.C.; Starwalt, V.J. Isolation of La Crosse, Cache Valley, and Potosi Viruses from Aedes Mosquitoes (Diptera: Culicidae) Collected at Used-Tire Sites in Illinois During 1994–1995. J. Med. Entomol. 1998, 35, 573–577. [Google Scholar] [CrossRef]
- National Arbovirus Surveillance System, Centers of Disease Control and Prevention. ArboNET Disease Maps. Available online: https://wwwn.cdc.gov/arbonet/maps/ADB_Diseases_Map/index.html (accessed on 2 February 2022).
- Lorenz, C.; Chiaravalloti-Neto, F.; de Oliveira Lage, M.; Quintanilha, J.A.; Parra, M.C.; Dibo, M.R.; Fávaro, E.A.; Guirado, M.; Nogueira, M.L. Remote Sensing for Risk Mapping or Aedes aegypti Infestations: Is This a Practical Task? Acta Trop. 2020, 205, 105398. [Google Scholar] [CrossRef]
- Sallam, M.; Fizer, C.; Pilant, A.; Whung, P. Systematic Review: Land Cover, Meteorological and Socioeconomic Determinants of Aedes Mosquito Habitat for Risk Mapping. Int. J. Environ. Res. Public. Health 2017, 14, 1230. [Google Scholar] [CrossRef] [Green Version]
- Illinois Department of Public Health (IDPH), WNV Surveillance. Available online: https://dph.illinois.gov/topics-services/diseases-and-conditions/west-nile-virus/surveillance.html (accessed on 1 April 2022).
- Kilpatrick, A.M.; Kramer, L.D.; Campbell, S.R.; Alleyne, E.O.; Dobson, A.P.; Daszak, P. West Nile Virus Risk Assessment and the Bridge Vector Paradigm. Emerg. Infect. Dis. 2005, 11, 425–429. [Google Scholar] [CrossRef]
- Uelmen, J.A.; Irwin, P.; Bartlett, D.; Brown, W.; Karki, S.; Ruiz, M.O.H.; Fraterrigo, J.; Li, B.; Smith, R.L. Effects of Scale on Modeling West Nile Virus Disease Risk. Am. J. Trop. Med. Hyg. 2021, 104, 151–165. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global Land Use/Land Cover with Sentinel 2 and Deep Learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: New York, NY, USA, 2021; pp. 4704–4707. [Google Scholar]
- USAID. Combating Zika and Future Threats: A Grand Challenge for Development Home Page. Available online: https://www.usaid.gov/grandchallenges/zika (accessed on 3 March 2022).
- Sinka, M.E.; Pronon, S.; Massey, N.C.; Longbottom, J.; Hamingway, J.; Moyes, C.L.; Willis, K.J. A New Malaria Vector in Africa: Predicting the Expansion Range of Anopheles stephensi and Identifying the Urban Populations at Risk. Proc. Natl. Acad. Sci. USA 2020, 117, 24900–24908. [Google Scholar] [CrossRef]
- Surendran, S.N.; Sivabalakrishnan, K.; Sivasingham, A.; Jayadas, T.T.P.; Kavannan, K.; Santhirasegaram, S.; Gajapathy, K.; Senthilnathanan, M.; Karunarante, S.H.P.P.; Ramasamy, R. Anthropogenic Factors Driving Recent Range Expansion of the Malaria Vector Anopheles stephensi. Front. Public Health 2019, 7, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balkew, M.; Mumba, P.; Dengela, D.; Yohannes, G.; Getachew, D.; Yared, S.; Murphy, M.; George, K.; Lopez, K.; Janies, D.; et al. Geographical Distribution of Anopheles stephensi in Eastern Ethiopia. Parasites Vectors 2020, 13, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Learning to Benefit the Environment (GLOBE). GLOBE Mission Mosquito Campaign Home Page. Available online: https://www.globe.gov/web/mission-mosquito (accessed on 22 March 2022).
