From the Lab to the Field: Long-Distance Transport of Sterile Aedes Mosquitoes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material and Rearing
2.2. Chilling, Compaction and Irradiation Procedures
2.3. Mosquito Packing Procedures
2.4. Quality Control Parameters
2.5. Environmental Conditions during Transport
2.6. Mosquito Compaction Box Type, Recovery Time and Mosquito Quality during Long-Distance Transport
2.7. Long-Distance Transport, Irradiation and Mosquito Flight Ability
2.8. Marking, Irradiation, Transport and Mosquito Quality
3. Data Analysis
Ethical Statement
4. Results
4.1. Environmental Conditions during Transport
4.2. Mosquito Compaction Box Type and Recovery Time on Mosquito Quality during Long-Distance Transport
4.3. Long-Distance Transport and Irradiation on Mosquito Flight Ability
4.4. Marking, Irradiation, and Transport on Mass-Transported Sterile Male Mosquitoes
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments:
Conflicts of Interest
References
- Benedict, M.Q.; Levine, R.S.; Hawley, W.A.; Lounibos, L.P. Spread of the Tiger: Global Risk of Invasion by the Mosquito Aedes albopictus. Vector-Borne Zoonotic Dis. 2007, 7, 76–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The Global Distribution and Burden of Dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy Blitchtein, S.; Del Valle Mendoza, J.M. Zika Virus Is Arriving at the American Continent. Asian Pac. J. Trop. Med. 2016, 9, 1019–1021. [Google Scholar] [CrossRef] [Green Version]
- Moyes, C.L.; Vontas, J.; Martins, A.J.; Ng, L.C.; Koou, S.Y.; Dusfour, I.; Raghavendra, K.; Pinto, J.; Corbel, V.; David, J.-P. Contemporary Status of Insecticide Resistance in the Major Aedes Vectors of Arboviruses Infecting Humans. PLoS Negl. Trop. Dis. 2017, 11, e0005625. [Google Scholar] [CrossRef]
- World Health Organization; UNICEF. Global Vector Control Response 2017–2030; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Knipling, E.F.; Laven, H.; Craig, G.B.; Pal, R.; Smith, C.N.; Brown, A.W.A. Genetic Control of Insects of Public Health Importance. Bull. World Health Organ. 1968, 38, 421–438. [Google Scholar] [PubMed]
- Vreysen, M.J.; Abd-Alla, A.M.; Bourtzis, K.; Bouyer, J.; Caceres, C.; de Beer, C.; Oliveira Carvalho, D.; Maiga, H.; Mamai, W.; Nikolouli, K. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010–2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. Insects 2021, 12, 346. [Google Scholar] [CrossRef] [PubMed]
- FAO/IAEA. International Guideline for Transboundary Shipments of Irradiated Sterile Insects; Food and Agriculture Organization of the United Nations/International Atomic Energy Agency: Vienna, Austria, 2022; 38p. [Google Scholar]
- Mastronikolos, G.D.; Kapranas, A.; Balatsos, G.K.; Ioannou, C.; Papachristos, D.P.; Milonas, P.G.; Puggioli, A.; Pajovi’c, I.; Petri’c, D.; Bellini, R.; et al. Quality Control Methods for Aedes albopictus Sterile Male Transportation. Insects 2022, 13, 179. [Google Scholar] [CrossRef]
- Zhang, D.; Xi, Z.; Li, Y.; Wang, X.; Yamada, H.; Qiu, J.; Liang, Y.; Zhang, M.; Wu, Y.; Zheng, X. Toward Implementation of Combined Incompatible and Sterile Insect Techniques for Mosquito Control: Optimized Chilling Conditions for Handling Aedes albopictus Male Adults Prior to Release. PLoS Negl. Trop. Dis. 2020, 14, e0008561. [Google Scholar] [CrossRef]
- Iyaloo, D.P.; Bouyer, J.; Facknath, S.; Bheecarry, A. Pilot Suppression Trial of Aedes albopictus Mosquitoes through an Integrated Vector Management Strategy Including the Sterile Insect Technique in Mauritius. bioRxiv 2020. [Google Scholar] [CrossRef]
