Ectoparasitism of the Flightless Drosophila melanogaster and D. hydei by the Mite Blattisocius mali (Acari: Blattisociidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Mites
2.2. Experimental Set-Up
2.3. Statistical Methods
3. Results
3.1. The Phases of the Mite’s Location on the Fly’s Body
3.2. Sites of Mite Attachment
3.3. Mite Feeding on Flies
3.4. Effect of the Mite on Fly Survival
4. Discussion
4.1. The Phases of the Mite’s Location on the Fly’s Body and the Fly’s Defense
4.2. Preferred Sites of Mite’s Attachment to the Fly’s Body
4.3. Mite Feeding on Flies
4.4. Effect of the Mite on the Fly’s Survival
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farish, D.J.; Axtell, R.C. Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae). Acarologia 1971, 13, 16–29. [Google Scholar]
- Binns, E.S. Phoresy as Migration—Some Functional Aspects of Phoresy in Mites. Biol. Rev. 1982, 57, 571–620. [Google Scholar] [CrossRef]
- Houck, M.A.; OConnor, B.M. Ecological and Evolutionary Significance of Phoresy in the Astigmata. Annu. Rev. Entomol. 1991, 36, 611–636. [Google Scholar] [CrossRef]
- Hunter, P.E.; Rosario, R.M.T. Associations of Mesostigmata with Other Arthropods. Annu. Rev. Entomol. 1988, 33, 393–417. [Google Scholar] [CrossRef]
- Bartlow, A.W.; Agosta, S.J. Phoresy in animals: Review and synthesis of a common but understudied mode of dispersal. Biol. Rev. 2021, 96, 223–246. [Google Scholar] [CrossRef] [PubMed]
- Athias-Binche, F. La Phoresie chez les Acariens: Aspects Adaptatifs et Évolutifs/Françoise Athias-Binche; Editions du Castillet: Perpignan, France, 1994; ISBN 2950858201. [Google Scholar]
- Camerik, A.M. Phoresy revisited. In Trends in Acarology; Sabelis, M.W., Bruin, J., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 333–336. [Google Scholar]
- De Gasparini, O.; Kilner, R.M. Friend or foe: Inter-specific interactions and conflicts of interest within the family. Ecol. Entomol. 2015, 40, 787–795. [Google Scholar] [CrossRef] [Green Version]
- Huck, K.; Schwarz, H.H.; Schmid-Hempel, P. Host choice in the phoretic mite Parasitellus fucorum (Mesostigmata: Parasitidae): Which bumblebee caste is the best? Oecologia 1998, 115, 385–390. [Google Scholar] [CrossRef]
- Polak, M. Ectoparasitic Effects on Host Survival and Reproduction: The Drosophila—Macrocheles Association. Ecology 1996, 77, 1379–1389. [Google Scholar] [CrossRef]
- Durkin, E.S.; Proctor, H.; Luong, L.T. Life history of Macrocheles muscaedomesticae (Parasitiformes: Macrochelidae): New insights on life history and evidence of facultative parasitism on Drosophila. Exp. Appl. Acarol. 2019, 79, 309–321. [Google Scholar] [CrossRef]
- Perotti, M.A.; Braig, H.R. Phoretic mites associated with animal and human decomposition. Exp. Appl. Acarol. 2009, 49, 85–124. [Google Scholar] [CrossRef]
- Ashburner, M. Drosophila: A Laboratory Handbook and Manual. Two Volumes; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989; ISBN 9780879693213. [Google Scholar]
- Poinar, G.O.; Grimaldi, D.A. Fossil and Extant Macrochelid Mites (Acari: Macrochelidae) Phoretic on Drosophilid Flies (Diptera: Drosophilidae). J. N. Y. Entomol. Soc. 1990, 98, 88–92. [Google Scholar]
- Lehtinen, P.T.; Aspi, J. A Phytoseiid mite Paragarmania mali, associated with drosophilid flies. In The Acari Physiological and Ecological Aspects of Acari-Host Relationships; European Association of Acarologists: Krynica, Poland, 1992; pp. 537–544. [Google Scholar]