- Fischer, H.; Cho, H.; Storksdieck, M. Going Beyond Hooked Participants: The Nibble-and- Drop Framework for Classifying Citizen Science Participation. Citiz. Sci. Theory Pract. 2021, 6, 10. [Google Scholar] [CrossRef]
- Pandya, R.E. A Framework for Engaging Diverse Communities in Citizen Science in the US. Front. Ecol. Environ. 2012, 10, 314–317. [Google Scholar] [CrossRef]
- Carney, R.; Low, R. Machine Learning and Your Citizen Science Data. Available online: https://observer.globe.gov/news-events-and-people/news/-/obsnewsdetail/19589576/machine-learning-and-your-citizen-science-data (accessed on 25 March 2022).
- Cho, H.; Low, R.D.; Fischer, H.A.; Storksdieck, M. The STEM Enhancement in Earth Science “Mosquito Mappers” Virtual Internship: Evaluating Place-Based Engagement with Citizen Science. Front. Environ. Sci. 2021, 372. [Google Scholar] [CrossRef]
- Institute of Museum and Library Services. Public Libraries Survey Fiscal Year 2018. Available online: https://www.imls.gov/research-evaluation/data-collection/public-libraries-survey (accessed on 29 March 2022).
- SciStarter. National Citizen and Community Science Library Network. Available online: https://scistarter.org/library-network (accessed on 29 March 2022).
- Smithsonian Science Education Center. Mosquito! How Can We Ensure Health for All from Mosquito-Borne Diseases? Home Page. Available online: https://ssec.si.edu/mosquito (accessed on 14 March 2022).
- National Institute of Environmental Health Sciences. A Student Exploration of the Global Impacts of Climate Change on Human Health- Vector-Borne Diseases. Available online: https://www.niehs.nih.gov/health/scied/teachers/cchh/index.cfm (accessed on 31 March 2022).
- Global Learning to Benefit the Environment (GLOBE). GLOBE Observer Toolkit for Informal Educators. Available online: https://observer.globe.gov/de/toolkit/mosquito-habitat-mapper-toolkit (accessed on 14 March 2022).
- Scistarter. Think Like a Citizen Scientist Journey. Available online: https://scistarter.com/girlscouts/info (accessed on 30 March 2022).
- Global Learning to Benefit the Environment (GLOBE). Girl Scout Guide. Available online: https://observer.globe.gov/de/toolkit/guides/girl-scouts (accessed on 30 March 2022).
- Sahay, S. Free and open source software as global public goods? What are the distortions and how do we address them? Electron. J. Inf. Syst. Dev. Ctries. 2019, 85, e12080. [Google Scholar] [CrossRef] [Green Version]
- Gates, B. Responding to COVID-19—A Once-in-a-Century Pandemic? N. Engl. J. Med. 2020, 382, 1677–1679. Available online: https://www.nejm.org/doi/10.1056/NEJMp2003762 (accessed on 30 March 2022). [CrossRef]
- Turner, A. How Many Smartphones Are in the World? Available online: https://www.bankmycell.com/blog/how-many-phones-are-in-the-world (accessed on 1 April 2022).
Project | Report Method | Data Type | Life Cycle Stage | Surveillance Target | Participant Focus | Date | Geographic SCALE | Country of Origin |
---|---|---|---|---|---|---|---|---|
Abuzz [19] | Web | Audio | Adult | Wingbeat species ID | Public | 2017–2018 | Country | USA |
Atrapar el Tigre [20] | App | Photo | Adult | Ae. albopictus | Public Students | 2013–2014 | Country | Spain |
Sem Dengue–BreakZika [21] | App | Photo Text | Larva | Larva habitat symptoms | Public | 2016–2017 | Country | Brazil |
Caza Mosquitoes [22] | App | Photo | Adult | Mosquito | Public | 2017– | Country | Argentina |
Citizen AcTS [23] | In situ expert ID | Specimen | Adult | Ae. albopictus | Field expert Public | 2016–2017 | Local (one city) | USA |
Dengue Chat [24] | Web Social media | Photo | Larva | Larva habitat, disease case | Public | 2015– | International | Nicaragua, Mexico, Brazil, Paraguay Colombia |
GO Mosquito Community Challenge [25] | App | Photo | Larva | Ae. aegypti, Ae. albopictus ID, counts, larval habitats, source reduction | Students | 2017–2019 | Local (6 cities) | Brazil, Peru |
GLOBE Observer Mosquito Habitat Mapper [26] | App | Photo | Larva | (See above) | Students Public | 2017– | International (126 countries) | USA |
GLOBE Zika Education and Prevention Project [27] | App | Photo | Larva | (See above) | Students Public | 2018–2021 | International (22 countries) | Africa, Asia, and Pacific, Latin America, Caribbean |