- Sasmita, H.I.; Ernawan, B.; Sadar, M.; Nasution, I.A.; Indarwatmi, M.; Tu, W.-C.; Neoh, K.-B. Assessment of packing density and transportation effect on sterilized pupae and adult Aedes aegypti (Diptera: Culicidae) in non-chilled conditions. Acta Trop. 2022, 226, 106243. [Google Scholar] [CrossRef]
- Ernawan, B.; Anggraeni, T.; Yusmalinar, S.; Sasmita, H.I.; Fitrianto, N.; Ahmad, I. Assessment of Compaction, Temperature, and Duration Factors for Packaging and Transporting of Sterile Male Aedes aegypti (Diptera: Culicidae) under Laboratory Conditions. Insects 2022, 13, 847. [Google Scholar] [CrossRef] [PubMed]
- Becker, N.; Langentepe-Kong, S.M.; Tokatlian Rodriguez, A.; Oo, T.T.; Reichle, D.; Lühken, R.; Schmidt-Chanasit, J.; Lüthy, P.; Puggioli, A.; Bellini, R. Integrated Control of Aedes albopictus in Southwest Germany Supported by the Sterile Insect Technique. Parasit. Vectors 2022, 15, 9. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, E.; Escobar, A.; Bravo, B.; Montoya, P. Chilled Packing Systems for Fruit Flies (Diptera: Tephritidae) in the Sterile Insect Technique. Neotrop. Entomol. 2010, 39, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Blomefield, T.; Carpenter, J.E.; Vreysen, M.J.B. Quality of mass-reared codling moth (Lepidoptera: Tortricidae) after long-distance transportation: 1. Logistics of shipping procedures and quality parameters as measured in the laboratory. J. Econ. Entomol. 2011, 104, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Bouyer, J.; Culbert, N.J.; Dicko, A.H.; Pacheco, M.G.; Virginio, J.; Pedrosa, M.C.; Garziera, L.; Pinto, A.T.M.; Klaptocz, A.; Germann, J.; et al. Field Performance of Sterile Male Mosquitoes Released from an Uncrewed Aerial Vehicle. Sci. Robot. 2020, 5, eaba6251. [Google Scholar] [CrossRef] [PubMed]
- Hagler, J.R.; Jackson, C.G. Methods for Marking Insects: Current Techniques and Future Prospects. Annu. Rev. Entomol. 2001, 46, 511–543. [Google Scholar] [CrossRef] [Green Version]
- Culbert, N.J.; Kaiser, M.; Venter, N.; Vreysen, M.J.; Gilles, J.R.; Bouyer, J. A Standardised Method of Marking Male Mosquitoes with Fluorescent Dust. Parasit. Vectors 2020, 13, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas-Araya, D.; Alto, B.W.; Cummings, D.A.; Burkett-Cadena, N.D. Differentiation of Multiple Fluorescent Powders, Powder Transfer, and Effect on Mating in Aedes aegypti (Diptera: Culicidae). Insects 2020, 11, 727. [Google Scholar] [CrossRef]
- Diouf, G.; Seck, M.T.; Fall, A.G.; Bassène, M.D.; Biteye, B.; Bakhoum, M.T.; Ciss, M. Effectiveness of a New Self-Marking Technique in Aedes aegypti under Laboratory Conditions. Insects 2022, 13, 379. [Google Scholar] [CrossRef]
- Bellini, R.; Albiere, A.; Balestrino, F.; Carrieri, M.; Porretta, D.; Urbanelli, S.; Calvitti, M.; Moretti, R.; Maini, S. Dispersal and Survival of Aedes Albopictus (Diptera: Culicidae) Males in Italian Urban Areas and Significance for Sterile Insect Technique Application. J. Med. Entomol. 2010, 47, 1082–1091. [Google Scholar] [CrossRef]
- Rojas-Araya, D.; Alto, B.W.; Burkett-Cadena, N.D.; Cummings, D.A. Impacts of Fluorescent Powders on Survival of Different Age Cohorts, Blood-Feeding Success, and Tethered Flight Speed of Aedes aegypti (Diptera: Culicidae) Females. Acta Trop. 2020, 207, 105491. [Google Scholar] [PubMed]
