The Molecular Resistance Mechanisms of European Earwigs from Apple Orchards Subjected to Different Management Strategies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Sampling
2.2. The Cloning of Genes of Interest for Studying Insecticide Resistance
2.3. The Detection of Mutations in the Insecticide Targets
2.4. Quantitative Real-Time PCR
3. Results and Discussion
3.1. Comparing Treatments between Orchards
3.2. The Modification of Insecticide Targets
3.2.1. Acetylcholinesterases, the Target of Carbamates and Organophosphates
3.2.2. Nicotinic Acetylcholine Receptors, the Target of Neonicotinoids and Spinosad
3.2.3. The Voltage-Sensitive Sodium Channel, the Target of Pyrethroids
3.2.4. Other Targets
3.3. The Modification of Expression Levels Associated with Resistance
3.3.1. The Expression of Insecticide Targets
3.3.2. The Expression of Detoxification Enzymes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steiner, H. Die Lebensgemeinschaft des Apfelbaumes. Obstbau 1958, 77, 58–60. [Google Scholar]
- Cross, J.; Fountain, M.; Marko, V.; Nagy, C. Arthropod ecosystem services in apple orchards and their economic benefits. Ecol. Entomol. 2015, 40, 82–96. [Google Scholar] [CrossRef]
- Happe, A.-K.; Alins, G.; Blüthgen, N.; Boreux, V.; Bosch, J.; García, D.; Hambäck, P.A.; Klein, A.-M.; Martínez-Sastre, R.; Miñarro, M.; et al. Predatory arthropods in apple orchards across Europe: Responses to agricultural management, adjacent habitat, landscape composition and country. Agric. Ecosyst. Environ. 2019, 273, 141–150. [Google Scholar] [CrossRef]
- Solomon, M.G.; Cross, J.V.; Fitzgerald, J.D.; Campbell, C.A.M.; Jolly, R.L.; Olszak, R.W.; Niemczyk, E.; Vogt, H. Biocontrol of pests of apples and pears in Northern and Central Europe-3. Predators. Biocontrol Sci. Technol. 2000, 10, 91–128. [Google Scholar] [CrossRef]
- Albayrak, T.; Yorulmaz, S.; Inak, E.; Toprak, U.; Van Leeuwen, T. Pirimicarb resistance and associated mechanisms in field-collected and selected populations of Neoseiulus californicus. Pestic. Biochem. Physiol. 2022, 180, 104984. [Google Scholar] [CrossRef]
- Ffrench-Constant, R.H.; Daborn, P.J.; Le Goff, G. The genetics and genomics of insecticide resistance. Trends Genet. 2004, 20, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Malagnoux, L.; Marliac, G.; Simon, S.; Rault, M.; Capowiez, Y. Management strategies in apple orchards influence earwig community. Chemosphere 2015, 124, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Sauphanor, B.; Simon, S.; Boisneau, C.; Capowiez, Y.; Rieux, R.; Bouvier, J.C.; Defrance, H.; Picard, C.; Toubon, J.F. Protection phytosanitaire et biodiversité en agriculture biologique, le cas des vergers de pommiers. Innov. Agron. 2009, 4, 217–228. [Google Scholar]
- Feyereisen, R.; Dermauw, W.; Van Leeuwen, T. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pestic. Biochem. Physiol. 2015, 121, 61–77. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Chen, A.; Ma, K.; Liang, P.; Liu, Y.; Song, D.; Gao, X. Both point mutations and low expression levels of the nicotinic acetylcholine receptor beta1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China. Pestic. Biochem. Physiol. 2017, 141, 1–8. [Google Scholar] [CrossRef]