- Perez-Leanos, A.; Loustalot-Laclette, M.R.; Nazario-Yepiz, N.; Markow, T.A. Ectoparasitic mites and their Drosophila hosts. Fly 2017, 11, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Kerezsi, V.; Kiss, B.; Deucht, F.; Kontschan, J. First record of Blattisocius mali (Oudemans, 1929) in Hungary associated with the drosophilid fly Phortica semivirgo (Máca, 1977). Redia 2019, 102, 69–72. [Google Scholar] [CrossRef]
- Benoit, J.B.; Bose, J.; Bailey, S.T.; Polak, M. Interactions with ectoparasitic mites induce host metabolic and immune responses in flies at the expense of reproduction-associated factors. Parasitology 2020, 147, 1196–1205. [Google Scholar] [CrossRef]
- Dergachev, D. V Sposob Biologicheskoy Bor’by s Tiroglifoidnymi Kleshchami [The Method of the Biological Control of Tyroglyphid Mites]. Russian Patent RU2105472C1, 10 January 1996. [Google Scholar]
- De Moraes, G.J.; Venancio, R.; dos Santos, V.L.V.; Paschoal, A.D. Potential of Ascidae, Blattisociidae and Melicharidae (Acari: Mesostigmata) as Biological Control Agents of Pest Organisms. In Prospects for Biological Control of Plant Feeding Mites and Other Harmful Organisms; Springer International Publishing: Cham, Switzerland, 2015; pp. 33–75. [Google Scholar]
- Gallego, J.R.; Gamez, M.; Cabello, T. Potential of the Blattisocius mali Mite (Acari: Blattisociidae) as a Biological Control Agent of Potato Tubermoth (Lepidoptera: Gelechiidae) in Stored Potatoes. Potato Res. 2020, 63, 241–251. [Google Scholar] [CrossRef]
- Pirayeshfar, F.; Safavi, S.A.; Sarraf-moayeri, H.R.; Messelink, G.J. Active and frozen host mite Tyrophagus putrescentiae (Acari: Acaridae) influence the mass production of the predatory mite Blattisocius mali (Acari: Blattisociidae): Life table analysis. Syst. Appl. Acarol. 2021, 26, 2096–2108. [Google Scholar] [CrossRef]
- Pirayeshfar, F.; Moayeri, H.R.S.; Da Silva, G.L.; Ueckermann, E.A. Comparison of biological characteristics of the predatory mite Blattisocius mali (Acari: Blattisocidae) reared on frozen eggs of Tyrophagus putrescentiae (Acari: Acaridae) alone and in combination with cattail and olive pollens. Syst. Appl. Acarol. 2022, 27, 399–409. [Google Scholar] [CrossRef]
- Asgari, F.; Safavi, S.A.; Moayeri, H.R.S. Life table parameters of the predatory mite, Blattisocius mali Oudemans (Mesostigmata: Blattisociidae), fed on eggs and larvae of the stored product mite, Tyrophagus putrescentiae (Schrank). Egypt. J. Biol. Pest Control 2022, 32, 118. [Google Scholar] [CrossRef]
- Solano-Rojas, Y.; Gallego, J.R.; Gamez, M.; Garay, J.; Hernandez, J.; Cabello, T. Evaluation of Trichogramma cacaeciae (Hymenoptera: Trichogrammatidae) and Blattisocius mali (Mesostigmata: Blattisociidae) in the Post-Harvest Biological Control of the Potato Tuber Moth (Lepidoptera: Gelechiidae): Use of Sigmoid Functions. Agriculture 2022, 12, 519. [Google Scholar] [CrossRef]
- Evans, G.O. A Revision of the British Aceosejinae (Acarina: Mesostigmata). Proc. Zool. Soc. Lond. 1958, 131, 177–229. [Google Scholar] [CrossRef]
- Treat, A.E. A New Blattisocius (Acarina: Mesostigmata) from Noctuid Moths. J. N. Y. Entomol. Soc. 1966, 74, 143–159. [Google Scholar]
- Treat, A.E. Association of the Mite Blattisocius tarsalis with the Moth Epizeuxis aemula. J. N. Y. Entomol. Soc. 1969, 77, 171–175. [Google Scholar]
- Thomas, H.Q.; Zalom, F.G.; Nicola, N.L. Laboratory studies of Blattisocius keegani (Fox) (Acari: Ascidae) reared on eggs of navel orangeworm: Potential for biological control. Bull. Entomol. Res. 2011, 101, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.O. Principles of Acarology; C.A.B. International: Wallingford, UK, 1992. [Google Scholar]
