Constructing an Ensemble Model and Niche Comparison for the Management Planning of Eucalyptus Longhorned Borer Phoracantha semipunctata under Climate Change
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Species Occurrence Data
2.2. Environmental Data
2.3. Modeling Approach
2.4. Niche Measurement
3. Results
3.1. Model Performance
3.2. Potential Geographical Distribution under Near-Current and Future Climates
3.3. Changes in the Potential Geographical Distribution
3.4. Distribution Centroids under Near-Current and Future Climates
3.5. Environmental Variables Importance and Response Curve
3.6. Environmental Variables Importance and Response Curve
3.7. Environmental Variables Importance and Response Curve
4. Discussion
4.1. Model Prediction Significance
4.2. Suitable Environmental Conditions
4.3. Niche Dynamic and Prospective Distribution Changes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boyd, I.L.; Freer-Smith, P.H.; Gilligan, C.A.; Godfray, H.C.J. The consequence of tree pests and diseases for ecosystem services. Science 2013, 342, 1235773. [Google Scholar] [CrossRef]
- Morin, R.S.; Liebhold, A.M. Invasions by two non-native insects alter regional forest species composition and successional trajectories. For. Ecol. Manag. 2015, 341, 67–74. [Google Scholar] [CrossRef]
- Lovett, G.M.; Weiss, M.; Liebhold, A.M.; Holmes, T.P.; Leung, B.; Lambert, K.F.; Orwig, D.A.; Campbell, F.T.; Rosenthal, J.; McCullough, D.G.; et al. Nonnative forest insects and pathogens in the United States: Impacts and policy options. Ecol. Appl. 2016, 26, 1437–1455. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Liebhold, A.M. Ecology of forest insect invasions. Biol. Invasions 2017, 19, 3141–3159. [Google Scholar] [CrossRef]
- Venette, R.C. Climate analyses to assess risks from invasive forest insects: Simple matching to advanced models. Curr. For. Rep. 2017, 3, 255–268. [Google Scholar] [CrossRef]
- Natural Resources Canada. About Forest Invasive Alien Species (FIAS). 2015. Available online: https://www.exoticpests.gc.ca/definition (accessed on 22 November 2022).
- Song, Y.; Wang, C.; Pan, X.; Cao, C. List and analysis of forestry invasive alien insects in China. Plant Quar. 2022, 36, 1–12. [Google Scholar]
- Aukema, J.E.; Leung, B.; Kovacs, K.; Chivers, C.; Britton, K.O.; Englin, J.; Frankel, S.J.; Haight, R.G.; Holmes, T.P.; Liebhold, A.M.; et al. Economic Impacts of Non-Native Forest Insects in the Continental United States. PLoS ONE 2011, 6, e24587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, R.; Eyre, D.; Brunel, S.; Dupin, M.; Reynaud, P.; Jarosik, V. Mapping endangered areas for pest risk analysis. In Pest Risk Modelling and Mapping for Invasive Alien Species; Venette, R.C., Ed.; CABI Publishing: Wallingford, CT, USA, 2015; pp. 18–34. [Google Scholar]
- Barzman, M.; Lamichhane, J.R.; Booij, K.; Boonekamp, P.; Desneux, N.; Huber, L.; Kudsk, P.; Langrell, S.R.H.; Ratnadass, A.; Ricci, P.; et al. Research and development priorities in the face of climate change and rapidly evolving pests. In Sustainable Agriculture Reviews; Springer: Cham, Switzerland, 2015; Volume 17, pp. 1–27. [Google Scholar]
- Abellán, P.; Tella, J.L.; Carrete, M.; Cardador, L.; Anadón, J.D. Climate matching drives spread rate but not establishment success in recent unintentional bird introductions. Proc. Natl. Acad. Sci. USA 2017, 114, 9385–9390. [Google Scholar] [CrossRef] [Green Version]
- Atwater, D.Z.; Ervine, C.; Barney, J.N. Climatic niche shifts are common in introduced plants. Nat. Ecol. Evol. 2018, 2, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackburn, T.M.; Pyšek, P.; Bacher, S.; Carlton, J.T.; Duncan, R.P.; Jarošík, V.; Wilson, J.R.U.; Richardson, D.M. A proposed unified framework for biological invasions. Trends Ecol. Evol. 2011, 26, 333–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, E.A.J. Monograph of the Immature Stages of Australasian Timber Beetles (Cerambycidae); Trustees of the British Museum, Ed.; British Museum (Natural History): London, UK, 1963; p. 235. [Google Scholar]
- Hanks, L.M.; Paine, T.D.; Millar, J.G.; Campbell, C.D.; Schuch, U.K. Water relations of host trees and resistance to the phloem-boring beetle Phoracantha semipunctata F. (Coleoptera: Cerambycidae). Oecologia 1999, 119, 400–407. [Google Scholar] [CrossRef]