- Shan, T.; Zhang, H.; Chen, C.; Chen, A.; Shi, X.; Gao, X. Low expression levels of nicotinic acetylcholine receptor subunits Boalpha1 and Bobeta1 are associated with imidacloprid resistance in Bradysia odoriphaga. Pest. Manag. Sci. 2020, 76, 3038–3045. [Google Scholar] [CrossRef] [PubMed]
- Bass, C.; Puinean, A.M.; Andrews, M.; Cutler, P.; Daniels, M.; Elias, J.; Paul, V.L.; Crossthwaite, A.J.; Denholm, I.; Field, L.M.; et al. Mutation of a nicotinic acetylcholine receptor beta subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neurosci. 2011, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Rinkevich, F.D.; Du, Y.; Dong, K. Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pestic. Biochem. Physiol. 2013, 106, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Yin, C.; Tang, R.; Chen, M.; Wu, Q.; Huang, C.; Qian, W.; Rota-Stabelli, O.; Yang, N.; Wang, S.; et al. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nat. Commun. 2019, 10, 4237. [Google Scholar] [CrossRef] [PubMed]
- Bass, C.; Zimmer, C.T.; Riveron, J.M.; Wilding, C.S.; Wondji, C.S.; Kaussmann, M.; Field, L.M.; Williamson, M.S.; Nauen, R. Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proc. Natl. Acad. Sci. USA 2013, 110, 19460–19465. [Google Scholar] [CrossRef] [PubMed]
- Buxton, J. The Biology of the European Earwig, Forficula auricularia L. with Reference to its Predatory Activities on the Damson-hop Aphid, Phorodon humuli (Schrank). Ph.D. Thesis, University of London, London, UK, 1974. [Google Scholar]
- Lenfant, C.; Lyoussoufi, A.; Chen, X.; D’Acier, F.F.; Sauphanor, B. Potentialités prédatrices de Forficula auricularia sur le psylle du poirier Cacopsylla pyri. Entomol. Exp. Appl. 1994, 73, 51–60. [Google Scholar] [CrossRef]
- Sauphanor, B.; Lenfant, C.; Brunet, E.; D’Acier, F.F.; Lyoussoufi, A.; Rieux, R. Régulation des populations de psylle du poirier, Cacopsylla pyri (L.) par un prédateur généraliste, Forficula auricularia. IOBC/WPRS Bull. 1994, 17, 125–131. [Google Scholar]
- Asgari, A. Untersuchungen über die im Raum Stuttgart-Hohenheim als wichtigste Prädatoren der grünen Apfelblattlaus (Aphidula pomi Deg.) auftretenden Arthropoden. Z. Angew. Zool. 1966, 53, 35–93. [Google Scholar]
- Le Navenant, A.; Siegwart, M.; Maugin, S.; Capowiez, Y.; Rault, M. Metabolic mechanisms and acetylcholinesterase sensitivity involved in tolerance to chlorpyrifos-ethyl in the earwig Forficula auricularia. Chemosphere 2019, 227, 416–424. [Google Scholar] [CrossRef]
- Niedobova, J.; Skalsky, M.; Ourednickova, J.; Michalko, R. Forficula auricularia (Dermaptera) in orchards: Monitoring seasonal activity, the effect of pesticides, and the perception of European fruit growers on its role as a predator or pest. Pest. Manag. Sci. 2021, 77, 1694–1704. [Google Scholar]
- Bhattarai, U.R.; Katuwal, M.; Poulin, R.; Gemmell, N.J.; Dowle, E. Genome assembly and annotation of the European earwig Forficula auricularia (subspecies B). G3 2022, 12, jkac199. [Google Scholar] [CrossRef]
- Kobayashi, S.; Maldonado, J.E.; Gaete, A.; Araya, I.; Aguado-Norese, C.; Cumplido, N.; Diaz, S.; Espinoza, A.; Fernandez, E.; Gajardo, F.; et al. DNA sequencing in the classroom: Complete genome sequence of two earwig (Dermaptera; Insecta) species. Biol. Res. 2023, 56, 6. [Google Scholar] [CrossRef]