- Velo, E.; Balestrino, F.; Kadriaj, P.; Carvalho, D.O.; Dicko, A.; Bellini, R.; Puggioli, A.; Petrić, D.; Michaelakis, A.; Schaffner, F.; et al. A Mark-Release-Recapture Study to Estimate Field Performance of Imported Radio-Sterilized Male Aedes albopictus in Albania. Front. Bioeng. Biotechnol. 2022, 10, 833698. [Google Scholar] [CrossRef] [PubMed]
- Balestrino, F.; Puggioli, A.; Malfacini, M.; Albieri, A.; Carrieri, M.; Bouyer, J.; Bellini, R. Field Performance Assessment of Irradiated Aedes Albopictus Males Through Mark–Release–Recapture Trials With Multiple Release Points. Front. Bioeng. Biotechnol. 2022, 10, 876677. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.O.; Morreale, R.; Stenhouse, S.; Hahn, D.A.; Gomez, M.; Lloyd, A.; Hoel, D. A Sterile Insect Technique Pilot Trial on Captiva Island: Defining Mosquito Population Parameters for Sterile Male Releases Using Mark–Release–Recapture. Parasit. Vectors 2022, 15, 402. [Google Scholar]
- FAO/IAEA. Guidelines for Routine Colony Maintenance of Aedes Mosquito Species; Version 1.0; FAO/IAEA: Vienna, Austria, 2017; p. 18. [Google Scholar]
- FAO/IAEA. Guidelines for Mass Rearing Aedes Mosquitoes; Version 1.0; FAO/IAEA: Vienna, Austria, 2020. [Google Scholar]
- Maïga, H.; Mamai, W.; Somda, N.S.B.; Konczal, A.; Wallner, T.; Herranz, G.S.; Herrero, R.A.; Yamada, H.; Bouyer, J. Reducing the Cost and Assessing the Performance of a Novel Adult Mass-Rearing Cage for the Dengue, Chikungunya, Yellow Fever and Zika Vector, Aedes aegypti (Linnaeus). PLoS Negl. Trop. Dis. 2019, 13, e0007775. [Google Scholar] [CrossRef] [Green Version]
- Maïga, H.; Lu, D.; Mamai, W.; Bimbilé Somda, N.S.; Wallner, T.; Bakhoum, M.T.; Bueno Masso, O.; Martina, C.; Kotla, S.S.; Yamada, H. Standardization of the FAO/IAEA Flight Test for Quality Control of Sterile Mosquitoes. Front. Bioeng. Biotechnol. 2022, 10, 876675. [Google Scholar] [CrossRef]
- Gómez-Simuta, Y.; Parker, A.; Cáceres, C.; Vreysen, M.J.; Yamada, H. Characterization and Dose-Mapping of an X-ray Blood Irradiator to Assess Application Potential for the Sterile Insect Technique (SIT). Appl. Radiat. Isot. 2021, 176, 109859. [Google Scholar] [CrossRef]
- FAO/IAEA. Dose Mapping by Scanning Gafchromic Film to Measure the Absorbed Dose of Insects during Their Sterilization; International Atomic Energy Agency: Vienna, Austria, 2020. [Google Scholar]
- Culbert, N.J.; Balestrino, F.; Dor, A.; Herranz, G.S.; Yamada, H.; Wallner, T.; Bouyer, J. A Rapid Quality Control Test to Foster the Development of Genetic Control in Mosquitoes. Sci. Rep. 2018, 8, 16179. [Google Scholar] [CrossRef] [Green Version]
- Gómez, M.; Macedo, A.T.; Pedrosa, M.C.; Hohana, F.; Barros, V.; Pires, B.; Barbosa, L.; Brito, M.; Garziera, L.; Argilés-Herrero, R.; et al. Exploring Conditions for Handling Packing and Shipping Aedes aegypti Males to Support an SIT Field Project in Brazil. Insects 2022, 13, 871. [Google Scholar] [CrossRef]
- FAO/IAEA. Guidelines for Mark-Release-Recapture Procedures of Aedes Mosquitoes; Bouyer, J., Balestrino, F., Culbert, N., Yamada, Y., Argilés, R., Eds.; Version 1.0; Food and Agriculture Organization of the United Nations/International Atomic Energy Agency: Vienna, Austria, 2020. [Google Scholar]
- Chaves, L.F.; Chaves, L.F. An Entomologist Guide to Demystify Pseudoreplication: Data Analysis of Field Studies with Design Constraints. J. Med. Entomol. 2010, 47, 291–298. [Google Scholar] [CrossRef]
- Bolker, B. GLMM FAQ: Testing for Overdispersion/Computing Overdispersion Factor. 2022. Available online: http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html (accessed on 25 October 2022).
