Single and Combined Mutations of Acetylcholinesterase Gene Giving Resistance to Pirimiphos-Methyl in Musca domestica Slaughterhouse Populations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Rearing of House Flies
2.2. Insecticide
2.3. Bioassays
2.4. Ace Genotyping
2.5. Statistical Analysis
3. Results
3.1. Susceptibility of House Flies to PM
3.2. Genotyping of Ace Resistance Alleles
3.3. SNPs
3.4. Ace Combinations
3.5. Ace Genotypes Recovered from Field House Fly Populations and Their PM-Surviving Counterparts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scott, J. Insecticide resistance in insects. In Handbook of Pest Management; Pimentel, D., Ed.; CRC Press: Boca Raton, FL, USA, 1991; Volume 2, pp. 663–677. [Google Scholar]
- Nayduch, D.; Burrus, R.G. Flourishing in filth: House fly–microbe interactions across life history. Ann. Entomol. Soc. Am. 2017, 1101, 6–18. [Google Scholar] [CrossRef] [Green Version]
- Khamesipour, F.; Lankarani, K.B.; Honarvar, B.; Kwenti, T.E. A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health 2018, 18, 1049. [Google Scholar] [CrossRef] [PubMed]
- Başkurt, S.; Taşkın, B.G.; Doğaç, E.; Taşkın, V. Polymorphism in the acetylcholinesterase gene of Musca domestica L. field populations in Turkey. J. Vector Ecol. 2011, 362, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.C.; Ross, D.H.; Scott, J.G. Insecticide resistance monitoring of house fly populations from the United States. Pestic. Biochem. Physiol. 2019, 158, 61–68. [Google Scholar] [CrossRef]
- Mou, R.; Yang, X.; Liang, Q.; Cheng, J.; Wu, Y.; Wang, G.; Tan, W.; Wu, J.H. Polymorphism and distribution of ace gene involved in the resistance of Musca domestica to organophosphates in Guizhou province of China. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Al-Rajihi, D.H.; Moussa, M.E.; Morshedy, M. Insecticidal susceptibility study on two strains of house fly Musca domestica L. in Saudi Arabia. J. Saudi Soc. Agric. Sci. 1985, 7, 467–474. [Google Scholar]
- Al-Rajihi, D.H. Tracing monooxygenase level by synergistic bioassays in field and sequential generation of house flies (Diptera: Muscidae). J. King Saud Univ. 1992, 4, 261–269. [Google Scholar]
- Alzahrani, S.M.; Ajlan, A.; Hajjar, M.J.; Albokari, M. Resistance of field strains of house fly Musca domestica L. to diazinon insecticide in Riyadh city, Saudi Arabia. J. Jazan Univ. Appl. Sci. Branch 2015, 4, 1–8. [Google Scholar]
- Abobakr, Y.; Al-Hussein, F.I.; Bayoumi, A.E.; Alzabib, A.A.; Al-Sarar, A.S. Organophosphate insecticides resistance in field populations of house flies, Musca domestica L.: Levels of resistance and acetylcholinesterase activity. Insects 2022, 13, 192. [Google Scholar] [CrossRef]
- Lee, S.W.; Ohta, K.; Tashiro, S.; Shono, T. Metabolic resistance mechanisms of the housefly (Musca domestica) resistant to pyraclofos. Pestic. Biochem. Physio. 2006, 85, 76–83. [Google Scholar] [CrossRef]
- Kim, C.S.; Kim, W.T.; Boo, K.S.; Kim, S.I. Cloning, mutagenesis, and expression of the acetylcholinesterase gene from a strain of Musca domestica; the change from a drug-resistant to a sensitive enzyme. Mol. Cells. 2003, 152, 208–215. [Google Scholar]
- Matsumura, F. Toxicology of Insecticides; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Tripathi, R.K.; O’Brien, R.D. Insensitivity of acetylcholinesterase as a factor in resistance of houseflies to the organophosphate Rabon. Pestic. Biochem. Physiol. 1973, 3, 495–498. [Google Scholar] [CrossRef]