- Misof, B.; Liu, S.; Meusemann, K.; Peters, R.S.; Donath, A.; Mayer, C.; Frandsen, P.B.; Ware, J.; Flouri, T.; Beutel, R.G.; et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 2014, 346, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Roulin, A.C.; Wu, M.; Pichon, S.; Arbore, R.; Kuhn-Buhlmann, S.; Kolliker, M.; Walser, J.C. De novo transcriptome hybrid assembly and validation in the European earwig (Dermaptera, Forficula auricularia). PLoS ONE 2014, 9, e94098. [Google Scholar] [CrossRef] [PubMed]
- Weill, M.; Fort, P.; Berthomieu, A.; Dubois, M.P.; Pasteur, N.; Raymond, M. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proc. Biol. Sci. 2002, 269, 2007–2016. [Google Scholar] [CrossRef]
- Vontas, J.G.; Hejazi, M.J.; Hawkes, N.J.; Cosmidis, N.; Loukas, M.; Janes, R.W.; Hemingway, J. Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Mol. Biol. 2002, 11, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.C.; Haymer, D.S.; Wu, W.J.; Feng, H.T. Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochem. Mol. Biol. 2006, 36, 396–402. [Google Scholar] [CrossRef]
- Corringer, P.J.; Le Novere, N.; Changeux, J.P. Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 2000, 40, 431–458. [Google Scholar] [CrossRef]
- Adams, M.D.; Celniker, S.E.; Holt, R.A.; Evans, C.A.; Gocayne, J.D.; Amanatides, P.G.; Scherer, S.E.; Li, P.W.; Hoskins, R.A.; Galle, R.F.; et al. The genome sequence of Drosophila melanogaster. Science 2000, 287, 2185–2195. [Google Scholar] [CrossRef]
- Jones, A.K.; Sattelle, D.B. Diversity of insect nicotinic acetylcholine receptor subunits. Adv. Exp. Med. Biol. 2010, 683, 25–43. [Google Scholar]
- Matsuda, K.; Ihara, M.; Sattelle, D.B. Neonicotinoid Insecticides: Molecular Targets, Resistance, and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Ihara, M.; Buckingham, S.D.; Matsuda, K.; Sattelle, D.B. Modes of action, resistance and toxicity of insecticides targeting nicotinic acetylcholine receptors. Curr. Med. Chem. 2017, 24, 2925–2934. [Google Scholar] [CrossRef] [PubMed]
- Ihara, M.; Okajima, T.; Yamashita, A.; Oda, T.; Asano, T.; Matsui, M.; Sattelle, D.B.; Matsuda, K. Studies on an acetylcholine binding protein identify a basic residue in loop G on the β1 strand as a new structural determinant of neonicotinoid actions. Mol. Pharmacol. 2014, 86, 736–746. [Google Scholar] [CrossRef] [PubMed]
- Ihara, M.; Okajima, T.; Yamashita, A.; Oda, T.; Hirata, K.; Nishiwaki, H.; Morimoto, T.; Akamatsu, M.; Ashikawa, Y.; Kuroda, S.; et al. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin. Invert. Neurosci. 2008, 8, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K.; Kanaoka, S.; Akamatsu, M.; Sattelle, D.B. Diverse actions and target-site selectivity of neonicotinoids: Structural insights. Mol. Pharmacol. 2009, 76, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Talley, T.T.; Harel, M.; Hibbs, R.E.; Radic, Z.; Tomizawa, M.; Casida, J.E.; Taylor, P. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore. Proc. Natl. Acad. Sci. USA 2008, 105, 7606–7611. [Google Scholar] [CrossRef] [PubMed]
- Ihara, M.; Furutani, S.; Shigetou, S.; Shimada, S.; Niki, K.; Komori, Y.; Kamiya, M.; Koizumi, W.; Magara, L.; Hikida, M.; et al. Cofactor-enabled functional expression of fruit fly, honeybee, and bumblebee nicotinic receptors reveals picomolar neonicotinoid actions. Proc. Natl. Acad. Sci. USA 2020, 117, 16283–16291. [Google Scholar] [CrossRef]
- Loughney, K.; Kreber, R.; Ganetzky, B. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell 1989, 58, 1143–1154. [Google Scholar] [CrossRef]
