Resistance Allele Frequency of Helicoverpa zea to Vip3Aa Bacillus thuringiensis Protein in the Southeastern U.S.
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Insect Source and Establishment of H. zea F2 Families
2.2. Discriminating Concentration of F2 Screens
2.3. Dose-Response Bioassays for Resistance Confirmation
2.4. Data Analysis
3. Results
3.1. Establishment of F2 Families and Survival in the Discriminating Concentration of Vip3Aa39
3.2. Dose-Response Bioassays for Resistance Confirmation
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banerjee, R.; Hasler, J.; Meagher, R.; Nagoshi, R.; Hietala, L.; Huang, F.; Narva, K.; Jurat-Fuentes, J.L. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Sci. Rep. 2017, 7, 10877. [Google Scholar] [CrossRef]
- Ferré, J.; Van Rie, J. Biochemistry and Genetics of Insect Resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 2002, 47, 501–533. [Google Scholar] [CrossRef] [PubMed]
- Chakroun, M.; Banyuls, N.; Bel, Y.; Escriche, B.; Ferré, J. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. MMBR 2016, 80, 329–350. [Google Scholar] [CrossRef]
- Jurat-Fuentes, J.L.; Heckel, D.G.; Ferré, J. Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. Annu. Rev. Entomol. 2021, 66, 121–140. [Google Scholar] [CrossRef]
- Bravo, A.; Pacheco, S.; Gómez, I.; Garcia-Gómez, B.; Onofre, J.; Soberón, M. Insecticidal proteins from Bacillus thuringiensis and their mechanism of action. In Bacillus thuringiensis and Lysinibacillus sphaericus; Fiuza, L., Polanczyk, R., Crickmore, N., Eds.; Springer: Cham, Switzerland, 2017; pp. 53–66. [Google Scholar]
- Fernandez-Cornejo, J.; Wechsler, S.; Livingston, M.; Mitchell, L. Genetically Engineered Crops in the United States; ERR-162; United States Department of Agriculture: Washington, DC, USA, 2014; p. 54. [Google Scholar]
- Fleming, D.; Musser, F.; Reisig, D.; Greene, J.; Taylor, S.; Parajulee, M.; Lorenz, G.; Catchot, A.; Gore, J.; Kerns, D.; et al. Effects of transgenic Bacillus thuringiensis cotton on insecticide use, heliothine counts, plant damage, and cotton yield: A meta-analysis, 1996–2015. PLoS ONE 2018, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- US-EPA. EPA Needs Better Data, Plans and Tools to Manage Insect Resistance to Genetically Engineered Corn; 16-P-0194; US Environmental Protection Agency, Office of the Inspector General: Washington, DC, USA, 2016; p. 22. [Google Scholar]
- Tabashnik, B.E.; Carrière, Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat. Biotechnol. 2017, 35, 926–935. [Google Scholar] [CrossRef]
- Dively, G.P.; Venugopal, P.D.; Finkenbinder, C. Field-evolved resistance in corn earworm to Cry proteins expressed by transgenic sweet corn. PLoS ONE 2016, 11, e0169115. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Guo, J.G.; Brown, S.; Head, G.P.; Price, P.A.; Paula-Moraes, S.; Ni, X.Z.; Dimase, M.; Huang, F. Field-evolved resistance of Helicoverpa zea (Boddie) to transgenic maize expressing pyramided Cry1A.105/Cry2Ab2 proteins in northeast Louisiana, the United States. J. Invertebr. Pathol. 2019, 163, 11–20. [Google Scholar] [CrossRef]
