Efficacy of Biopesticides in the Management of the Cotton Bollworm, Helicoverpa armigera (Noctuidae), under Field Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Trial Site, Layout, and Planting
2.2. Treatments and Application
2.3. Data Collection
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haider, N.; Ahmed, K.S.; Haidary, A.A.; Afzal, M.; Majeed, M.Z. Field evaluation of different insecticides against spotted bollworm (Earias spp.) and comparative yield assessment for BT and non-Bt cotton. J. Entomol. Zool. Stud. 2015, 4, 33–35. [Google Scholar]
- Hussain, M.; Noureen, N.; Fatima, S.; Ghazanfar, M. Cotton mealybug management: A review. Middle-East J. Sci. Res. 2016, 24, 2424–2430. [Google Scholar]
- Ma, H.; Meng, C.; Zhang, K.; Wang, K.; Fan, H.; Li, Y. Study on physiological mechanism of using cottonseed meal to improve salt–alkali tolerance of cotton. J. Plant Growth Regul. 2020, 40, 126. [Google Scholar] [CrossRef]
- Townsend, T. Cotton and Economic Development. Cotton Analytics. 2017. Available online: http://cottonanalytics.com/category/cotton-and-economic-development/ (accessed on 25 June 2021).
- Dhaliwal, J.S. Natural fibers: Applications. In Generation, Development and Modifications of Natural Fibers; Abbas, M., Jeon, H., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- OECD; FAO. OECD FAO Agricultural Outlook 2019–2028. 2019. Available online: https://doi.org/10.1787/agr_outlook-2019-en (accessed on 25 June 2021). [CrossRef]
- Vitale, J. Economic Importance of Cotton in Burkina Faso. Food and Agriculture Organization of the United Nations. 2018. Available online: http://www.fao.org/3/i8330en/I8330EN.pdf (accessed on 2 August 2021).
- Amanet, K.; Chiamaka, E.O.; Quansah, G.W.; Mubeen, M.; Farid, H.U.; Akram, R.; Nasim, W. Cotton production in Africa. In Cotton Production; Jabran, K., Chauhan, B.S., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 359–369. [Google Scholar] [CrossRef]
- IPBO. Cotton in Africa. 2017. Available online: http://www.vib.be/en/about-vib/Documents/vib_fact_CottonAfrican_EN_2017_0901_LR_FINAL.pdf (accessed on 25 June 2021).
- Van Jaarsveld, M.J. Geographic Susceptibility of Helicoverpa armigera (Lepidoptera: Noctuidae) to Insecticidal Proteins in Bt-cotton in South Africa. Master’s Thesis, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa, 2003. [Google Scholar]
- Louw, M. Cotton Farming in South Africa. Field Crops in South Africa. 2020. Available online: http://southafrica.co.za/cotton-farming-in-south-africa.html (accessed on 17 September 2021).
- Cherry, A.; Cock, M.; Van den Berg, H.; Kfir, R. Biological control of Helicoverpa armigera in Africa. In Biological Control in IPM Systems in Africa; Neuenschwander, P., Borgemeister, C., Langewald, J., Eds.; CABI Publishing: Wallingford, UK, 2003; pp. 329–346. [Google Scholar]
- Moran, V.C. The phytophagous insects and mites of cultivated plants in South Africa: Patterns and pest status. J. Appl. Ecol. 1983, 20, 439–450. [Google Scholar] [CrossRef]
- Bell, M.A.; McGeoch, M.A. An evaluation of the pest status and research conducted on phytophagous Lepidoptera on cultivated plants in South Africa. Afr. Entomol. 1996, 4, 161–170. [Google Scholar]
- Moore, S.; Kirkman, W. HELICOVIRTM: A virus for the biological control of bollworm. SA Fruit J. 2010, 9, 63–67. [Google Scholar]
- Greathead, D.J.; Girling, D.J. Distribution and economic importance of Heliothis and of their natural enemies and host plants in southern and eastern Africa. In Proceedings of the Workshop on Biological Control of Heliothis: Increasing the Effectiveness of Natural Enemies, New Delhi, India, 11–15 November 1985; King, E.G., Jackson, R.D., Eds.; [Google Scholar]