- Williamson, M.S.; Martinez-Torres, D.; Hick, C.A.; Devonshire, A.L. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet. 1996, 252, 51–60. [Google Scholar] [CrossRef]
- Djogbenou, L.; Labbe, P.; Chandre, F.; Pasteur, N.; Weill, M. Ace-1 duplication in Anopheles gambiae: A challenge for malaria control. Malar. J. 2009, 8, 70. [Google Scholar] [CrossRef]
- Kwon, D.H.; Clark, J.M.; Lee, S.H. Extensive gene duplication of acetylcholinesterase associated with organophosphate resistance in the two-spotted spider mite. Insect Mol. Biol. 2010, 19, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Labbe, P.; Berthomieu, A.; Berticat, C.; Alout, H.; Raymond, M.; Lenormand, T.; Weill, M. Independent duplications of the acetylcholinesterase gene conferring insecticide resistance in the mosquito Culex pipiens. Mol. Biol. Evol. 2007, 24, 1056–1067. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.H.; Choi, J.Y.; Je, Y.H.; Lee, S.H. The overexpression of acetylcholinesterase compensates for the reduced catalytic activity caused by resistance-conferring mutations in Tetranychus urticae. Insect Biochem. Mol. Biol. 2012, 42, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Fournier, D.; Mutero, A.; Pralavorio, M.; Bride, J.M. Drosophila acetylcholinesterase: Mechanisms of resistance to organophosphates. Chem. Biol. Interact. 1993, 87, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Mutero, A.; Bride, J.M.; Pralavorio, M.; Fournier, D. Drosophila melanogaster acetylcholinesterase: Identification and expression of two mutations responsible for cold- and heat-sensitive phenotypes. Mol. Gen. Genet. 1994, 243, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Somers, J.; Luong, H.N.B.; Batterham, P.; Perry, T. Deletion of the nicotinic acetylcholine receptor subunit gene Dα1 confers insecticide resistance, but at what cost? Fly 2018, 12, 46–54. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Y.; Yang, Q.; Wang, L.; He, P.; Liu, Z.; Li, Z.; Guo, H.; Fang, J. Resistance to cycloxaprid in Laodelphax striatellus is associated with altered expression of nicotinic acetylcholine receptor subunits. Pest. Manag. Sci. 2018, 74, 837–843. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Zhang, Z.; Wang, L.; Guo, H.; Li, Z.; He, P.; Liu, Z.; Fang, J. Differential expression of P450 genes and nAChR subunits associated with imidacloprid resistance in Laodelphax striatellus (Hemiptera: Delphacidae). J. Econ. Entomol. 2018, 111, 1382–1387. [Google Scholar] [CrossRef]
- Hsu, J.C.; Feng, H.T.; Wu, W.J.; Geib, S.M.; Mao, C.H.; Vontas, J. Truncated transcripts of nicotinic acetylcholine subunit gene Bdα6 are associated with spinosad resistance in Bactrocera dorsalis. Insect Biochem. Mol. Biol. 2012, 42, 806–815. [Google Scholar] [CrossRef]
- Perry, T.; McKenzie, J.A.; Batterham, P. A Dα6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad. Insect Biochem. Mol. Biol. 2007, 37, 184–188. [Google Scholar] [CrossRef]
- Rinkevich, F.D.; Chen, M.; Shelton, A.M.; Scott, J.G. Transcripts of the nicotinic acetylcholine receptor subunit gene Pxylα6 with premature stop codons are associated with spinosad resistance in diamondback moth, Plutella xylostella. Invert. Neurosci. 2010, 10, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Malagnoux, L.; Capowiez, Y.; Rault, M. Impact of insecticide exposure on the predation activity of the European earwig Forficula auricularia. Environ. Sci. Pollut. Res. Int. 2015, 22, 14116–14126. [Google Scholar] [CrossRef] [PubMed]