- Kéry, M.; Hatfield, J.S. Normality of Raw Data in General Linear Models: The Most Widespread Myth in Statistics. Bull. Ecol. Soc. Am. 2003, 84, 92–94. [Google Scholar] [CrossRef]
- Crawley, M.J. The R Book; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 0-470-97392-7. [Google Scholar]
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means; R Package Version 1.4.6; 2022. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 2 October 2021).
- Somda, N.S.B.; Maïga, H.; Mamai, W.; Yamada, H.; Ali, A.; Konczal, A.; Gnankiné, O.; Diabaté, A.; Sanon, A.; Dabiré, K.R. Insects to Feed Insects-Feeding Aedes Mosquitoes with Flies for Laboratory Rearing. Sci. Rep. 2019, 9, 11403. [Google Scholar] [CrossRef] [Green Version]
- Mamai, W.; Maiga, H.; Gárdos, M.; Bán, P.; Bimbilé Somda, N.S.; Konczal, A.; Wallner, T.; Parker, A.; Balestrino, F.; Yamada, H.; et al. The Efficiency of a New Automated Mosquito Larval Counter and Its Impact on Larval Survival. Sci. Rep. 2019, 9, 7413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dor, A.; Maggiani-Aguilera, A.M.; Valle-Mora, J.; Bond, J.G.; Marina, C.F.; Liedo, P. Assessment of Aedes Aegy pti (Diptera: Culicidae) Males Flight Ability for SIT Application: Effect of Device Design, Duration of Test, and Male Age. J. Med. Entomol. 2020, 57, 824–829. [Google Scholar] [CrossRef]
- Balatsos, G.; Puggioli, A.; Karras, V.; Lytra, I.; Mastronikolos, G.; Carrieri, M.; Papachristos, D.P.; Malfacini, M.; Stefopoulou, A.; Ioannou, C.S. Reduction in Egg Fertility of Aedes Albopictus Mosquitoes in Greece Following Releases of Imported Sterile Males. Insects 2021, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- Seck, M.T.; Pagabeleguem, S.; Bassene, M.D.; Fall, A.G.; Diouf, T.A.; Sall, B.; Vreysen, M.J.; Rayaisse, J.-B.; Takac, P.; Sidibe, I. Quality of Sterile Male Tsetse after Long Distance Transport as Chilled, Irradiated Pupae. PLoS Negl. Trop. Dis. 2015, 9, e0004229. [Google Scholar] [CrossRef] [Green Version]
- Pagabeleguem, S.; Seck, M.T.; Sall, B.; Vreysen, M.J.B.; Gimonneau, G.; Fall, A.G.; Bassene, M.; Sidibé, I.; Rayaissé, J.B.; Belem, A.M.G.; et al. Long Distance Transport of Irradiated Male Glossina Palpalis Gambiensis Pupae and Its Impact on Sterile Male Yield. Parasit. Vectors 2015, 8, 259. [Google Scholar] [CrossRef] [Green Version]
- Diallo, S.; Seck, M.T.; Rayaissé, J.-B.; Fall, A.G.; Bassene, M.D.; Sall, B.; Sanon, A.; Vreysen, M.J.B.; Takac, P.; Parker, A.G.; et al. Chilling, irradiation and transport of male Glossina palpalis gambiensis pupae: Effect on the emergence, flight ability and survival. PLoS ONE 2019, 14, e0216802. [Google Scholar] [CrossRef] [Green Version]