- Tay, W.T.; Soria, M.F.; Walsh, T.; Thomazoni, D.; Silvie, P.; Behere, G.T.; Anderson, C.; Downes, S. A brave new world for an old-world pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS ONE 2013, 8, e80134. [Google Scholar] [CrossRef] [Green Version]
- Djihinto, A.C.; Katary, A.; Djaboutou, M.C.; Prudent, P.; Menozzi, P.; Atachi, P. Variation in biological parameters of cypermethrin resistant and susceptible strains of Helicoverpa armigera from Benin Republic, West Africa. Int. J. Biol. Chem. Sci. 2012, 6, 940. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Liu, H.; Mo, B.C.; Hu, J.; Liu, S.Q.; Bustos-Segura, C.; Xue, J.; Wang, X. Growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae) larvae infected by Heliothis virescens ascovirus 3i (HvAV-3i). Front. Physiol. 2020, 5, 93. [Google Scholar] [CrossRef]
- Cunningham, J.P.; Zalucki, M.P. Understanding heliothine (Lepidoptera: Heliothinae) pests: What is a host plant? J. Econ. Entomol. 2014, 107, 881–896. [Google Scholar] [CrossRef]
- Gu, S.; Han, P.; Ye, Z.; Perkins, L.E.; Li, J.; Wang, H.; Zalucki, M.P.; Lu, Z. Climate change favours a destructive agricultural pest in temperate regions: Late spring cold matters. J. Pest Sci. 2018, 91, 1191–1198. [Google Scholar] [CrossRef]
- Achaleke, J.; Brevault, T.; Blondin, L.; Vassal, J.M. Helicoverpa armigera: Truly Polyphagous. Available online: https://agritrop.cirad.fr/549357/1/document_549357.pdf (accessed on 2 February 2021).
- Brévault, T.; Nibouche, S.; Achaleke, J.; Carrière, Y. Assessing the role of non-cotton refuges in delaying Helicoverpa armigera resistance to Bt cotton in West Africa. Evol. Appl. 2011, 5, 53–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noor-ul-Ane, M.; Kim, D.; Zalucki, M.P. Fecundity and egg laying in Helicoverpa armigera (Lepidoptera: Noctuidae): Model development and field validation. J. Econ. Entomol. 2018, 111, 2208–2216. [Google Scholar] [CrossRef]
- Fitt, G.P. The ecology of Heliothis species in relation to agroecosystems. Annu. Rev. Entomol. 1989, 34, 17–52. [Google Scholar] [CrossRef]
- Chaturvedi, I. Status of insecticide resistance in the cotton bollworm, Helicoverpa armigera (Hubner). J. Cent. Eur. Agric. 2007, 8, 171–182. [Google Scholar]
- Pretorius, J.D. Status of Resistance of Helicoverpa armigera (Lepidoptera: Noctuidae) and Diparopsis castanea (Lepidoptera: Noctuidae) to Bt Cotton in South Africa. Master’s Thesis, North-West University, Potchefstroom, South Africa, 2011. [Google Scholar]
- Yang, Y.; Li, Y.; Wu, Y. Current status of insecticide resistance in Helicoverpa armigera after 15 years of Bt cotton planting in China. J. Econ. Entomol. 2013, 106, 375–381. [Google Scholar] [CrossRef]
- Hussain, D.; Saleem, M.; Ghouse, G.; Abbas, M. Insecticide resistance in field populations of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). J. Entomol. Sci. 2015, 50, 119–128. [Google Scholar] [CrossRef]
- Tossou, E.; Tepa-Yotto, G.; Kpindou, O.K.; Sandeu, R.; Datinon, B.; Zeukeng, F.; Akoton, R.; Tchigossou, G.M.; Djègbè, I.; Vontas, J.; et al. Susceptibility profiles of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) to deltamethrin reveal a contrast between the Northern and the Southern Benin. Int. J. Environ. Res. Public Health 2019, 16, 1882. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Bouwer, G. Toxicity of Bacillus thuringiensis Cry proteins to Helicoverpa armigera (Lepidoptera: Noctuidae) in South Africa. J. Invertebr. Pathol. 2012, 109, 110–116. [Google Scholar] [CrossRef]
- Joubert, R. Biological Bollworm Control. Farmers Weekly: 22 May 2012. Available online: https://www.farmersweekly.co.za/agri-technology/farming-for-tomorrow/biological-bollworm-control/ (accessed on 26 January 2021).