Great Arizona Mosquito Hunt [28] | Egg paper | Egg | Aedes sp. | Students | 2015–2017 | Regional (State: AZ) | USA | |
Humbug [29] | App | Audio | Adult | Wingbeat species ID | Public | 2014– | International | UK |
Kidenga [30] | App | Text | Adult | Adult activity, disease cases | Public | 2016– | Regional (SW) | USA |
iMoustique [31] | App | Photo | Adult | Ae. albopictus | Public | 2013 | Country | France |
iNaturalist: Mosquito AI [32] | App | Photo | Adult | recent invasive species | Public | 2021–2022 | Regional | USA |
iNaturalist: Mosquitoes in HI [33] | App | Photo | Adult Larva | invasive species | Public Students | 2015– | Regional (State: HI) | USA |
Invasive Mosquito Project [34,35] | Egg paper | Adult | Ae. aegypti, Ae. albopictus | Students Public | 2016– | Country | USA, Canada | |
Lansanka Model [36] | Paper Web | Text | Larva | Larva habitats | Public | 2014–2015 | Local | Thailand |
Mo-Buzz [37] | App | Photo | Adult Larva | Larva habitat, bites, symptoms | Public | 2013– | Local | Sri Lanka |
Mosquito Alert [38] | App | Photo | Adult Larva | Invasive Aedes sp., larval habitats, bites | Public | 2014– | International | Spain |
MOSapp/DI Sapp [39] | App | Text | Adult | Vector mosquitoes disease cases | Public | 2015– | Country | India |
Mosquito Census [40] | Web | Specimen | Adult | All mosquitoes | Public | (2019) | Country | New Zealand |
Mosquito Mapper [41] | App | Photo | Adult | All mosquitoes | Public | 2017 | City (Berlin) | Germany |
Mosquito Reporting Scheme/ Mosquito Watch [42] | Specimen | Adult | Mosquitoes | Public | 2005–2012 | Country | UK | |
Mosquito Stoppers [43] | Web | Text | Adult | Nuisance mosquitoes | Public | 2014–2015 | City (Baltimore) | USA |
MosquitoWEB [44] | Specimen | Adult | All species | Public | 2014– | Country | Portugal | |
Mozzie Monitors [45] | Web | Photo | Adult | Gravid trap specimens | Public | 2018–2019 | Regional | Australia |
Mueckenatlas [46] | Specimen | Adult | All species | Public | 2011– open | Country | Germany | |
Muggenradar [44] | Web, mail | Specimen | Adult | Nuisance mosquitoes | Public | 2014–2015 | Country | Germany |
North American Mosquito Project [47] | Specimen | Adult | All mosquitos from trap | Public | 2011–2015 | International | USA, Canada | |
TopaDengue [48] | App | Photo | Larva Pupa | Larva habitat monitoring, Ae. aegypti | Students Public | 2018–2019 | Local | Paraguay |
West Nile Virus Vector Project [49] | Specimen | Adult | Ae. albopictus | Public | Country | Netherlands | ||
ZanzaMapp [50] | App | Text | Adult | Nuisance mosquitoes | Public | 2016–2018 | Country | Italy |
Zika Mozzie Seeker [51] | Egg paper | Eggs | Ae. aegypti, Ae. albopictus | Public | 2017– | Regional | Australia | |
Unnamed project [52] | Paper tablet | Map | Larva | Anopheles larva habitat | Public | 2012–2013 | Local (3 villages) | Tanzania |
Unnamed project [53] | Egg | Egg | Invasive Aedes sp. | Public | 2017 | Regional (6 provinces) | Austria | |
Unnamed project [11] | Paper | Specimen | Adult | Nuisance mosquitoes | Public | 2017–2018 | Local (12 villages) | Rwanda |
Information System Components | Subdimension | Characteristics | Example from Mosquito Habitat Mapper |
---|---|---|---|
Scope and activity | Geographic scale | Large, unbounded | Anytime, anywhere in 126 GLOBE countries |
Task type | Easy–hard | Volunteers can choose tasks they want to perform and have time to perform, making participation available to citizen scientists with a wide variety of skill levels and interests. Easy = photographing standing water source, dumping water. Hard = taxonomic identification of a specimen | |
Data collection tasks | Specified, closed | Standardized protocol, categorical variables, collection conditions reported | |
Public participation model | Collaborative technology-supported | Volunteers encouraged to collect, analyze, interpret, and disseminate outcomes | |
Citizen scientists | Recruitment | Inside and outside GLOBE network | GLOBE training events, social media, publicly advertised data challenges, teacher professional development workshops and webinars |
Ability level | Experts/nonexperts in project domain | Anyone aged 13+ years can participate | |
Training | Minimal training required | Initial: in-app tutorial, instructional video, and eTraining module Ongoing: GLOBE Mission Mosquito Campaign webinars, workshops, and events | |