- Reisig, D.D.; Huseth, A.S.; Bacheler, J.S.; Aghaee, M.-A.; Braswell, L.; Burrack, H.J.; Flanders, K.; Greene, J.K.; Herbert, D.A.; Jacobson, A.; et al. Long-Term Empirical and Observational Evidence of Practical Helicoverpa zea Resistance to Cotton with Pyramided Bt Toxins. J. Econ. Entomol. 2018, 111, 1824–1833. [Google Scholar] [CrossRef]
- Yang, F.; Santiago González, J.C.; Williams, J.; Cook, D.C.; Gilreath, R.T.; Kerns, D.L. Occurrence and Ear Damage of Helicoverpa zea on Transgenic Bacillus thuringiensis Maize in the Field in Texas, U.S. and Its Susceptibility to Vip3A Protein. Toxins 2019, 11, 102. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Kerns, D.L.; Little, N.; Brown, S.A.; Stewart, S.D.; Catchot, A.L.; Cook, D.R.; Gore, J.; Crow, W.D.; Lorenz, G.M.; et al. Practical resistance to Cry toxins and efficacy of Vip3Aa in Bt cotton against Helicoverpa zea. Pest Manag. Sci. 2022, 78, 5234–5242. [Google Scholar] [CrossRef]
- Yang, F.; Kerns, D.L.; Little, N.S.; Santiago González, J.C.; Tabashnik, B.E. Early Warning of Resistance to Bt Toxin Vip3Aa in Helicoverpa zea. Toxins 2021, 13, 618. [Google Scholar] [CrossRef]
- Brown, S.A.; Walker, W.; Cole, C.L.; Kerns, D.L. Efficacy and Field Performance of Bt Cotton in Louisiana. In Proceedings of the Beltwide Cotton Conferences, New Orleans, LA, USA, 8–10 January 2019; pp. 477–480. [Google Scholar]
- Yang, F.; Santiago González, J.C.; Little, N.; Reisig, D.; Payne, G.; Dos Santos, R.F.; Jurat-Fuentes, J.L.; Kurtz, R.; Kerns, D.L. First documentation of major Vip3Aa resistance alleles in field populations of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Texas, USA. Sci. Rep. 2020, 10, 5867. [Google Scholar] [CrossRef]
- USDA-AMS-CTP. Cotton Varieties Planted, United States 2020 Crop; mp_cn833; U.S. Department of Agriculture, Agricultural Marketing Service—Cotton and Tobacco Program: Memphis, TN, USA, 2020; p. 11. [Google Scholar]
- Carpenter, J.; Sparks, A.; Pair, S.; Cromroy, H. Heliothis zea (Lepidoptera: Noctuidae): Effects of radiation and inherited sterility on mating competitiveness. J. Econ. Entomol. 1989, 82, 109–113. [Google Scholar] [CrossRef]
- Jones, R.L.; Perkins, W.; Sparks, A. Effect of sex ratios on reproduction by the corn earworm in the laboratory. Ann. Entomol. Soc. Am. 1979, 72, 35–37. [Google Scholar] [CrossRef]
- Blanco, C.A.; Sumerford, D.V.; López, J.D., Jr.; Hernández, G.; Abel, C.A. Mating Behavior of Wild Helicoverpa zea (Lepidoptera: Noctuidae) Males with Laboratory Females. J. Cotton Sci. 2010, 14, 191–198. [Google Scholar]
- Santiago-González, J.C.; Kerns, D.L.; Head, G.P.; Yang, F. A modified F2 screen for estimating Cry1Ac and Cry2Ab resistance allele frequencies in Helicoverpa zea (Lepidoptera: Noctuidae). J. Econ. Entomol. 2023, XX, toac181. [Google Scholar] [CrossRef]
- Kerns, D.L.; Yang, F.; Cook, D.R.; Gore, J.; Stewart, S.D.; Jurat-Fuentes, J.L.; Lorenz, G.M.; Catchot, A.L.; Brown, S.A. Bt resistance and Bt technology performance for Texas and the Mid-South in 2019. In Proceedings of the Beltwide Cotton Conferences, Austin, TX, USA, 8–10 January 2020; pp. 479–489. [Google Scholar]
- Yang, F.; Santiago González, J.C.; Head, G.P.; Price, P.A.; Kerns, D.L. Multiple and non-recessive resistance to Bt proteins in a Cry2Ab2-resistant population of Helicoverpa zea. Crop Prot. 2021, 145, 105650. [Google Scholar] [CrossRef]