- Mensah, R.K. Development of an integrated pest management programme for cotton. Part 1: Establishing and utilizing natural enemies. Int. J. Pest Manag. 2002, 48, 87–94. [Google Scholar] [CrossRef]
- Safna, M.; Naik, K.V.; Desai, V.S.; Karmarkar, M.S.; Shinde, B.D.; Raut, P.P. Evaluation of the efficacy of some insecticides against fruit borer, Helicoverpa armigera (Hubner) infesting tomato. Int. J. Chem. Stud. 2018, 6, 1158–1163. [Google Scholar]
- Yadav, S.; Dutta, S. Evaluation of organophosphorus pesticide residue in cotton of Tijara Tehsil, Alwar, Rajasthan. Nat. Environ. Pollut. Technol. 2019, 18, 1455–1458. [Google Scholar]
- Martin, T.; Ochou, G.O.; Hala-N’klo, F.; Vassal, J.M.; Vaissayre, M. Pyrethroid resistance in the cotton bollworm, Helicoverpa armigera (Hubner), in West Africa. Pest Manag. Sci. 2000, 56, 549–554. [Google Scholar] [CrossRef]
- Javaid, I.; Uaine, R.N.; Massua, J. The use of insect growth regulators for the control of insect pests of cotton. Int. J. Pest Manag. 1999, 45, 245–247. [Google Scholar] [CrossRef]
- Machado, A.V.A.; Potin, D.M.; Torres, J.B.; Silva Torres, C.S.A. Selective insecticides secure natural enemies action in cotton pest management. Ecotoxicol. Environ. Saf. 2019, 184, 109669. [Google Scholar] [CrossRef]
- Szewczyk, B.; Rabalski, L.; Krol, E.; Sihler, W.; de Souza, M.L. Baculovirus biopesticides-safe alternative to chemical protection of plants. J. Biopestic. 2009, 2, 209–216. [Google Scholar]
- Patel, S.R.; Patel, K.G.; Ghetiya, L.V. Population dynamics of pod borer (Helicoverpa armigera Hubner) infesting chickpea in relation to abiotic factors. Agres–Int. e-J. 2015, 4, 163–170. [Google Scholar]
- James, C. Global Status of Commercialized Biotech/GM Crops: 2016; ISAAA Brief No. 52; ISAAA: Ithaca, NY, USA, 2016. [Google Scholar]
- Rocha-Munive, M.G.; Soberón, M.; Castañeda, S.; Niaves, E.; Scheinvar, E.; Eguiarte, L.E.; Mota-Sánchez, D.; Rosales-Robles, E.; Nava-Camberos, U.; Martínez-Carrillo, J.L.; et al. Evaluation of the impact of genetically modified cotton after 20 years of cultivation in Mexico. Front. Bioeng. Biotechnol. 2018, 6, 82. [Google Scholar] [CrossRef]
- Ahmad, S.; Cheema, H.M.N.; Khan, A.A.; Khan, R.S.A.; Ahmad, J.N. Resistance status of Helicoverpa armigera against Bt cotton in Pakistan. Transgenic Res. 2019, 28, 199–212. [Google Scholar] [CrossRef]
- Zhang, H.N.; Tian, W.; Zhao, J.; Jin, L.; Yang, J.; Liu, C.H.; Yang, Y.; Wu, S.; Wu, K.; Cui, J.; et al. Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. Proc. Natl. Acad. Sci. USA 2012, 109, 10275–10280. [Google Scholar] [CrossRef] [Green Version]
- Maghsoudi, S.; Jalali, E. Noble UV protective agent for Bacillus thuringiensis based on a combination of graphene oxide and olive oil. Sci. Rep. 2017, 7, 11019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilas-Boas, G.T.; Peruca, A.P.S.; Arantes, O.M.N. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Can. J. Microbiol. 2007, 53, 673–687. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Co-Operation and Development. Series on Pesticides No. 448. Report of Workshop on the Regulation of Biopesticides: Registration and Communication Issues. 2009. Available online: http://www.oecd.org/dataoecd/3/Collego55/43056580.pdf (accessed on 5 September 2021).