- Basha, A.-A.E.; Yousef, A.-T.A. New species of Laelapidae and Ascidae from Egypt: Genera Androlaelaps and Blattisocius (Acari: Gamasida). Acarologia 2000, 41, 395–402. [Google Scholar]
- Radhakrishnan, V.; Ramaraju, K. New honeybee mite, Blattisocius trigonae sp. nov. (Acari: Laelapidae), phoretic on Trigona iridipennis (Apidae: Hymenoptera) from Tamil Nadu, India. J. Entomol. Zool. Stud. 2017, 5, 841–844. [Google Scholar]
- Szymkowiak, P.; Gorski, G.; Bajerlein, D. Passive dispersal in arachnids. Biol. Lett. 2007, 44, 75–101. [Google Scholar]
- De Lillo, E.; Aldini, P. Functional morphology of some leg sense organs in Pediculaster mesembrinae (Acari: Siteroptidae) and Phytoptus avellanae (Acari: Phytoptidae). In Acarology: Proceedings of the 10th International Congress; Halliday, R., Walter, D., Proctor, H., Norton, R., Colloff, M., Eds.; CSIRO Publishing: Collingwood, Australia, 2001; pp. 217–225. [Google Scholar]
- Karg, W. Acari (Acarina) Milben Unterordnung Anactinochaeta (Parasitiformes) Die Freilebenden Gamasina (Gamasides) Raubmilben; VEB Gustav Fischer Verlag: Jena, Germany, 1971. [Google Scholar]
- Lourenço, F.; Calado, R.; Medina, I.; Ameixa, O.M.C.C. The Potential Impacts by the Invasion of Insects Reared to Feed Livestock and Pet Animals in Europe and Other Regions: A Critical Review. Sustainability 2022, 14, 6361. [Google Scholar] [CrossRef]
- Homyk, T. Behavioral Mutants of Drosophila melanogaster. II. Behavioral Analysis and Focus Mapping. Genetics 1977, 87, 105–128. [Google Scholar] [CrossRef]
- Koana, T.; Hotta, Y. Isolation and characterization of flightless mutants in Drosophila melanogaster. Development 1978, 45, 123–143. [Google Scholar] [CrossRef]
- Prout, M.; Damania, Z.; Soong, J.; Fristrom, D.; Fristrom, J.W. Autosomal Mutations Affecting Adhesion Between Wing Surfaces in Drosophila melanogaster. Genetics 1997, 146, 275–285. [Google Scholar] [CrossRef]
- Bischoff, K.; Ballew, A.C.; Simon, M.A.; O’Reilly, A.M. Wing Defects in Drosophila xenicid Mutant Clones Are Caused by C-Terminal Deletion of Additional Sex Combs (Asx). PLoS ONE 2009, 4, e8106. [Google Scholar] [CrossRef] [PubMed]
- Bejsovec, A. Wingless Signaling: A Genetic Journey from Morphogenesis to Metastasis. Genetics 2018, 208, 1311–1336. [Google Scholar] [CrossRef] [Green Version]
- Dabert, M.; Witalinski, W.; Kazmierski, A.; Olszanowski, Z.; Dabert, J. Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol. Phylogenet. Evol. 2010, 56, 222–241. [Google Scholar] [CrossRef] [PubMed]
- Dabert, J.; Mironov, S.V.; Dabert, M. The explosive radiation, intense host-shifts and long-term failure to speciate in the evolutionary history of the feather mite genus Analges (Acariformes: Analgidae) from European passerines. Zool. J. Linn. Soc. 2022, 195, 673–694. [Google Scholar] [CrossRef]
- Mironov, S.V.; Dabert, J.; Dabert, M. A new feather mite species of the genus Proctophyllodes Robin, 1877 (Astigmata: Proctophyllodidae) from the Long-tailed Tit Aegithalos caudatus (Passeriformes: Aegithalidae)—Morphological description with DNA barcode data. Zootaxa 2012, 3253, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Department of Biology, Indiana University. Bloomington Drosophila Stock Center. Available online: https://bdsc.indiana.edu (accessed on 21 December 2022).