- Yang, F.; Santiago González, J.C.; Sword, G.A.; Kerns, D.L. Genetic basis of resistance to the Vip3Aa Bt protein in Helicoverpa zea. Pest Manag. Sci. 2021, 77, 1530–1535. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Andow, D.; Alstad, D. F2 screen for rare resistance alleles. J. Econ. Entomol. 1998, 91, 572–578. [Google Scholar] [CrossRef]
- SAS Institute. SAS 9.4®: Statistical Procedures; SAS Institute: Cary, NC, USA, 2017. [Google Scholar]
- Andow, D.; Olson, D.; Hellmich, R.L.; Alstad, D.; Hutchison, W. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in an Iowa population of European corn borer (Lepidoptera: Crambidae). J. Econ. Entomol. 2000, 93, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Oyediran, I.; Yu, W.; Lin, S.; Dimase, M.; Brown, S.; Reay-Jones, F.P.F.; Cook, D.; Reisig, D.; Thrash, B.; et al. Populations of Helicoverpa zea (Boddie) in the Southeastern United States are Commonly Resistant to Cry1Ab, but Still Susceptible to Vip3Aa20 Expressed in MIR 162 Corn. Toxins 2021, 13, 63. [Google Scholar] [CrossRef] [PubMed]
- Andow, D.; Alstad, D. Credibility Interval for Rare Resistance Allele Frequencies. J. Econ. Entomol. 1999, 92, 755–758. [Google Scholar] [CrossRef]
- Stodola, T.; Andow, D. F2 screen variations and associated statistics. J. Econ. Entomol. 2004, 97, 1756–1764. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Oyediran, I.; Niu, Y.; Brown, S.; Cook, D.; Ni, X.; Zhang, Y.; Reay-Jones, F.P.F.; Chen, J.S.; Wen, Z.; et al. Resistance Allele Frequency to Cry1Ab and Vip3Aa20 in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Louisiana and Three Other Southeastern U.S. States. Toxins 2022, 14, 270. [Google Scholar] [CrossRef]
- Hardwick, D.F. The Corn Earworm Complex. Mem. Entomol. Soc. Can. 1965, 97 (Suppl. S40), 5–247. [Google Scholar] [CrossRef]
- Yang, F.; Kerns, D.; Gore, J.; Catchot, A.; Lorenz, G.; Stewart, S. Susceptibility of field populations of the cotton bollworm in the southern U.S. to four individual Bt proteins. In Proceedings of the Beltwide Cotton Conferences, Dallas, TX, USA, 4–6 January 2017; pp. 786–797. [Google Scholar]
- Kerns, D.L.; Yang, F.; Lorenz, G.M.; Gore, J.; Catchot, A.L.; Stewart, S.D.; Brown, S.A.; Cook, D.R.; Seiter, N. Value of Bt technology for bollworm management. In Proceedings of the Beltwide Cotton Conferences, San Antonio, TX, USA, 3–5 January 2018; pp. 805–809. [Google Scholar]
- Welch, K.L.; Unnithan, G.C.; Degain, B.A.; Wei, J.; Zhang, J.; Li, X.; Tabashnik, B.E.; Carrière, Y. Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea. J. Invertebr. Pathol. 2015, 132, 149–156. [Google Scholar] [CrossRef]
- Gilreath, R.T.; Kerns, D.L.; Huang, F.; Yang, F. No positive cross-resistance to Cry1 and Cry2 proteins favors pyramiding strategy for management of Vip3Aa resistance in Spodoptera frugiperda. Pest Manag. Sci. 2021, 77, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Carrière, Y. Evaluating Cross-resistance between Vip and Cry Toxins of Bacillus thuringiensis. J. Econ. Entomol. 2020, 113, 553–561. [Google Scholar] [CrossRef]