- Kumar, S.; Singh, A. Biopesticides: Present status and the future prospects. J. Fertil. Pestic. 2015, 6, 100–129. [Google Scholar] [CrossRef]
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef]
- Xing, L.; Yuan, C.; Wang, M.; Lin, Z.; Shen, B.; Hu, Z.; Zou, Z. Dynamics of the interaction between cotton bollworm Helicoverpa armigera and nucleopolyhedrovirus as revealed by integrated transcriptomic and proteomic analyses. Mol. Cell. Proteom. 2017, 16, 1009–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, S. An analysis of the biopesticide market now and where is going. Outlooks Pest Manag. 2015, 26, 203–206. [Google Scholar] [CrossRef]
- Akutse, K.S.; Subramanian, S.; Maniania, N.; Dubois, T.; Ekesi, S. Biopesticide research and product development in Africa for sustainable agriculture and food security–Experiences from the International Centre of Insect Physiology and Ecology (icipe). Front. Sustain. Food Syst. 2020, 4, 563016. [Google Scholar] [CrossRef]
- Hatting, J.L.; Moore, S.D.; Maland, A.P. Microbial control of phytophagous invertebrate pests in South Africa: Current status and future prospects. J. Invertebr. Pathol. 2019, 165, 54–66. [Google Scholar] [CrossRef]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1987–1998. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Zhang, Y.; Wu, S.; Gelbič, I.; Xu, L.; Guan, X. A new formulation of Bacillus thuringiensis: UV protection and sustained release mosquito larvae studies. Sci. Rep. 2016, 6, 39425. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 6th ed.; The Lowa State University: Ames, IA, USA, 1967. [Google Scholar]
- SAS. SAS/STAT User’s Guide; SAS Institute Inc.: Cary, NC, USA, 1999; Volume 8. [Google Scholar]
- Tesfagiorgis, H.B. Studies on the Use of Biocontrol Agents and Soluble Silicon against Powdery Mildew of Zucchini and Zinnia. Ph.D. Thesis, University of KwaZulu-Natal, Durban, South Africa, 2008. [Google Scholar]
- Sharma, G.D.; Devi, N.; Raj, D.; Oberoi, C.K. Field efficacy of different insecticides and bio-pesticides against fruit borer (Helicoverpa armigera) and greenhouse whitefly (Trialeurodes vaporariorum). Himachal J. Agric. Res. 2008, 34, 40–46. [Google Scholar]
- Madumbi Sustainable Agriculture. Bolldex® Product Label. Available online: http://www.madumbi.co.za/pdf/Bolldex/Bolldex%20Label.pdf (accessed on 24 January 2021).
- Khalique, F.; Ahmed, K. Synergistic Interaction between Bacillus thuringiensis (Berliner) and lambda-cyhalothrin (Pyrethroid) against, chickpea pod borer, Helicoverpa armigera (Hübner). Pak. J. Biol. Sci. 2001, 4, 1120–1123. [Google Scholar] [CrossRef] [Green Version]
- ARC (Agricultural Research Council). Management Guide for the Cotton Producer, 2nd ed.; ARC-Institute for Industrial Crops: Rustenburg, South Africa, 2004. [Google Scholar]
- Li, J.; Yan, F.; Coudron, T.A.; Pan, W.; Zhang, X.; Liu, X.; Zhang, Q. Field release of the parasitoid Microplitis mediator (Hymenoptera: Braconidae) for control of Helicoverpa armigera (Lepidoptera: Noctuidae) in cotton fields in Northwestern China’s Xinjiang Province. Environ. Entomol. 2006, 35, 694–699. [Google Scholar] [CrossRef]