- Walsh, S.B.; Dolden, T.A.; Moores, G.D.; Kristensen, M.; Lewis, T.; Devonshire, A.L.; Williamson, M.S. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem. J. 2001, 3591, 175–181. [Google Scholar] [CrossRef]
- Kozaki, T.; Brady, S.G.; Scott, J.G. Frequencies and evolution of organophosphate insensitive acetylcholinesterase alleles in laboratory and field populations of the house fly, Musca domestica L. Pestic. Biochem. Physiol. 2009, 951, 6–11. [Google Scholar] [CrossRef]
- Kozaki, T.; Shono, T.; Tomita, T.; Kono, Y. Fenitroxon insensitive acetylcholinesterases of the house fly, Musca domestica associated with point mutations. Insect Biochem. Molec. Biol. 2001, 31, 991–997. [Google Scholar] [CrossRef]
- Kristensen, M.; Huang, J.; Qiao, C.L.; Jespersen, J.B. Variation of Musca domestica L. acetylcholinesterase in Danish housefly populations. Pest Manag. Sci. 2006, 62, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, R.L. Insect resistance to insecticides. Pestic. Sci. 1989, 264, 333–358. [Google Scholar] [CrossRef]
- Marcon, P.C.; Thomas, G.D.; Siegfried, B.D.; Campbell, J.B.; Skoda, S.R. Resistance status of house flies (Diptera: Muscidae) from southeastern Nebraska beef cattle feedlots to selected insecticides. J. Econ. Entomol. 2003, 963, 1016–1020. [Google Scholar] [CrossRef]
- Bahareth, O.; Alsahhaf, Z.; Saleh, A.; Hijji, A.; Osman, G. The Effect of Bacillus thuringiensis israelensis (Bti) as a microbial control agent against Musca domestica in Makkah Region. J. Pure Appl. Microbiol. 2018, 12, 2077–2085. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.G.; Leichter, C.A.; Rinkevihc, F.D.; Harris, S.A.; Su, C.; Aberegg, L.C.; Moon, R.; Geden, C.J.; Gerry, A.C.; Taylor, D.B.; et al. Insecticide resistance in house flies from the United States: Resistance levels and frequency of pyrethroid resistance alleles. Pestic. Biochem. Physiol. 2013, 1073, 377–384. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2012. [Google Scholar]
- Finney, D.J. Probit Analysis; Cambridge University Press: New York, NY, USA, 1971; p. 333. [Google Scholar]
- Litchfield, J.; Wilcoxon, F. A simplified method of evaluating dose-effect experiments. J. Exp. Ther. 1949, 96, 99–110. [Google Scholar]
- WHO. Monitoring and Managing Insecticide Resistance in Aedes Mosquito Populations; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Raymond, M.; Rousset, F. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [PubMed]
- Barton, N.H.; Slatkin, M. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 1986, 56, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Uddin, M.N.; Rizwan, M.; Khan, W.; Farooq, M.; Shah, A.S.; Subhan, F.; Aziz, F.; Rahman, K.U.; Khan, A.; et al. Mechanism of insecticide resistance in insects/pests. Pol. J. Environ. Stud. 2020, 293, 2023–2030. [Google Scholar]
- Rinkevich, F.; Zhang, L.; Hamm, R.; Brady, S.; Lazzaro, B.; Scott, J. Frequencies of the pyrethroid resistance alleles of Vssc1 and CYP6D1 in house flies from the eastern United States. Insect Mol. Biol. 2006, 152, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.G. Evolution of resistance to pyrethroid insecticides in Musca domestica. Pest Manag. Sci. 2017, 734, 716–722. [Google Scholar] [CrossRef]
- The Saudi Food and Drug Authority (SFDA). Database for Pesticide Registration. Available online: https://www.sfda.gov.sa/en/informationlist/65748 (accessed on 17 October 2021).