- Martelli, F.; Hernandes, N.H.; Zuo, Z.; Wang, J.; Wong, C.O.; Karagas, N.E.; Roessner, U.; Rupasinghe, T.; Robin, C.; Venkatachalam, K.; et al. Low doses of the organic insecticide spinosad trigger lysosomal defects, elevated ROS, lipid dysregulation, and neurodegeneration in flies. eLife 2022, 11, 73812. [Google Scholar] [CrossRef]
- Walsh, H.; Govind, A.P.; Mastro, R.; Hoda, J.C.; Bertrand, D.; Vallejo, Y.; Green, W.N. Up-regulation of nicotinic receptors by nicotine varies with receptor subtype. J. Biol. Chem. 2008, 283, 6022–6032. [Google Scholar] [CrossRef]
- Feyereisen, R. Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Mol. Phylogenet Evol. 2020, 143, 106695. [Google Scholar] [CrossRef]
- Qiu, Y.; Tittiger, C.; Wicker-Thomas, C.; Le Goff, G.; Young, S.; Wajnberg, E.; Fricaux, T.; Taquet, N.; Blomquist, G.J.; Feyereisen, R. An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc. Natl. Acad. Sci. USA 2012, 109, 14858–14863. [Google Scholar] [CrossRef]
- Balabanidou, V.; Grigoraki, L.; Vontas, J. Insect cuticle: A critical determinant of insecticide resistance. Curr. Opin. Insect Sci. 2018, 27, 68–74. [Google Scholar] [CrossRef]
- Balabanidou, V.; Kampouraki, A.; MacLean, M.; Blomquist, G.J.; Tittiger, C.; Juarez, M.P.; Mijailovsky, S.J.; Chalepakis, G.; Anthousi, A.; Lynd, A.; et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2016, 113, 9268–9273. [Google Scholar] [CrossRef]
- Yahouedo, G.A.; Chandre, F.; Rossignol, M.; Ginibre, C.; Balabanidou, V.; Mendez, N.G.A.; Pigeon, O.; Vontas, J.; Cornelie, S. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Sci. Rep. 2017, 7, 11091. [Google Scholar] [CrossRef]
- Wang, S.; Li, B.; Zhang, D. NlCYP4G76 and NlCYP4G115 Modulate Susceptibility to Desiccation and Insecticide Penetration Through Affecting Cuticular Hydrocarbon Biosynthesis in Nilaparvata lugens (Hemiptera: Delphacidae). Front. Physiol. 2019, 10, 913. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Z.F.; Yu, Z.; Yu, R.; Ma, E.; Fan, Y.L.; Liu, T.X.; Feyereisen, R.; Zhu, K.Y.; Zhang, J. Both LmCYP4G genes function in decreasing cuticular penetration of insecticides in Locusta migratoria. Pest. Manag. Sci. 2020, 76, 3541–3550. [Google Scholar] [CrossRef] [PubMed]
- Nauen, R.; Bass, C.; Feyereisen, R.; Vontas, J. The Role of Cytochrome P450s in Insect Toxicology and Resistance. Annu. Rev. Entomol. 2022, 67, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Amezian, D.; Nauen, R.; Le Goff, G. Comparative analysis of the detoxification gene inventory of four major Spodoptera pest species in response to xenobiotics. Insect Biochem. Mol. Biol. 2021, 138, 103646. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, S.G.; Wen, Z.; Chiu, T.L.; Schuler, M.A. Helicoverpa zea CYP6B8 and CYP321A1: Different molecular solutions to the problem of metabolizing plant toxins and insecticides. Protein Eng. Des. Sel. 2007, 20, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Traylor, M.J.; Baek, J.M.; Richards, K.E.; Fusetto, R.; Huang, W.; Josh, P.; Chen, Z.; Bollapragada, P.; O’Hair, R.A.J.; Batterham, P.; et al. Recombinant expression and characterization of Lucilia cuprina CYP6G3: Activity and binding properties toward multiple pesticides. Insect Biochem. Mol. Biol. 2017, 90, 14–22. [Google Scholar] [CrossRef]
