Cas9-Mediated Gene Editing Using Receptor-Mediated Ovary Transduction of Cargo (ReMOT) Control in Bombyx mori
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. RNA Isolation and cDNA Synthesis
2.3. Plasmid Construction
2.4. Protein Expression and Purification
2.5. Guide RNA Generations
2.6. Female Pupae Injection
2.7. Frozen Section of Ovarian Tissue
2.8. ReMOT Control Mutation Analysis
2.9. Heritability Crosses
3. Results
3.1. Identification of the BmOTP Ovary-Targeting Ligand
3.2. Gene Editing by ReMOT Control
3.3. Heritability of Generated Mutations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Triant, D.A.; Cinel, S.D.; Kawahara, A.Y. Lepidoptera Genomes: Current Knowledge, Gaps and Future Directions. Curr. Opin. Insect Sci. 2018, 25, 99–105. [Google Scholar] [CrossRef]
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Sousa-Silva, J.C.; Paula-Moraes, S.V.; Peterson, J.A.; Hunt, T.E. Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef]
- Tay, W.T.; Meagher, R.L.; Czepak, C.; Groot, A.T. Spodoptera frugiperda: Ecology, Evolution, and Management Options of an Invasive Species. Annu. Rev. Entomol. 2023, 68, 299–317. [Google Scholar] [CrossRef]
- Tay, W.T.; Soria, M.F.; Walsh, T.; Thomazoni, D.; Silvie, P.; Behere, G.T.; Anderson, C.; Downes, S. A Brave New World for an Old World Pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS ONE 2013, 8, e80134. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, L.; Liu, B.; Gao, B.; Huang, C.; Zhang, J.; Jin, M.; Wang, H.; Peng, Y.; Rice, A.; et al. Genomic Features of the Polyphagous Cotton Leafworm Spodoptera littoralis. BMC Genom. 2022, 23, 353. [Google Scholar] [CrossRef]
- Takasu, Y.; Sajwan, S.; Daimon, T.; Osanai-Futahashi, M.; Uchino, K.; Sezutsu, H.; Tamura, T.; Zurovec, M. Efficient TALEN Construction for Bombyx mori Gene Targeting. PLoS ONE 2013, 8, e73458. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, S.; Wang, F.; Liu, Y.; Liu, Y.; Xu, H.; Liu, C.; Lin, Y.; Zhao, P.; Xia, Q. Highly Efficient and Specific Genome Editing in Silkworm Using Custom TALENs. PLoS ONE 2012, 7, e45035. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Butler, C.; Yamamoto, A.; Patil, A.A.; Lloyd, A.L.; Scott, M.J. CRISPR/Cas9-Based Split Homing Gene Drive Targeting Doublesex for Population Suppression of the Global Fruit Pest Drosophila Suzukii. Proc. Natl. Acad. Sci. USA 2023, 120, e2301525120. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Xu, J.; Zeng, B.; Ling, L.; You, L.; Chen, Y.; Huang, Y.; Tan, A. The CRISPR/Cas System Mediates Efficient Genome Engineering in Bombyx mori. Cell Res. 2013, 23, 1414–1416. [Google Scholar] [CrossRef]
- Zhu, G.-H.; Chereddy, S.C.R.R.; Howell, J.L.; Palli, S.R. Genome Editing in the Fall Armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 Method for Identification of Knockouts in One Generation. Insect Biochem. Mol. Biol. 2020, 122, 103373. [Google Scholar] [CrossRef]