- You, C.; Shan, C.; Xin, J.; Li, J.; Ma, Z.; Zhang, Y.; Zeng, X.; Gao, X. Propoxur resistance associated with insensitivity of acetylcholinesterase (AChE) in the housefly, Musca domestica (Diptera: Muscidae). Sci. Rep. 2020, 10, 8400. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Zhu, J.; Li, M.; Jashenko, R.; Qiu, X. Multiple genetic mutations related to insecticide resistance are detected in field Kazakhstani house flies (Muscidae: Diptera). J. Med. Entomol. 2021, 586, 2338–2348. [Google Scholar] [CrossRef]
- Kočišová, A.; Novák, P.; Toporčák, J.; Petrovský, M. Development of resistance in field housefly (Musca domestica): Comparison of effect of classic spray regimes versus integrated control methods. Acta Vet. Brno 2002, 713, 401–405. [Google Scholar] [CrossRef] [Green Version]
- Nariko Carvalho Guedes, R.; Alan Dover, B.; Kambhampati, S. Resistance to chlorpyrifos-methyl, pirimiphos-methyl, and malathion in Brazilian and US populations of Rhyzopertha dominica (Coleopera: Bostrichidae). J. Econ. Entomol. 1996, 891, 27–32. [Google Scholar] [CrossRef]
- Roditakis, E.; Roditakis, N.E.; Tsagkarakou, A. Insecticide resistance in Bemisia tabaci (Homoptera: Aleyrodidae) populations from Crete. Pestic. Sci. 2005, 616, 577–582. [Google Scholar] [CrossRef]
- Rodríguez, M.M.; Bisset, J.A.; Fernández, D. Levels of insecticide resistance and resistance mechanisms in Aedes aegypti from some Latin American countries. J. Am. Mosq. Control. Assoc. 2007, 234, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Kisinza, W.N.; Nkya, T.E.; Kabula, B.; Overgaard, H.J.; Massue, D.J.; Mageni, Z.; Greer, G.; Kaspar, N.; Mohamed, M.; Reithinger, R.; et al. Multiple insecticide resistance in Anopheles gambiae from Tanzania: A major concern for malaria vector control. Malar. J. 2017, 16, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chukwuekezie, O.; Nwosu, E.; Nwangwu, U.; Dogunro, F.; Onwude, C.; Agashi, N.; Ezihe, E.; Anioke, C.; Anokwu, S.; Eloy, E.; et al. Resistance status of Anopheles gambiae (s.l.) to four commonly used insecticides for malaria vector control in South-East Nigeria. Parasites Vectors 2020, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Al-Hussein, F.I. Resistance of Housefly Musca domestica L. (Diptera: Muscidae) Populations to Insecticides in Some Locations of Riyadh City: Resistance Level, Mechanism and Overcome. Master’s Thesis, King Saud University, Riyad, Saudi Arabia, 2017. [Google Scholar]
- Hafez, A.M. First evaluation of field evolved resistance to commonly used insecticides in house fly populations from Saudi Arabian dairy farms. Insects 2021, 12, 1120. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, M.; Pan, J.; Di, M.; Liu, Q.; Meng, F.; Scott, J.G.; Qiu, X. Diversity and frequencies of genetic mutations involved in insecticide resistance in field populations of the house fly (Musca domestica L.) from China. Pestic. Biochem. Physiol. 2012, 1022, 153–159. [Google Scholar] [CrossRef]
- Assogba, B.S.; Djogbénou, L.S.; Milesi, P.; Berthomieu, A.; Perez, J.; Ayala, D.; Chandre, F.; Makoutodé, M.; Labbé, P.; Weill, M. An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito. Sci. Rep. 2015, 5, srep14529. [Google Scholar] [CrossRef] [Green Version]