- Wang, D.; Qiu, X.; Ren, X.; Zhang, W.; Wang, K. Effects of spinosad on Helicoverpa armigera (Lepidoptera: Noctuidae) from China: Tolerance status, synergism and enzymatic responses. Pest. Manag. Sci. 2009, 65, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
- Hojland, D.H.; Jensen, K.M.; Kristensen, M. Expression of xenobiotic metabolizing cytochrome P450 genes in a spinosad-resistant Musca domestica L. strain. PLoS ONE 2014, 9, e103689. [Google Scholar] [CrossRef]
- Oakeshott, J.G.; Johnson, R.M.; Berenbaum, M.R.; Ranson, H.; Cristino, A.S.; Claudianos, C. Metabolic enzymes associated with xenobiotic and chemosensory responses in Nasonia vitripennis. Insect Mol. Biol. 2010, 19 (Suppl. S1), 147–163. [Google Scholar] [CrossRef]
- Field, L.M.; Blackman, R.L.; Tyler-Smith, C.; Devonshire, A.L. Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem. J. 1999, 339 Pt 3, 737–742. [Google Scholar] [CrossRef]
- Field, L.M.; Devonshire, A.L.; Forde, B.G. Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem. J. 1988, 251, 309–312. [Google Scholar] [CrossRef]
- Vontas, J.G.; Small, G.J.; Hemingway, J. Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (Stal). Insect Mol. Biol. 2000, 9, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Killiny, N. RNA interference of two glutathione S-transferase genes, Diaphorina citri DcGSTe2 and DcGSTd1, increases the susceptibility of Asian citrus psyllid (Hemiptera: Liviidae) to the pesticides fenpropathrin and thiamethoxam. Pest. Manag. Sci. 2018, 74, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Liu, J.Y.; Wang, W.; Mota-Sanchez, D.; He, S.; Shi, Y.; Yang, X.Q. Glutathione S-Transferase Genes are Involved in Lambda-Cyhalothrin Resistance in Cydia pomonella via Sequestration. J. Agric. Food Chem. 2022, 70, 2265–2279. [Google Scholar] [CrossRef] [PubMed]
Gene Category | Gene Name | GenBank Accession Number |
---|---|---|
Insecticide target genes | Acetylcholinesterases (Ace) | Ace 1 (MK756004) |
Ace 2 (MK756005) | ||
Glutamate-gated chloride channel (GluCl) | GluCl (MN942030) | |
Nicotinic acetylcholine receptors (nAChR) | nAChR α1(MK756006) | |
nAChR α3 (MK756010) | ||
nAChR β2 (MK756007) | ||
Ryanodine receptor (RyR) | RyR (MN942031) | |
Voltage-sensitive sodium channel (Para) | Para (MN942033) | |
Detoxification genes | Carboxyl/choline esterase clade B | CCE B 1 |
Carboxyl/choline esterase clade E | CCE E (MN942032) | |
Cytochrome P450, CYP4G189 | CYP4G189 (MK756000) | |
Cytochrome P450, CYP6NP1 | CYP6NP1 (MK756003) | |
Cytochrome P450, CYP6NQ1 | CYP6NQ1 (MK756001) | |
Cytochrome P450, CYP6NW1 | CYP6NW1 (MK756002) | |
Glutathione S-transferase delta class | GST D (MK756011) | |
Control genes | Actin | Actin (MK756009) |
Elongation factor 1 (EF1) | EF1 (MK756012) | |
Glyceraldehyde-3-phosphate dehydrogenase | GAPDH (MK756008) |
Treatment Average Per Year over the Last 10 Years (2008–2017) | |||||
---|---|---|---|---|---|
Commercial Product | Active Compound | Chemical Family | ORG | IPM | CONV |
Agrimec | Abamectin | Avermectins | 0 | 1 | 1.3 |
Affirm, proclaim | Emamectin benzoate | ||||
Karaté K, Okapi liquide | Pirimicarb | Carbamates | 0 | 0 | 0.5 |
Coragen | Chlorantraniliprole | Diamides | 0 | 0.6 | 0.7 |
Teppeki | Flonicamid | Flonicamid | 0 | 0.9 | 0.8 |
Supreme | Acetamiprid | Neonicotinoids | 0 | 1.5 | 2.8 |