- Bergamasco, V.B.; Mendes, D.R.P.; Fernandes, O.A.; Desidério, J.A.; Lemos, M.V.F. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera). J. Invertebr. Pathol. 2013, 112, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Soares Figueiredo, C.; Nunes Lemes, A.R.; Sebastião, I.; Desidério, J.A. Synergism of the Bacillus thuringiensis Cry1, Cry2, and Vip3 Proteins in Spodoptera frugiperda Control. Appl. Biochem. Biotechnol. 2019, 188, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Baranek, J.; Banaszak, M.; Lorent, D.; Kaznowski, A.; Konecka, E. Insecticidal activity of Bacillus thuringiensis Cry1, Cry2 and Vip3 toxin combinations in Spodoptera exigua control: Highlights on synergism and data scoring. Entomol. Gen. 2021, 41, 71–82. [Google Scholar] [CrossRef]
- Dively, G.; Kuhar, T.; Taylor, S.; Doughty, H.; Holmstrom, K.; Gilrein, D.; Nault, B.; Ingerson-Mahar, J.; Whalen, J.; Reisig, D.; et al. Sweet Corn Sentinel Monitoring for Lepidopteran Field-Evolved Resistance to Bt Toxins. J. Econ. Entomol. 2021, 114, 307–319. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, F.; Chen, J.; Huang, F.; Andow, D.A.; Wang, Y.; Zhu, Y.C.; Shen, J. Using an F2 screen to monitor frequency of resistance alleles to Bt cotton in field populations of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Manag. Sci. 2009, 65, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Gould, F. Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annu. Rev. Entomol. 1998, 43, 701–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Year | Collection Site | Host | Feral H. zea Males (♂) Collected for the Parental Cross | Number of Established F2 Families |
---|---|---|---|---|
2019 | Alexandria, LA | Cry1A.105 + Cry2Ab2 corn | 28 | 7 |
Cry1Ac + Cry2Ab2 cotton | 33 | 14 | ||
Stoneville, MS | Cry1A.105 + Cry2Ab2 corn | 30 | 5 | |
Leland, MS | Non-Bt host: soybean | 32 | 10 | |
Jackson, TN | Non-Bt host: soybean | 31 | 6 | |
Non-Bt host: sorghum | 23 | 6 | ||
Cry1Ab + Cry1F corn | 35 | 4 | ||
Sub-total | 212 | 52 | ||
2020 | Stoneville, MS | Non-Bt host: corn | 41 | 17 |
Cry1Ab sweet corn | 35 | 16 | ||
Cry1A.105 + Cry2Ab2 corn | 11 | 1 | ||
Winnsboro, LA | Cry1A.105 + Cry2Ab2 corn | 43 | 17 | |
Non-Bt host: corn | 33 | 2 | ||
Avoyelles, LA | Non-Bt host: soybean | 37 | 8 | |
Alexandria, LA | Cry1A.105 + Cry2Ab2 corn | 32 | 6 | |
Jackson, TN | Cry1A.105 + Cry2Ab2 corn | 31 | 13 | |
Mississippi, AR | Cry1A.105 + Cry2Ab2 corn | 63 | 28 | |
Non-Bt host: corn | 42 | 16 | ||
Pine Bluff, AR | Cry1A.105 + Cry2Ab2 corn | 18 | 1 | |
Marianna, AR | Cry1A.105 + Cry2Ab2 corn | 25 | 15 | |
Sub-total | 411 | 140 | ||
Total | 623 | 192 |
Year | Collection Site of the Feral Parental | No. Tested F2 Families | No. Surviving Families | No. 2nd Instar | No. 3rd Instar | No. 4th Instar |
---|---|---|---|---|---|---|
2019 | Alexandria, LA | 7 | 0 | 0 | 0 | 0 |
14 | 1 | 0 | 4 | 17 | ||
Stoneville, MS | 5 | 0 | 0 | 0 | 0 | |
Leland, MS | 10 | 2 | 2 | 0 | 0 | |
Jackson, TN | 6 | 0 | 0 | 0 | 0 | |
6 | 0 | 0 | 0 | 0 | ||
4 | 0 | 0 | 0 | 0 | ||
Sub-total | 52 | 3 | 2 | 4 | 17 | |
2020 | Stoneville, MS | 17 | 0 | 0 | 0 | 0 |
16 | 3 | 4 | 19 | 2 | ||
1 | 1 | 1 | 0 | 0 | ||
Winnsboro, LA | 17 | 1 | 1 | 0 | 0 | |
2 | 1 | 0 | 6 | 14 | ||
Avoyelles, LA | 8 | 1 | 1 | 0 | 0 | |
Alexandria, LA | 6 | 1 | 1 | 0 | 0 | |
Jackson, TN | 13 | 0 | 0 | 0 | 0 | |
Mississippi, AR | 28 | 1 | 1 | 0 | 0 | |
16 | 1 | 1 | 0 | 0 | ||