- López-Martínez, G.; Hahn, D.A. Short-term anoxic conditioning hormesis boosts antioxidant defenses, lowers oxidative damage following irradiation and enhances male sexual performance in the Caribbean fruit fly, Anastrepha suspensa. J. Exp. Biol. 2012, 215 Pt 12, 2150–2161. [Google Scholar] [CrossRef] [Green Version]
- Yamada, H.; Maiga, H.; Kraupa, C.; Mamai, W.; Bimbilé Somda, N.S.; Abrahim, A.; Wallner, T.; Bouyer, J. Effects of Chilling and Anoxia on the Irradiation Dose-Response in Adult Aedes Mosquitoes. Front. Bioeng. Biotechnol. 2022, 10, 856780. [Google Scholar] [CrossRef]
- Chung, H.N.; Rodriguez, S.D.; Gonzales, K.K.; Vulcan, J.; Cordova, J.J.; Mitra, S.; Adams, C.G.; Moses-Gonzales, N.; Tam, N.; Cluck, J.W.; et al. Toward Implementation of Mosquito Sterile Insect Technique: The Effect of Storage Conditions on Survival of Male Aedes aegypti Mosquitoes (Diptera: Culicidae) during Transport. J. Insect Sci. 2018, 18, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culbert, N.J.; Lees, R.S.; Vreysen, M.J.; Darby, A.C.; Gilles, J.R. Optimised Conditions for Handling and Transport of Male Anopheles arabiensis: Effects of Low Temperature, Compaction, and Ventilation on Male Quality. Entomol. Exp. Appl. 2017, 164, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Zheng, X.; Zhang, D.; Wu, Y. Current Status of Mosquito Handling, Transporting and Releasing in Frame of the Sterile Insect Technique. Insects 2022, 13, 532. [Google Scholar] [CrossRef]
- Oliva, C.F.; Jacquet, M.; Gilles, J.; Lemperiere, G.; Maquart, P.O.; Quilici, S.; Schooneman, F.; Vreysen, M.J.; Boyer, S. The Sterile Insect Technique for Controlling Populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: Mating Vigour of Sterilized Males. PLoS ONE 2012, 7, e49414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marina, C.F.; Liedo, P.; Bond, J.G.; Osorio, A.R.; Valle, J.; Angulo-Kladt, R.; Gómez-Simuta, Y.; Fernández-Salas, I.; Dor, A.; Williams, T. Comparison of Ground Release and Drone-Mediated Aerial Release of Aedes aegypti Sterile Males in Southern Mexico: Efficacy and Challenges. Insects 2022, 13, 347. [Google Scholar] [CrossRef] [PubMed]
- Maïga, H.; Bakhoum, M.T.; Mamai, W.; Diouf, G.; Bimbilé Somda, N.S.; Wallner, T.; BuenoMasso, O.; Martina, C.; Kotla, S.S.; Yamada, H.; et al. Fromthe lab to the field: Long-distance transport of sterile Aedes mosquitoes. Insects 2022, 14. [Google Scholar]
Estimate | Std. Error | z Value | Pr(>|z|) | ||
---|---|---|---|---|---|
(Intercept) | 1.8157 | 0.1616 | 11.236 | <2 × 10−16 | *** |
Box type: No_holes | −0.8894 | 0.1151 | −7.731 | 1.07 × 10−14 | *** |
Transport duration: 96 h | −1.6499 | 0.2842 | −5.806 | 6.41 × 10−09 | *** |
Box type No_holes: Transport duration 96 h | 1.1987 | 0.1867 | 6.421 | 1.35 × 10−10 | *** |