Calypso, Alanto | Thiacloprid | ||||
Finetyl D, Pyrinex ME, Cuzco | Chlopyrifos | Organophosphates | 0 | 1.8 | 8.4 |
Finetyl D | Dimethoate | ||||
Decis protech, Pearl protech, Split protech | Deltamethrin | Pyrethroids | 0.125 | 2 | 1.4 |
Karaté zéon, pyrinex ME, Karaté K, Okapi liquide | Lambda-cyhalothrin | ||||
Klartan | Tau-fluvanilate | ||||
Pyrevert | Pyrethrins | ||||
Success 4 | Spinosad | Spinosyns | 3.125 | 0 | 0.4 |
Delegate | Spirotoram | ||||
Confirm | Tebufenozide | Diacylhydrazine | 0 | 0 | 0.3 |
Inségar, precision | Fenoxycarb | Fenoxycarb | 0 | 0.7 | 0.5 |
Admiral Pro | Pyriproxyfen | Pyriproxyfen | 0 | 0.3 | 0 |
Movento | Spirotetramat | Tetronic acid derivatives | 0 | 0.3 | 0.4 |
Envidor | Spirodiclofen | ||||
Delfin | Bacillus thuringiensis | Bacillus thuringiensis | 0 | 0.2 | 0 |
Carpovirusine 2000, Madex twin | CpGV-M1 | Granuloviruses | 7.125 | 1 | 0.6 |
Carpovirusine Evo2 | CpGV-R5 | ||||
Neemazal | Azadirachtin A | Limonoid | 0.25 | 0 | 0 |
Euphytane 66/gold, oliocin, arb’hiver, seppic ts, ovipron plus, genera, alkakill | Paraffin oil | Mineral oil | 1.5 | 1.4 | 1.3 |
Ginko, checkmate CM-XL1000 | E-E 8,10dodecadiene-1-ol | Sexual pheromone | 0 | 0.2 | 0.2 |
12.125 | 11.9 | 19.6 |
Target Gene Name (Insecticide) | Cloned Sequence | Detected Mutation | Corresponding Region |
---|---|---|---|
Acetylcholinesterases (organophosphates, carbamates) | Ace1 | None | - |
Ace2 | Q337K | Near mutation conferring resistance in other insects | |
Nicotinic acetylcholine receptors (neonicotinoids, spinosad) | α1 | P145F | Near binding domain for acetylcholine and neonicotinoids |
E546K | Unidentified | ||
β2 | S6P | Near insecticide binding domain | |
G102R | Well-conserved amino acid in proximity to loop A | ||
Voltage sensitive sodium channel (pyrethroids) | Fragment 1 (N-term and domain I) | None | Insertion of 13 nucleotides in the N-term loop |
Fragment 2 (domain II) | None | - | |
Fragment 3 (domain III) | A1375V | Not identified yet to confer resistance | |
R1879P | |||
I1903M | |||
E1976K | |||
Glutamate-gated chloride channel (avermerctins) | GluCl | None | - |
Ryanodine receptor (anthranilic diamides) | RyR partial | None | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fricaux, T.; Le Navenant, A.; Siegwart, M.; Rault, M.; Coustau, C.; Le Goff, G. The Molecular Resistance Mechanisms of European Earwigs from Apple Orchards Subjected to Different Management Strategies. Insects 2023, 14, 944. https://doi.org/10.3390/insects14120944
Fricaux T, Le Navenant A, Siegwart M, Rault M, Coustau C, Le Goff G. The Molecular Resistance Mechanisms of European Earwigs from Apple Orchards Subjected to Different Management Strategies. Insects. 2023; 14(12):944. https://doi.org/10.3390/insects14120944
Chicago/Turabian StyleFricaux, Thierry, Adrien Le Navenant, Myriam Siegwart, Magali Rault, Christine Coustau, and Gaëlle Le Goff. 2023. "The Molecular Resistance Mechanisms of European Earwigs from Apple Orchards Subjected to Different Management Strategies" Insects 14, no. 12: 944. https://doi.org/10.3390/insects14120944
APA StyleFricaux, T., Le Navenant, A., Siegwart, M., Rault, M., Coustau, C., & Le Goff, G. (2023). The Molecular Resistance Mechanisms of European Earwigs from Apple Orchards Subjected to Different Management Strategies. Insects, 14(12), 944. https://doi.org/10.3390/insects14120944