- Cadahia, D. The importance of insect pests of eucalyptus in the Mediterranean Region. Bull. OEPP 1986, 16, 265–283. [Google Scholar] [CrossRef]
- Hanks, L.M.; Millar, J.G.; Paine, T.D. Dispersal of the eucalyptus longhorned borer (Coleoptera: Cerambycidae) in urban landscapes. Environ. Entomol. 1998, 27, 1418–1424. [Google Scholar] [CrossRef] [Green Version]
- CABI. Phoracantha semipunctata (eucalyptus longhorned borer); CABI Compendium: Wallingford, UK, 2022. [Google Scholar] [CrossRef]
- El-Yousfi, M. Phoracantha semipunctata au Maroc. Ecologie et Méthodes de Lutte. Note Technique de la Division de Recherches et d’Experimentation Forestières. Dir. Eaux Forêts Rabat Moroc. 1982, 12, 167–170. [Google Scholar]
- Tirado, L.G. Phoracantha semipunctata in south-western Spain: Control and damage. Bull. OEPP 1986, 16, 289–292. [Google Scholar] [CrossRef]
- EPPO. Data sheets on quarantine organisms. EPPO Bull. 1983, 13, 1–14. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Kearney, M.; Porter, W. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 2009, 12, 334–350. [Google Scholar] [CrossRef]
- Lantschner, M.V.; Vega, G.; Corley, J.C. Predicting the distribution of harmful species and their natural enemies in agricultural, livestock and forestry systems: An overview. Int. J. Pest Manag. 2019, 65, 190–206. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Araújo, M.B.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef]
- Dormann, C.F.; Calabrese, J.M.; Guillera-Arroita, G.; Matechou, E.; Bahn, V.; Bartoń, F.; Hartig, F. Model averaging in ecology: A review of Bayesian, information-theoretic and tactical approaches. Ecol. Monogr. 2018, 88, 485–504. [Google Scholar] [CrossRef] [Green Version]
- GBIF.org, GBIF Occurrence Download. Available online: https://www.gbif.org/occurrence/download/0166104-220831081235567 (accessed on 15 November 2022).
- Mendel, Z. Seasonal development of the eucalypt borer, Phoracantha semipunctata, In Israel. Phytoparasitica 1985, 13, 85–93. [Google Scholar] [CrossRef]
- Paine, T.; Millar, J.; Hanks, L. Integrated program protects trees from eucalyptus longhorned borer. Hilgardia 1995, 49, 34–37. [Google Scholar] [CrossRef] [Green Version]
- Dhahri, S.; Lieutier, F.; Charfi, F.C.; Mohamed, L.B.J. Distribution, preference and performance of Phoracantha recurva and Phoracantha semipunctata (Coleoptera: Cerambycidae) on various Eucalyptus species in Tunisia. J. Zool. 2016, XCIX, 83–95. [Google Scholar]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A.; NCEAS Predicting Species Distributions Working Group. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Di Cola, V.; Broennimann, O.; Petitpierre, B.; Breiner, F.T.; D’Amen, M.; Randin, C.; Engler, R.; Pottier, J.; Pio, D.; Dubuis, A.; et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 2017, 40, 774–787. [Google Scholar] [CrossRef]
- Schoener, T.W. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 1970, 51, 408–418. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 2008, 62, 2868–2883. [Google Scholar] [CrossRef]
- Aalto, J.; Luoto, M. Integrating climate and local factors for geomorphological distribution models. Earth Surf. Process. Landf. 2014, 39, 1729–1740. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, X.; Wei, H.; Wang, D.; Chen, R.; Wang, L.; Gu, W. Predicting the invasive trend of exotic plants in China based on the ensemble model under climate change: A case for three invasive plants of Asteraceae. Sci. Total Environ. 2021, 756, 143841. [Google Scholar] [CrossRef]
- Herrera, C.; Jurado-Rivera, J.A.; Leza, M. Ensemble of small models as a tool for alien invasive species management planning: Evaluation of Vespa Velutina (Hymenoptera: Vespidae) under Mediterranean island conditions. J. Pest Sci. 2022, 1–13. [Google Scholar] [CrossRef]
- Dong, X.H.; Ju, T.; Grenouillet, G.; Laffaille, P.; Lek, S.; Liu, J. Spatial pattern and determinants of global invasion risk of an invasive species, sharpbelly Hemiculter leucisculus (Basilesky, 1855). Sci. Total Environ. 2020, 711, 134661. [Google Scholar] [CrossRef]
- Tabor, J.A.; Koch, J.B. Ensemble models predict invasive bee habitat suitability will expand under future climate scenarios in Hawai’i. Insects 2021, 12, 443. [Google Scholar] [CrossRef]