- Robertson, P.L. A Technique for biological Studies of Cheese Mites. Bull. Entomol. Res. 1945, 35, 251–255. [Google Scholar] [CrossRef]
- Fabian, B.; Schneeberg, K.; Beutel, R.G. Comparative thoracic anatomy of the wild type and wingless (wg1cn1) mutant of Drosophila melanogaster (Diptera). Arthropod Struct. Dev. 2016, 45, 611–636. [Google Scholar] [CrossRef]
- Shaffer, C.D.; Wuller, J.M.; Elgin, S.C.R. Chapter 5 Raising Large Quantities of Drosophila for Biochemical Experiments. Methods Cell Biol. 1994, 44, 99–108. [Google Scholar]
- Kamel, M. Biology of Blattisocius mali (Oudemans) (Acari: Gamasida: Ascidae) feeding on different diets under laboratory conditions. Egypt. Vet. Med. Soc. Parasitol. J. 2020, 16, 92–101. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing 2022; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Bowman, C.E. Feeding design in free-living mesostigmatid chelicerae (Acari: Anactinotrichida). Exp. Appl. Acarol. 2021, 84, 1–119. [Google Scholar] [CrossRef]
- Haines, C.P. A revision of the genus Blattisocius Keegan (Mesostigmata: Ascidae) with especial reference to B. tarsalis (Berlese) and the description of a new species. Acarologia 1979, 20, 19–38. [Google Scholar] [PubMed]
- Houck, M.A.; Clark, J.B.; Peterson, K.R.; Kidwell, M.G. Possible Horizontal Transfer of Drosophila Genes by the Mite Proctolaelaps regalis. Science 1991, 253, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Radovsky, F.J. Evolution of mammalian mesostigmate mites. In Coevolution of Parasitic Arthropods and Mammals; Wiley: New York, NY, USA, 1985; pp. 441–504. [Google Scholar]
- Dowling, A.; Oconnor, B.M. Phylogeny of Dermanyssoidea (Acari: Parasitiformes) suggests multiple origins of parasitism. Acarologia 2010, 50, 113–129. [Google Scholar] [CrossRef] [Green Version]
- Polak, M. Heritability of resistance against ectoparasitism in the Drosophila-Macrocheles system. J. Evol. Biol. 2003, 16, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Graf, U.; van Schaik, N.; Würgler, F.E. Drosophila Genetics; Springer: Berlin/Heidelberg, Germany, 1992; ISBN 978-3-540-54327-5. [Google Scholar]
- Luong, L.T.; Penoni, L.R.; Horn, C.J.; Polak, M. Physical and physiological costs of ectoparasitic mites on host flight endurance. Ecol. Entomol. 2015, 40, 518–524. [Google Scholar] [CrossRef]
- Anderson, B.B.; Scott, A.; Dukas, R. Social behavior and activity are decoupled in larval and adult fruit flies. Behav. Ecol. 2016, 27, 820–828. [Google Scholar] [CrossRef] [Green Version]
- Matzkin, L.M.; Watts, T.D.; Markow, T.A. Evolution of stress resistance in Drosophila: Interspecific variation in tolerance to desiccation and starvation. Funct. Ecol. 2009, 23, 521–527. [Google Scholar] [CrossRef]
- Kinzner, M.; Krapf, P.; Nindl, M.; Heussler, C.; Eisenkölbl, S.; Hoffmann, A.A.; Seeber, J.; Arthofer, W.; Schlick-Steiner, B.C.; Steiner, F.M. Life-history traits and physiological limits of the alpine fly Drosophila nigrosparsa (Diptera: Drosophilidae): A comparative study. Ecol. Evol. 2018, 8, 2006–2020. [Google Scholar] [CrossRef] [Green Version]
- Huigens, M.E.; Fatouros, N.E. A Hitch-Hiker’s Guide to Parasitism: The Chemical Ecology of Phoretic Insect Parasitoids. In Chemical Ecology of Insect Parasitoids; John Wiley & Sons, Ltd.: Chichester, UK, 2013; pp. 86–111. [Google Scholar]
- Zhang, Z.-Q. Attachment sites of Allothrombium pulvinum larvae (Acari: Trombidiidae) ectoparasitic on aphid hosts). Syst. Appl. Acarol. 1997, 2, 115–120. [Google Scholar] [CrossRef]
- Metz, M.A.; Irwin, M.E. Microtrombidiid Mite Parasitization Frequencies and Attachment Site Preferences on Brachyceran Diptera with Specific Reference to Therevidae (Asiloidea) and Tachinidae (Oestroidea). Environ. Entomol. 2001, 30, 903–908. [Google Scholar] [CrossRef] [Green Version]