Pine Bluff, AR | 1 | 0 | 0 | 0 | 0 | |
Marianna, AR | 15 | 0 | 0 | 0 | 0 | |
Sub-total | 140 | 10 | 10 | 25 | 16 | |
Total | 192 | 13 | 12 | 29 | 33 |
Family No. | No. Insects Screened | No. Survivors | No. Insect within Instar | ||
---|---|---|---|---|---|
2nd | 3rd | 4th | |||
LA-M1 | 128 | 21 | 0 | 4 | 17 |
LA-AC4 | 128 | 20 | 0 | 6 | 14 |
MS-R2 | 128 | 2 | 1 | 0 | 1 |
MS-R15 | 128 | 22 | 3 | 19 | 0 |
MS-R21 | 128 | 1 | 0 | 0 | 1 |
Insect Strain | N a | LC50 (95% CL) (µg/cm2) b | Slope ± SE | χ2 | df | Resistance Ratio c |
---|---|---|---|---|---|---|
SS | 512 | 0.11 (0.09, 0.13) | 3.23 ± 0.35 | 12.9 | 26 | - |
LA-M1 | 512 | >100 | / | / | / | >909.1 * |
LA-AC4 | 512 | >100 | / | / | / | >909.1 * |
MS-R2 | 512 | >100 | / | / | / | >909.1 * |
MS-R15 | 512 | >100 | / | / | / | >909.1 * |
Insect Family | N # | Observed Survival | Expected Survival * | χ2 | p-Value |
---|---|---|---|---|---|
LA-M1 | 128 | 22.9 | 32 | 3.441 | 0.064 |
LA-AC4 | 128 | 22.5 | 32 | 3.738 | 0.054 |
MS-R15 | 128 | 24.8 | 32 | 2.141 | 0.143 |
Year | Collection Site of the Feral Parental | No. F2 Families Screened | No. Surviving Families | No. Resistance Alleles | Expected Resistance Allele Frequency | Credibility Interval (95%) |
---|---|---|---|---|---|---|
2019 | Louisiana | 21 | 1 | 2 | 0.0435 | (0.0056–0.1142) |
Mississippi | 15 | 0 | 0 | 0.0294 | (0.0000–0.0854) | |
Tennessee | 16 | 0 | 0 | 0.0278 | (0.0000–0.0808) | |
Sub-total | 52 | 1 | 2 | 0.0185 | (0.0023–0.0504) | |
2020 | Louisiana | 33 | 1 | 2 | 0.0286 | (0.0036–0.0766) |
Mississippi | 34 | 3 | 4 | 0.0556 | (0.0160–0.1153) | |
Tennessee | 13 | 0 | 0 | 0.0333 | (0.0000–0.0963) | |
Arkansas | 60 | 0 | 0 | 0.0081 | (0.0000–0.0240) | |
Sub-total | 140 | 4 | 6 | 0.0176 | (0.0058–0.0355) | |
Total in two consecutive years | 192 | 5 | 8 | 0.0155 | (0.0057–0.0297) |
Insect Family | Cry1Ac Protein | Cry2Ab2 Protein | ||||||
---|---|---|---|---|---|---|---|---|
No. Insects Screened | No. Survivors | No. Insects Screened | No. Survivors | |||||
2nd | 3rd | 4th | 2nd | 3rd | 4th | |||
LA-M1 | 128 | 18 | 3 | 0 | 128 | 0 | 0 | 0 |
LA-AC4 | 128 | 7 | 10 | 0 | 128 | 0 | 0 | 0 |
MS-R2 | 128 | 30 | 11 | 0 | 128 | 8 | 0 | 0 |
MS-R15 | 128 | 18 | 13 | 0 | 128 | 2 | 0 | 0 |
MS-R21 | 128 | 21 | 2 | 0 | 128 | 1 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago-González, J.C.; Kerns, D.L.; Yang, F. Resistance Allele Frequency of Helicoverpa zea to Vip3Aa Bacillus thuringiensis Protein in the Southeastern U.S. Insects 2023, 14, 161. https://doi.org/10.3390/insects14020161
Santiago-González JC, Kerns DL, Yang F. Resistance Allele Frequency of Helicoverpa zea to Vip3Aa Bacillus thuringiensis Protein in the Southeastern U.S. Insects. 2023; 14(2):161. https://doi.org/10.3390/insects14020161
Chicago/Turabian StyleSantiago-González, José C., David L. Kerns, and Fei Yang. 2023. "Resistance Allele Frequency of Helicoverpa zea to Vip3Aa Bacillus thuringiensis Protein in the Southeastern U.S." Insects 14, no. 2: 161. https://doi.org/10.3390/insects14020161
APA StyleSantiago-González, J. C., Kerns, D. L., & Yang, F. (2023). Resistance Allele Frequency of Helicoverpa zea to Vip3Aa Bacillus thuringiensis Protein in the Southeastern U.S. Insects, 14(2), 161. https://doi.org/10.3390/insects14020161