- Mech, A.M.; Tobin, P.C.; Teskey, R.O.; Rhea, J.R.; Gand, H.I. Increases in summer temperatures decrease the survival of an invasive forest insect. Biol. Invasions 2018, 20, 365–374. [Google Scholar] [CrossRef]
- Pureswaran, D.S.; Roques, A.; Battisti, A. Forest Insects and Climate Change. Curr. For. Rep. 2018, 4, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Tirado, L.G. Life table for Phoracantha semipunctata Fab. (Coleoptera, Cerambycidae). Perforator of eucalyptus in the south-east of Spain. Bol. Sanid. Veg. Plagas 1987, 13, 283–301. [Google Scholar]
- González-Moreno, P.; Diez, J.M.; Ibáñez, I.; Font, X.; Vilà, M. Plant invasions are context-dependent: Multiscale effects of climate, human activity and habitat. Divers. Distrib. 2014, 20, 720–731. [Google Scholar] [CrossRef] [Green Version]
- Chapman, D.S.; Gunn, I.D.M.; Pringle, H.E.K.; Siriwardena, G.M.; Taylor, P.; Thackeray, S.J.; Willby, N.J.; Carvalho, L. Invasion of freshwater ecosystems is promoted by network connectivity to hotspots of human activity. Glob. Ecol. Biogeogr. 2020, 29, 645–655. [Google Scholar] [CrossRef]
- Luo, Z.; Mowery, M.A.; Cheng, X.; Yang, Q.; Hu, J.; Andrade, M.C.B. Realized niche shift of an invasive widow spider: Drivers and impacts of human activities. Front. Zool. 2022, 19, 25. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, J.W. Eucalypt plantations. New For. 1999, 17, 37–52. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberón, J.; Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 1999, 285, 1265–1267. [Google Scholar] [CrossRef]
- Sales, L.P.; Ribeiro, B.R.; Hayward, M.W.; Paglia, A.; Passamani, M.; Loyola, R. Niche conservatism and the invasive potential of the wild boar. J. Anim. Ecol. 2017, 86, 1214–1223. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wolter, C.; Xian, W.; Jeschke, J.M. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. USA 2020, 117, 23643–23651. [Google Scholar] [CrossRef]
- El-Yousfi, M. The principles of control of Phoracantha semipunctata Fabr. Bol. Sanid. Veg. Plagas 1989, 15, 129–137. [Google Scholar]
- Fraval, A.; Haddan, M. Platystasius transversus (Hym: Platygasteridae) egg parasitoid of Phoracantha semipunctata (Col.: Cerambycidae), in Morocco. Entomophaga 1988, 33, 381–382. [Google Scholar] [CrossRef]
- Paine, T.D.; Millar, J.G. Insect pests of eucalypts in California: Implications of managing invasive species. Bull. Entomol. Res. 2002, 92, 147–152. [Google Scholar] [CrossRef]
- Ji, W.; Han, K.; Lu, Y.; Wei, J. Predicting the potential distribution of the vine mealybug, Planococcus ficus under climate change by MaxEnt. Crop Prot. 2020, 137, 105268. [Google Scholar] [CrossRef]
- Ramasamy, M.; Das, B.; Ramesh, R. Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections. J. Pest Sci. 2021, 95, 841–854. [Google Scholar] [CrossRef]
- Garrett, K.A. Big data insights into pest spread. Nat. Clim. Chang. 2013, 3, 955–957. [Google Scholar] [CrossRef]
- Santana, P.A., Jr.; Kumar, L.; Da Silva, R.S.; Pereira, J.L.; Picanço, M.C. Assessing the impact of climate change on the worldwide distribution of Dalbulus maidis (DeLong) using MaxEnt. Pest Manag. Sci. 2019, 75, 2706–2715. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Xian, X.; Liang, T.; Wan, F.; Shi, J.; Liu, W. Constructing an Ensemble Model and Niche Comparison for the Management Planning of Eucalyptus Longhorned Borer Phoracantha semipunctata under Climate Change. Insects 2023, 14, 84. https://doi.org/10.3390/insects14010084
Zhao H, Xian X, Liang T, Wan F, Shi J, Liu W. Constructing an Ensemble Model and Niche Comparison for the Management Planning of Eucalyptus Longhorned Borer Phoracantha semipunctata under Climate Change. Insects. 2023; 14(1):84. https://doi.org/10.3390/insects14010084
Chicago/Turabian StyleZhao, Haoxiang, Xiaoqing Xian, Te Liang, Fanghao Wan, Juan Shi, and Wanxue Liu. 2023. "Constructing an Ensemble Model and Niche Comparison for the Management Planning of Eucalyptus Longhorned Borer Phoracantha semipunctata under Climate Change" Insects 14, no. 1: 84. https://doi.org/10.3390/insects14010084
APA StyleZhao, H., Xian, X., Liang, T., Wan, F., Shi, J., & Liu, W. (2023). Constructing an Ensemble Model and Niche Comparison for the Management Planning of Eucalyptus Longhorned Borer Phoracantha semipunctata under Climate Change. Insects, 14(1), 84. https://doi.org/10.3390/insects14010084