- Bi, H.-L.; Xu, J.; He, L.; Zhang, Y.; Li, K.; Huang, Y.-P. CRISPR/Cas9-Mediated ebony Knockout Results in Puparium Melanism in Spodoptera litura. Insect Sci. 2019, 26, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Reichelt, M.; Heckel, D.G. Functional Analysis of the ABCs of Eye Color in Helicoverpa armigera with CRISPR/Cas9-Induced Mutations. Sci. Rep. 2017, 7, 40025. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cao, Y.; Zhan, S.; Tan, A.; Palli, S.R.; Huang, Y. Disruption of Sex-Specific Doublesex Exons Results in Male- and Female-Specific Defects in the Black Cutworm, Agrotis ipsilon. Pest Manag. Sci. 2019, 75, 1697–1706. [Google Scholar] [CrossRef] [PubMed]
- Garczynski, S.F.; Martin, J.A.; Griset, M.; Willett, L.S.; Cooper, W.R.; Swisher, K.D.; Unruh, T.R. CRISPR/Cas9 Editing of the Codling Moth (Lepidoptera: Tortricidae) CpomOR1 Gene Affects Egg Production and Viability. J. Econ. Entomol. 2017, 110, 1847–1855. [Google Scholar] [CrossRef] [PubMed]
- Perry, M.; Kinoshita, M.; Saldi, G.; Huo, L.; Arikawa, K.; Desplan, C. Expanded Color Vision in Butterflies: Molecular Logic behind Three Way Stochastic Choices. Nature 2016, 535, 280–284. [Google Scholar] [CrossRef]
- Li, X.; Fan, D.; Zhang, W.; Liu, G.; Zhang, L.; Zhao, L.; Fang, X.; Chen, L.; Dong, Y.; Chen, Y.; et al. Outbred Genome Sequencing and CRISPR/Cas9 Gene Editing in Butterflies. Nat. Commun. 2015, 6, 8212. [Google Scholar] [CrossRef]
- Chaverra-Rodriguez, D.; Macias, V.M.; Hughes, G.L.; Pujhari, S.; Suzuki, Y.; Peterson, D.R.; Kim, D.; McKeand, S.; Rasgon, J.L. Targeted Delivery of CRISPR-Cas9 Ribonucleoprotein into Arthropod Ovaries for Heritable Germline Gene Editing. Nat. Commun. 2018, 9, 3008. [Google Scholar] [CrossRef]
- Macias, V.M.; McKeand, S.; Chaverra-Rodriguez, D.; Hughes, G.L.; Fazekas, A.; Pujhari, S.; Jasinskiene, N.; James, A.A.; Rasgon, J.L. Cas9-Mediated Gene-Editing in the Malaria Mosquito Anopheles Stephensi by ReMOT Control. G3 2020, 10, 1353–1360. [Google Scholar] [CrossRef]
- Yang, X.; Ling, X.; Sun, Q.; Qiu, P.; Xiang, K.; Hong, J.; He, S.; Chen, J.; Ding, X.; Hu, H.; et al. High-Efficiency Gene Editing in Anopheles sinensis Using ReMOT Control. bioRxiv 2023. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Zhang, H.; Yin, H.; Zhou, D.; Sun, Y.; Ma, L.; Shen, B.; Zhu, C. ReMOT Control Delivery of CRISPR-Cas9 Ribonucleoprotein Complex to Induce Germline Mutagenesis in the Disease Vector Mosquitoes Culex pipiens pallens (Diptera: Culicidae). J. Med. Entomol. 2021, 58, 1202–1209. [Google Scholar] [CrossRef]
- Chaverra-Rodriguez, D.; Dalla Benetta, E.; Heu, C.C.; Rasgon, J.L.; Ferree, P.M.; Akbari, O.S. Germline Mutagenesis of Nasonia vitripennis through Ovarian Delivery of CRISPR-Cas9 Ribonucleoprotein. Insect Mol. Biol. 2020, 29, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Shirai, Y.; Daimon, T. Mutations in Cardinal are Responsible for the Red-1 and Peach Eye Color Mutants of the Red Flour Beetle Tribolium castaneum. Biochem. Biophys. Res. Commun. 2020, 529, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Chaverra-Rodriguez, D.; Bui, M.; Gilleland, C.L.; Rasgon, J.L.; Akbari, O.S. CRISPR-Cas9-Mediated Mutagenesis of the Asian Citrus Psyllid, Diaphorina citri. GEN Biotechnol. 2023, 2, 317–329. [Google Scholar] [CrossRef]