Estimate | Std. Error | t Value | Pr(>|t|) | ||
---|---|---|---|---|---|
(Intercept) | 0.2475 | 0.1951 | 1.268 | 0.21744 | |
Box type: No_holes | 0.4391 | 0.2841 | 1.545 | 0.1359 | |
Time after unpacking: 24 h | 1.5707 | 0.2709 | 5.799 | 6.58 × 10−6 | *** |
Box type No_holes: Time after unpacking 24 h | −1.35 | 0.368 | −3.668 | 0.00128 | ** |
Estimate | Std. Error | z Value | Pr(>|z|) | ||
---|---|---|---|---|---|
(Intercept) | 2.7557 | 0.1033 | 26.681 | <2 × 10−16 | *** |
Box type: No_holes | −0.458 | 0.2024 | −2.263 | 0.0236 | * |
Transport duration: 96 h | −2.6093 | 0.1901 | −13.723 | <2 × 10−16 | *** |
Box type No_holes: Transport duration 96 h | 1.1862 | 0.2665 | 4.451 | 8.53 × 10−6 | *** |
Estimate | Std. Error | t Value | Pr(>|t|) | ||
---|---|---|---|---|---|
(Intercept) | 2.45413 | 0.23472 | 10.456 | 7.45 × 10−14 | *** |
Nontransported | −0.02639 | 0.32512 | −0.081 | 0.936 | |
Transported | −2.19028 | 0.29182 | −7.506 | 1.41 × 10−9 | *** |
Transport duration: 48 h | 1.02543 | 0.21725 | 4.72 | 2.15 × 10−5 | *** |
Estimate | Std. Error | t Value | Pr(>|t|) | ||
---|---|---|---|---|---|
(Intercept) | 4.11789 | 0.20141 | 20.446 | <2 × 10−16 | *** |
Marking: 1 | −0.23563 | 0.09365 | −2.516 | 0.0137 | * |
Packing time: 48 h | −1.11229 | 0.23399 | −4.754 | 7.74 × 10−06 | *** |
Packing time: 72 h | −1.71948 | 0.21787 | −7.892 | 7.68 × 10−12 | *** |
Packing time: 96 h | −3.20626 | 0.20431 | −15.693 | <2 × 10−16 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maïga, H.; Bakhoum, M.T.; Mamai, W.; Diouf, G.; Bimbilé Somda, N.S.; Wallner, T.; Martina, C.; Kotla, S.S.; Masso, O.B.; Yamada, H.; et al. From the Lab to the Field: Long-Distance Transport of Sterile Aedes Mosquitoes. Insects 2023, 14, 207. https://doi.org/10.3390/insects14020207
Maïga H, Bakhoum MT, Mamai W, Diouf G, Bimbilé Somda NS, Wallner T, Martina C, Kotla SS, Masso OB, Yamada H, et al. From the Lab to the Field: Long-Distance Transport of Sterile Aedes Mosquitoes. Insects. 2023; 14(2):207. https://doi.org/10.3390/insects14020207
Chicago/Turabian StyleMaïga, Hamidou, Mame Thierno Bakhoum, Wadaka Mamai, Gorgui Diouf, Nanwintoum Séverin Bimbilé Somda, Thomas Wallner, Claudia Martina, Simran Singh Kotla, Odet Bueno Masso, Hanano Yamada, and et al. 2023. "From the Lab to the Field: Long-Distance Transport of Sterile Aedes Mosquitoes" Insects 14, no. 2: 207. https://doi.org/10.3390/insects14020207
APA StyleMaïga, H., Bakhoum, M. T., Mamai, W., Diouf, G., Bimbilé Somda, N. S., Wallner, T., Martina, C., Kotla, S. S., Masso, O. B., Yamada, H., Sow, B. B. D., Fall, A. G., & Bouyer, J. (2023). From the Lab to the Field: Long-Distance Transport of Sterile Aedes Mosquitoes. Insects, 14(2), 207. https://doi.org/10.3390/insects14020207