- Cole, J.F.H.; Pilling, E.D.; Boykin, R.; Ruberson, J.R. Effects of Karate® insecticide on beneficial arthropods in Bollgard® cotton. In Proceedings of the 1997 Proceedings Beltwide Cotton Conferences, New Orleans, LA, USA, 6–10 January 1997; Dugger, C.P., Richter, D.A., Eds.; Volume 2, pp. 1118–1120. [Google Scholar]
- Kumar, K.R.; Stanley, S. Bio-efficacy of microbial and chemical insecticides on major lepidopterous pests of cotton and their (insect) natural enemies in cotton ecosystem in Tamil Nadu. Resist. Pest Manag. Newsl. 2010, 20, 4–7. [Google Scholar]
- Sinno, M.; Ranesi, M.; Di Lelio, I.; Iacomino, G.; Becchimanzi, A.; Barra, E.; Molisso, D.; Pennacchio, F.; Digilio, M.C.; Vitale, S.; et al. Selection of endophytic Beauveria bassiana as a dual biocontrol agent of tomato pathogens and pests. Pathogens 2021, 10, 1242. [Google Scholar] [CrossRef]
- Lotfy, D.E.; Moustafa, H.Z. Field evaluation of two entomopathogenic fungi; Beauveria bassiana and Metarhizium anisopliae as a biocontrol agent against the spiny bollworm, Earias insulana Boisduval (Lepidoptera: Noctuidae) on cotton plants. Egypt. J. Biol. Pest Control 2021, 31, 78. [Google Scholar] [CrossRef]
- Ali, O.S.M. Effect of Salicylic Acid and Its Mixtures with Three Insecticides on Some Cotton Insect Pests. Ph.D. Thesis, Tanta University, Tanta, Egypt, 2016. [Google Scholar]
Trade Name | Active Ingredient | Formulation | Concentration |
---|---|---|---|
Eco-Bb® | Beauveria bassiana (strain R444) | 2 × 10⁹ spores/gram | 300 g/ha in 1 g/L water |
Bb endophyte | Beauveria bassiana | 2 × 10⁹ spores/gram | 300 g/ha in 1 g/L water |
Bolldex® | Nucleopolyhedrovirus (HearNPV) | 7.5 × 1012 spores/gram | 200 mL/ha in water |
Delfin® | Bacillus thuringiensis subspecies kurstaki (Btk) | 32,000 IU/mg | 1 kg/ha in 25 L/ha water |
Karate® | Lambda-cyhalothrin | 50 g/L | 120 mL/ha in 200 L/ha water |
Treatment | 2017 (kg/ha) * | 2018 (kg/ha) * |
---|---|---|
Eco-Bb® | 3055 ± 139.19 b | 5961 ± 65.07 ab |
Bolldex® | 5987 ± 86.56 a | 6818 ± 95.59 a |
Delfin® | 3523 ± 49.24 b | 5755 ± 109. 21 ab |
Bb endophyte | 3100 ± 66.11 b | 6409 ± 128.93 a |
Karate® | 5133 ± 99.34 ab | 6405 ± 57.64 a |
Untreated control | 4168 ± 143.09 ab | 4673 ± 124.79 b |
LSD (5%) | 2373.8 | 1.6178 |
CV% | 37.94516 | 17.88032 |
p-Value | 0.1216 | 0.1436 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinga, L.N.; Laing, M.D. Efficacy of Biopesticides in the Management of the Cotton Bollworm, Helicoverpa armigera (Noctuidae), under Field Conditions. Insects 2022, 13, 673. https://doi.org/10.3390/insects13080673
Malinga LN, Laing MD. Efficacy of Biopesticides in the Management of the Cotton Bollworm, Helicoverpa armigera (Noctuidae), under Field Conditions. Insects. 2022; 13(8):673. https://doi.org/10.3390/insects13080673
Chicago/Turabian StyleMalinga, Lawrence N., and Mark D. Laing. 2022. "Efficacy of Biopesticides in the Management of the Cotton Bollworm, Helicoverpa armigera (Noctuidae), under Field Conditions" Insects 13, no. 8: 673. https://doi.org/10.3390/insects13080673
APA StyleMalinga, L. N., & Laing, M. D. (2022). Efficacy of Biopesticides in the Management of the Cotton Bollworm, Helicoverpa armigera (Noctuidae), under Field Conditions. Insects, 13(8), 673. https://doi.org/10.3390/insects13080673