- Sharma, A.; Pham, M.N.; Reyes, J.B.; Chana, R.; Yim, W.C.; Heu, C.C.; Kim, D.; Chaverra-Rodriguez, D.; Rasgon, J.L.; Harrell, R.A.; et al. Cas9-Mediated Gene Editing in the Black-Legged Tick, Ixodes Scapularis, by Embryo Injection and ReMOT Control. iScience 2022, 25, 103781. [Google Scholar] [CrossRef]
- Heu, C.C.; McCullough, F.M.; Luan, J.; Rasgon, J.L. CRISPR-Cas9-Based Genome Editing in the Silverleaf Whitefly (Bemisia tabaci). CRISPR J. 2020, 3, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Takasu, Y.; Kobayashi, I.; Beumer, K.; Uchino, K.; Sezutsu, H.; Sajwan, S.; Carroll, D.; Tamura, T.; Zurovec, M. Targeted Mutagenesis in the Silkworm Bombyx mori Using Zinc Finger Nuclease mRNA Injection. Insect Biochem. Mol. Biol. 2010, 40, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tan, A.; Xu, J.; Li, Z.; Zeng, B.; Ling, L.; You, L.; Chen, Y.; James, A.A.; Huang, Y. Site-Specific, TALENs-Mediated Transformation of Bombyx mori. Insect Biochem. Mol. Biol. 2014, 55, 26–30. [Google Scholar] [CrossRef]
- Yang, C.; Lin, Y.; Shen, G.; Chen, E.; Wang, Y.; Luo, J.; Zhang, H.; Xing, R.; Xia, Q. Female Qualities in Males: Vitellogenin Synthesis Induced by Ovary Transplants into the Male Silkworm, Bombyx mori. Biochem. Biophys. Res. Commun. 2014, 453, 31–36. [Google Scholar] [CrossRef]
- Tamura, T.; Thibert, C.; Royer, C.; Kanda, T.; Eappen, A.; Kamba, M.; Kômoto, N.; Thomas, J.-L.; Mauchamp, B.; Chavancy, G.; et al. Germline Transformation of the Silkworm Bombyx mori L. Using a piggyBac Transposon-Derived Vector. Nat. Biotechnol. 2000, 18, 81–84. [Google Scholar] [CrossRef]
- Nartey, M.A.; Sun, X.; Qin, S.; Hou, C.-X.; Li, M.-W. CRISPR/Cas9-Based Knockout Reveals That the Clock Gene Timeless is Indispensable for Regulating Circadian Behavioral Rhythms in Bombyx mori. Insect Sci. 2021, 28, 1414–1425. [Google Scholar] [CrossRef]
- Bi, H.; Xu, X.; Li, X.; Zhang, Y.; Huang, Y.; Li, K.; Xu, J. CRISPR Disruption of BmOvo Resulted in the Failure of Emergence and Affected the Wing and Gonad Development in the Silkworm Bombyx mori. Insects 2019, 10, 254. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, F.; Guo, K.; Xu, J.; Zhao, P.; Xia, Q. CRISPR/Cas9-Mediated Gene Editing of the Let-7 Seed Sequence Improves Silk Yield in the Silkworm, Bombyx mori. Int. J. Biol. Macromol. 2023, 243, 124793. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-J.; Zhang, S.-S.; Niu, B.-L.; Ji, D.-F.; Liu, X.-J.; Li, M.-W.; Bai, H.; Palli, S.R.; Wang, C.-Z.; Tan, A.-J. A Determining Factor for Insect Feeding Preference in the Silkworm, Bombyx mori. PLoS Biol. 2019, 17, e3000162. [Google Scholar] [CrossRef]
- Zou, Y.; Ye, A.; Liu, S.; Wu, W.; Xu, L.; Dai, F.; Tong, X. Expansion of Targetable Sites for the Ribonucleoprotein-Based CRISPR/Cas9 System in the Silkworm Bombyx mori. BMC Biotechnol. 2021, 21, 54. [Google Scholar] [CrossRef]
- Daimon, T.; Kiuchi, T.; Takasu, Y. Recent Progress in Genome Engineering Techniques in the Silkworm, Bombyx mori. Dev. Growth Differ. 2014, 56, 14–25. [Google Scholar] [CrossRef]