- Bourguet, D.; Raymond, M.; Bisset, J.; Pasteur, N.; Arpagaus, M. Duplication of the Ace. 1 locus in Culex pipiens mosquitoes from the Caribbean. Biochem. Genet. 1996, 349, 351–362. [Google Scholar] [CrossRef]
- Djogbénou, L.; Chandre, F.; Berthomieu, A.; Dabiré, R.; Koffi, A.; Alout, H.; Weill, M. Evidence of introgression of the ace-1R mutation and of the ace-1 duplication in West African Anopheles gambiae s.s. PLoS ONE 2008, 3, e2172. [Google Scholar] [CrossRef] [Green Version]
- Kozaki, T.; Shono, T.; Tomita, T.; Kono, Y. Polymorphism in the acetylcholinesterase gene of the housefly, Musca domestica L. (Diptera: Muscidae). Appl. Entomol. Zool. 2001, 363, 377–380. [Google Scholar] [CrossRef] [Green Version]
- Liming, T.; Mingan, S.; Jiangzhong, Y.; Peijun, Z.; Chuanxi, Z.; Zhenhua, T. Resistance pattern and point mutations of insensitive acetylcholinesterase in a carbamate-resistant strain of housefly (Musca domestica). Pestic. Biochem. Physiol. 2006, 861, 1–6. [Google Scholar] [CrossRef]
- Barres, B.; Corio-Costet, M.F.; Debieu, D.D.; Délye, C.; Fillinger-David, S.; Grosman, J.; Micoud, A.; Siegwart, M.; Walker, A.S. Trends and challenges in pesticide resistance detection. Trends Plant Sci. 2016, 21, 834–853. [Google Scholar]
- Ffrench-Constant, R.H. The molecular genetics of insecticide resistance. Genetics 2013, 194, 807–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, G.; Chadee, D.D.; Severson, D.W. Evidence for genetic hitchhiking effect associated with insecticide resistance in Aedes aegypti. Genetics 1998, 148, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Soma, D.D.; Zogo, B.M.; Somé, A.; Tchiekoi, B.N.C.; Hien, D.F.D.S.; Pooda, H.S.; Coulibaly, S.; Gnambani, J.E.; Ouari, A.; Mouline, K.; et al. Anopheles bionomics, insecticide resistance and malaria transmission in southwest Burkina Faso: A pre-intervention study. PLoS ONE 2020, 15, e0236920. [Google Scholar] [CrossRef]
- Cao, X.M.; Song, F.L.; Zhao, T.Y.; Dong, Y.D.; Sun, C.X.; Lu, B.L. Survey of deltamethrin resistance in house flies (Musca domestica) from urban garbage dumps in northern China. Environ. Entomol. 2006, 35, 1–9. [Google Scholar] [CrossRef] [Green Version]
Population | N * | LC50 (mM) | 95% Confidence Limits | Slope ± SE | χ2 | p | RR | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
LAB | 360 | 0.014 | 0.012 | 0.017 | 0.68 ± 0.19 | 2.32 | 0.68 | - |
Riyadh | 360 | 8.44 | 7.73 | 9.65 | 2.63 ± 0.29 | 2.582 | 0.28 | 602.9 |
Jeddah | 360 | 2.45 | 2.14 | 2.74 | 3.43 ± 0.42 | 0.755 | 0.86 | 175 |
Taif | 360 | 1.63 | 1.37 | 1.96 | 2.16 ± 0.19 | 3.04 | 0.55 | 116.4 |
Population | N * | 239 *** ATT→GTT | 243 GAG→AAG | 260 GTC→CTC | 316 GCT→TCT | 342 CGC→CC/TC | 407 TTT→TAT | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ile | Val | Glu | Lys | Val | Leu | Ala | Ser | Gly | Ala | Val | Phe | Tyr | ||
Riyadh | 48 | 98.9 | 1.1 | 96.9 | 3.1 | 17.7 | 82.3 | 100 | 0 | 10.4 | 79.2 | 10.4 | 16.7 | 83.3 |
Riyadh/S ** | 12 | 100 | 0 | 100 | 0 | 12.5 | 87.5 | 100 | 0 | 25 | 70.8 | 4.2 | 41.7 | 58.3 |