Volunteer Assessment | Optional certification via eTraining test | GLOBE eTraining module and certification quiz | |
Device collection features | Geospatial data Collection | Automated, contributor-centric | Geospatial data are obtained automatically in-app. Users must wait until the satellite fix returns position with acceptable accuracy, and click on the “reset” button at 30 second time intervals until accuracy of ±12 m is achieved |
Taxonomic identification | Instance/ attribute-based | (1) Mosquito taxonomic attributes (such as siphon) identified individually prior to assigning to class (taxon) (2) Choice option: “I’m not sure” to reduce false identifications | |
Raw data | Data quality management | Contributor-centric | Robust protocols and training support citizen scientist skill development and minimize errors in data reporting |
Data documentation | Metadata | GLOBE Data User Guide | |
Access | Open data | GLOBE Visualization System, ADAT, API, Earth System Explorer Portal | |
Data analysis | Significant and advanced data cleaning and post-processing required | Characteristic of non-expert data collection system | |
Preprocessing support and quality assurance procedures | Database range and logic checks | Algorithmic identification of outliers | GLOBE Data Information System |
Expert validation | Data review | Photo approval system, expert validation, AI (in development) currently expert-validated cases available in curated datasets | |
Tracking volunteer performance | Origin of each record identified | Each citizen scientist is identified anonymously, enabling quality tracking | |
Access to processing algorithms | Support for reusable and reproducible data processing steps | Jupyter Notebooks (GLOBE data) Earth System Explorer data portal (beta) Streamlite | |
Voucher photographs | Mosquito habitats and larval specimens | Manual and AI photo approval system rejects inappropriate photos | |
Data users | Research Topics | Known (satellite data interpretation) and unknown (evolving) | Earth system science, predictive models of vector disease, environmental justice action, operational vector control management, satellite data interpretation, computer vision research (AI), invasive species monitoring |
Education outreach | Pedagogic assets and programs | Student research applications | GLOBE US Student Research Symposium GLOBE International Science Symposium |
Expert Validation of Citizen Scientist Identifications | Benin | Kenya | Senegal | Madagascar |
---|---|---|---|---|
Correct Identifications | ||||
Not Anopheles: Present siphon identified correctly | 8 | 38 | 192 | 4 |
Anopheles: Absent siphon identified correctly | 4 | 2 | 23 | 1 |
Incorrect Identifications | ||||
Siphon identified as present, but is absent | 1 | 65 | ||
Siphon described as absent, but is present | 3 | 236 | ||
Pupa misidentified as Anopheles larva | 2 | 22 | ||
Identified as Anopheles, but photo quality is insufficient to confirm (blurry, bad angle, etc.) | 2 | 93 | ||
Specimen is misidentified as a mosquito larva | 2 | 1 | ||
Total identified specimens from containers/total | 22/233 | 40/67 | 632/2211 | 5/6 |
% Accuracy based on voucher photos | 55% | 100% | 34% | 100% |
% Specimens with attempted identification | 9% | 60% | 29% | 91% |
Effective Strategies for School-Based Citizen Science Programs | Examples from Mosquito Habitat Mapper Programming | |
---|---|---|
(1) | Consider program participants: student participants are different from adults in a citizen science program. Developing programs that account for student motivation, scientific curiosity, and capabilities are crucial for a program’s success. | Student motivations: desire to conduct locally meaningful work; contribute to community health; earn recognition from other students, teachers, and community; and obtain data for science fair projects. Fulfills service learning and environmental justice project requirements in some district curricula. |
(2) | Support current school curriculum and initiatives: citizen science projects that align well with teachers’ lesson plans and standards make implementing a citizen science project less demanding. | Mosquito Habitat Mapper educational resources are designed as activities that support educational objectives of US Next Generation Science Standards. |