- Paraschiv, M.; Isaia, G. Disparity of Phoresy in Mesostigmatid Mites upon Their Specific Carrier Ips typographus (Coleoptera: Scolytinae). Insects 2020, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Flechtmann, C.H.W.; McMurtry, J.A. Studies on how Phytoseiid mites feed on spider mites and pollen. Int. J. Acarol. 1992, 18, 157–162. [Google Scholar] [CrossRef]
- Luong, L.T.; Horn, C.J.; Brophy, T. Mitey Costly: Energetic Costs of Parasite Avoidance and Infection. Physiol. Biochem. Zool. 2017, 90, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Horn, C.J.; Mierzejewski, M.K.; Elahi, M.E.; Luong, L.T. Extending the ecology of fear: Parasite-mediated sexual selection drives host response to parasites. Physiol. Behav. 2020, 224, 113041. [Google Scholar] [CrossRef]
- Jalil, M.; Rodriguez, J.G. Studies of Behavior of Macrocheles muscaedomesticae (Acarina: Macrochelidae) with Emphasis on its Attraction to the House Fly1. Ann. Entomol. Soc. Am. 1970, 63, 738–744. [Google Scholar] [CrossRef]
- Polak, M.; Markow, T.A. Effect of Ectoparasitic Mites on Sexual Selection in a Sonoran Desert Fruit Fly. Evolution 1995, 49, 660–669. [Google Scholar] [CrossRef]
Fruit Fly Species | Phases of the Mite’s Location on the Fly’s Body | ||
---|---|---|---|
1. Attack and First Attachment | 2. Passage from the Attack Site to the Site of Final Attachment | 3. Drilling into Fly Integument and Final Attachment | |
D. melanogaster | 509.98 ± 86.52 a (157–2187; n = 25) | 249.86 ± 113.50 b (20–2768; n = 25) | 233 ± 81.51 b (7–2039; n = 25) |
D. hydei | 849.55 ± 269.70 a (2–2077; n = 11) | 83.27 ± 27.07 b (0–237; n = 11) | 269.27 ± 189.42 b (13–2143; n = 11) |
Fruit Fly Species | Site of Attachment | No of Predators Attached | |
---|---|---|---|
1st h | 24 h | ||
D. melanogaster | cervix, ventral site | 10 | 13 |
thorax, dorsal site; at wing joint | 1 | ||
thorax, at the coxa II | 1 | 1 | |
thorax, at the coxa III | 13 | 17 | |
abdomen, dorsal site—at 5th tergite | 1 | 1 | |
D. hydei | cervix, ventral site | 2 | 5 |
cervix, lateral site | 1 | 1 | |
thorax, ventral site, between proepisternum and profurcasternum | 1 | 1 | |
thorax, dorsal site; at wing joint | 1 | ||
junction between thorax and abdomen; dorsal site | 1 | 2 | |
thorax, at the coxa II | 1 | 2 | |
thorax, at the coxa III | 3 | 9 | |
abdomen, ventral site, at 2nd sternite | 1 | 1 | |
abdomen, ventral site, at last sternite | 1 | ||
abdomen, dorsal site, at 5th tergite | 2 | ||
abdomen, dorsal site, at 6th tergite | 1 | ||
abdomen, dorsal site, at last tergite | 1 | 2 |
Site of Attack | Site of Drilling and Final Attachment of Chelicerae during 1st Hour of Observation | |||||
---|---|---|---|---|---|---|
D. melanogaster | D. hydei | |||||
Cervix | Coxa III | Other Sites | Cervix | Coxa III | Other Sites | |
tarsus I | 7 | 1 | 3 | 1 | ||
tarsus II | 1 | 3 | 1 | 1 | 1 | |
tarsus III | 2 | 7 | ||||
other body parts | 2 | 1 | 1 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalska, K.; Mrowińska, A.; Studnicki, M. Ectoparasitism of the Flightless Drosophila melanogaster and D. hydei by the Mite Blattisocius mali (Acari: Blattisociidae). Insects 2023, 14, 146. https://doi.org/10.3390/insects14020146
Michalska K, Mrowińska A, Studnicki M. Ectoparasitism of the Flightless Drosophila melanogaster and D. hydei by the Mite Blattisocius mali (Acari: Blattisociidae). Insects. 2023; 14(2):146. https://doi.org/10.3390/insects14020146
Chicago/Turabian StyleMichalska, Katarzyna, Agnieszka Mrowińska, and Marcin Studnicki. 2023. "Ectoparasitism of the Flightless Drosophila melanogaster and D. hydei by the Mite Blattisocius mali (Acari: Blattisociidae)" Insects 14, no. 2: 146. https://doi.org/10.3390/insects14020146
APA StyleMichalska, K., Mrowińska, A., & Studnicki, M. (2023). Ectoparasitism of the Flightless Drosophila melanogaster and D. hydei by the Mite Blattisocius mali (Acari: Blattisociidae). Insects, 14(2), 146. https://doi.org/10.3390/insects14020146