- Hong, J.W.; Jeong, C.Y.; Yu, J.H.; Kim, S.-B.; Kang, S.K.; Kim, S.-W.; Kim, N.-S.; Kim, K.Y.; Park, J.W. Bombyx mori Kynurenine 3-Monooxygenase Gene Editing and Insect Molecular Breeding Using the Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR Associated Protein 9 System. Biotechnol. Prog. 2020, 36, e3054. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-Replace Genome Editing without Double-Strand Breaks or Donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Liu, Y.; Xue, C.; Li, B.; Li, X.; Wang, Y.; Li, J.; Liu, G.; Huang, X.; Cao, X.; et al. An Engineered Prime Editor with Enhanced Editing Efficiency in Plants. Nat. Biotechnol. 2022, 40, 1394–1402. [Google Scholar] [CrossRef]
- Tao, R.; Wang, Y.; Hu, Y.; Jiao, Y.; Zhou, L.; Jiang, L.; Li, L.; He, X.; Li, M.; Yu, Y.; et al. WT-PE: Prime Editing with Nuclease Wild-Type Cas9 Enables Versatile Large-Scale Genome Editing. Signal Transduct. Target. Ther. 2022, 7, 108. [Google Scholar] [CrossRef]
- Chen, P.J.; Hussmann, J.A.; Yan, J.; Knipping, F.; Ravisankar, P.; Chen, P.-F.; Chen, C.; Nelson, J.W.; Newby, G.A.; Sahin, M.; et al. Enhanced Prime Editing Systems by Manipulating Cellular Determinants of Editing Outcomes. Cell 2021, 184, 5635–5652.e29. [Google Scholar] [CrossRef] [PubMed]
- Bosch, J.A.; Birchak, G.; Perrimon, N. Precise Genome Engineering in Drosophila Using Prime Editing. Proc. Natl. Acad. Sci. USA 2021, 118, e2021996118. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-L.; Ling, X.; Sun, Q.; Chen, J.; Xiang, K.; Qiu, P.-P.; Hong, J.-F.; Yan, Z.-T.; Wang, R.; Chen, B.; et al. Construction of Exogenous DNA Delivery System Based on Ovary-Delivering Peptide and Gal4-UAS Binding Property in Anopheles sinensis (Diptera: Culicidae). Acta Entomol. Sin. 2023, 66, 723–735. [Google Scholar] [CrossRef]
BmOTP-Cas9 (μg/μL) | Total sgRNAs (μg/μL) | Chloroquine (mM) | No. of Females Injected (n) | No. of G0 Broods | No. of G0 Broods with Mutants | G0 Mutant Broods/G0 Broods (%) |
---|---|---|---|---|---|---|
0.1 | 0.05 | 20 | 35 | 33 | 0 | 0 |
0.5 | 0.25 | 20 | 55 | 51 | 1 | 1.96 |
1 | 0.5 | 20 | 55 | 49 | 1 | 2.04 |
2 | 1 | 20 | 30 | 26 | 1 | 3.85 |
2 | 1 | 15 | 20 | 16 | 2 | 12.5 |
2 | 1 | 10 | 20 | 18 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Dong, S.; Jiang, X.; Qiao, L.; Chen, J.; Li, T.; Pan, G.; Zhou, Z.; Li, C. Cas9-Mediated Gene Editing Using Receptor-Mediated Ovary Transduction of Cargo (ReMOT) Control in Bombyx mori. Insects 2023, 14, 932. https://doi.org/10.3390/insects14120932
Yu B, Dong S, Jiang X, Qiao L, Chen J, Li T, Pan G, Zhou Z, Li C. Cas9-Mediated Gene Editing Using Receptor-Mediated Ovary Transduction of Cargo (ReMOT) Control in Bombyx mori. Insects. 2023; 14(12):932. https://doi.org/10.3390/insects14120932
Chicago/Turabian StyleYu, Bin, Sichen Dong, Xiaoyu Jiang, Liang Qiao, Jie Chen, Tian Li, Guoqing Pan, Zeyang Zhou, and Chunfeng Li. 2023. "Cas9-Mediated Gene Editing Using Receptor-Mediated Ovary Transduction of Cargo (ReMOT) Control in Bombyx mori" Insects 14, no. 12: 932. https://doi.org/10.3390/insects14120932
APA StyleYu, B., Dong, S., Jiang, X., Qiao, L., Chen, J., Li, T., Pan, G., Zhou, Z., & Li, C. (2023). Cas9-Mediated Gene Editing Using Receptor-Mediated Ovary Transduction of Cargo (ReMOT) Control in Bombyx mori. Insects, 14(12), 932. https://doi.org/10.3390/insects14120932