(3) | Create simple and clear protocols: students focus on following procedures. Protocols should be explained plainly and be easy to follow. In addition, data collection should be accessible. | The Mosquito Habitat Mapper app tool is easy to use and students can participate in those data collection tasks that are appropriate to their interest and skill levels. Beta tested with youth (13–17 years old). |
(4) | Take advantage of appropriate technology: using technology that is portable, such as smartphones, can aid implementation of citizen science projects. This also supports rapid data collection. | The GLOBE Observer mobile app work on older devices and offline. Currently available in 14 languages. |
(5) | Maintain open communities and feedback with students and teachers: students should understand their role as citizen scientists. Students and teachers need to know why they are collecting data and why they are doing so in a specific way. Discussing the impact of their work and how long the data will be available for analysis is also valuable. | The app’s team function facilitates teacher tracking of student data. Monthly webinars are used to maintain a community of practice among participating educators and students. The webinars also connect citizen scientists with professional scientists who are using the data in their research. |
(6) | Promote community outreach: citizen science is a community-driven scientific initiative. Involving students and their community members enhances scientific confidence and strengthens civic cooperation. | GLOBE Observer connects with both adult and student audiences through libraries, which serve as community science hubs throughout the US, especially in rural and underserved communities. Community partners identify their own data collection and participation goals. |
(7) | Spread knowledge gained through experience and results: publicizing citizen science projects and showing collaborations between experts and non-experts can build the public’s trust in science and combat scientific misinformation. | Coordinated social media campaign, webinars connecting citizen scientists with experts. NASA actively encourages scientific publication with citizen scientists as co-authors (including youth). |
(a) | (b) |
Grade Level | 2022 | 2021 | 2020 | 2019 | 2018 |
---|---|---|---|---|---|
Upper secondary (grades 9–12 US) | 44 | 58 | 26 | 9 | 6 |
Lower secondary (grades 5–8 US) | 3 | 7 | 12 | 8 | 2 |
Upper elementary (grades 3–4 US) | 0 | 1 | 5 | 1 | 0 |
Total submissions, all topics | 220 | 242 | 265 | 238 | 113 |
% IVSS Projects analyzing Mosquito Habitat Mapper data | 21% | 27% | 16% | 8% | 7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Low, R.D.; Schwerin, T.G.; Boger, R.A.; Soeffing, C.; Nelson, P.V.; Bartlett, D.; Ingle, P.; Kimura, M.; Clark, A. Building International Capacity for Citizen Scientist Engagement in Mosquito Surveillance and Mitigation: The GLOBE Program’s GLOBE Observer Mosquito Habitat Mapper. Insects 2022, 13, 624. https://doi.org/10.3390/insects13070624
Low RD, Schwerin TG, Boger RA, Soeffing C, Nelson PV, Bartlett D, Ingle P, Kimura M, Clark A. Building International Capacity for Citizen Scientist Engagement in Mosquito Surveillance and Mitigation: The GLOBE Program’s GLOBE Observer Mosquito Habitat Mapper. Insects. 2022; 13(7):624. https://doi.org/10.3390/insects13070624
Chicago/Turabian StyleLow, Russanne D., Theresa G. Schwerin, Rebecca A. Boger, Cassie Soeffing, Peder V. Nelson, Dan Bartlett, Prachi Ingle, Matteo Kimura, and Andrew Clark. 2022. "Building International Capacity for Citizen Scientist Engagement in Mosquito Surveillance and Mitigation: The GLOBE Program’s GLOBE Observer Mosquito Habitat Mapper" Insects 13, no. 7: 624. https://doi.org/10.3390/insects13070624
APA StyleLow, R. D., Schwerin, T. G., Boger, R. A., Soeffing, C., Nelson, P. V., Bartlett, D., Ingle, P., Kimura, M., & Clark, A. (2022). Building International Capacity for Citizen Scientist Engagement in Mosquito Surveillance and Mitigation: The GLOBE Program’s GLOBE Observer Mosquito Habitat Mapper. Insects, 13(7), 624. https://doi.org/10.3390/insects13070624