Jeddah | 47 | 97.9 | 2.1 | 100 | 0 | 23.4 | 76.6 | 100 | 0 | 13.8 | 71.3 | 6.4 | 23.4 | 76.6 |
Jeddah/S ** | 12 | 87.5 | 12.5 | 100 | 0 | 16.7 | 83.3 | 100 | 0 | 0 | 83.3 | 16.7 | 8.3 | 91.7 |
Taif | 44 | 100 | 0 | 100 | 0 | 27.3 | 72.7 | 2.3 | 97.7 | 13.6 | 69.3 | 13.6 | 25 | 75 |
Taif/S ** | 9 | 100 | 0 | 100 | 0 | 33.3 | 66.7 | 100 | 0 | 11.1 | 72.2 | 16.7 | 11.1 | 88.9 |
Population | N * | Val260Leu GTC/CTC | Gly342Ala/Val ** GGC/GCC/GTC | Phe407Tyr TTT/TAT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
260 | 342 | 407 | ||||||||||
V/V | V/L | L/L | G/G | A/A | G/A | G/V | A/V | F/F | F/Y | Y/Y | ||
Riyadh | 48 | 0 | 17 | 31 | 0 | 28 | 10 | 0 | 10 | 3 | 10 | 35 |
0% | 35.4% | 64.6% | 0% | 58.3% | 20.8% | 0% | 20.8% | 6.3% | 20.8% | 72.9% | ||
Jeddah | 47 | 1 | 20 | 26 | 1 | 25 | 11 | 0 | 6 | 1 | 20 | 26 |
2.1% | 42.6% | 55.3% | 2.1% | 53.2% | 23.4% | 0% | 12.8% | 2.1% | 42.6% | 55.3% | ||
Taif | 44 | 2 | 20 | 22 | 2 | 21 | 7 | 1 | 11 | 3 | 16 | 25 |
4.5% | 45.5% | 50% | 4.5% | 47.7% | 15.9% | 2.3 | 25% | 6.3% | 36.4% | 56.8% | ||
KSA | 139 | 3 | 57 | 79 | 3 | 74 | 28 | 1 | 27 | 7 | 46 | 85 |
2% | 41% | 57% | 2% | 53% | 20% | 1% | 19% | 5% | 33.1% | 61.9% |
Ace Combination | Population | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
260 | 342 | 407 | Riyadh | Riyadh/S * | Jeddah | Jeddah/S * | Taif | Taif/S * | ||
1 | Leu | Ala | Tyr | 22 | 3 | 15 | 6 | 8 | 3 | 57 |
2 | Val/Leu | Ala | Tyr | 1 | 0 | 0 | 0 | 1 | 1 | 3 |
3 | Leu | Gly/Ala | Tyr | 1 | 1 | 1 | 0 | 0 | 0 | 3 |
4 | Val/Leu | Gly/Ala | Tyr | 1 | 0 | 3 | 0 | 0 | 0 | 4 |
5 | Leu | Ala | Phe/Tyr | 5 | 1 | 9 | 2 | 11 | 0 | 28 |
6 | Val/Leu | Gly/Ala | Phe/Tyr | 5 | 0 | 7 | 0 | 5 | 2 | 19 |
7 | Leu | Ala/Val | Tyr | 3 | 0 | 0 | 0 | 0 | 3 | 6 |
8 | Val/Leu | Ala/Val | Tyr | 7 | 1 | 6 | 4 | 11 | 0 | 29 |
9 | Val/Leu | Gly/Ala | Phe | 3 | 1 | 0 | 0 | 1 | 0 | 4 |
10 | Leu | Gly/Ala | Phe/Tyr | 0 | 3 | 1 | 0 | 1 | 0 | 5 |
11 | Leu | Gly/Ala | Phe | 0 | 2 | 0 | 0 | 0 | 0 | 2 |
12 | Val | Gly | Phe | 0 | 0 | 1 | 0 | 1 | 0 | 2 |
13 | Val/Leu | Gly/Ala/Val | Phe/Tyr | 0 | 0 | 1 | 0 | 1 | 0 | 2 |
14 | Val/Leu | Gly/Ala/Val | Tyr | 0 | 0 | 3 | 0 | 1 | 0 | 4 |
15 | Val | Gly/Val | Tyr | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
16 | Leu | Ala | Phe | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
17 | Leu | Gly | Tyr | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Total | 48 | 12 | 47 | 12 | 44 | 9 | 172 |
Recovered Ace Genotype | Riyadh | Jeddah | Taif |
---|---|---|---|
ACAGCCGTGGGGTGCGTCGAATTCCTCTTAAGTA | 8 | 1 | 0 |
ACAGCCGTGGGGTGCGTCRAATYCCTCCTAAGTA | 1 | 0 | 0 |
ACAGSYGKGGGGTGYGTYRMATTCCTCTTAARTA | 1 | 0 | 0 |
ACAGSYGKGGGGTGYGTYRMATTCCTCTTAAGTA | 1 | 0 | 0 |
ACAGCCGTGGGGTGCGTCGAATYCCTCCYAARTA | 1 | 0 | 0 |
ACAGSYGKGSGRTGSRTYRMATYCYKCCYAAMTT | 1 | 0 | 0 |
ACAGSYGKGGGGTGCGTYRMATYCCTCYYAAGTA | 1 | 0 | 0 |
ACAGSYGKGGGGTGYGTYRMATYCCTCYYAAGTA | 3 | 0 | 0 |
ACAGCCGTGGGGTGCGTCGAATYCCTCYYAARTA | 6 | 2 | 2 |
ACAGCCGTGGGGTGCGTCGAATYCCTCYYAAGTA | 1 | 1 | 1 |
ACARCCGTGGGGTGCGTYRMATTCCTCYTAAGTA | 1 | 0 | 0 |
ACARCCGTGGGGTGSGTCGAATYCCTCYYAARTA | 1 | 0 | 0 |
ACARSCGKGRGGTGSGTYRMATTCCTCYTMARTA | 1 | 0 | 0 |
ACAGCCGTGGGGTGCGTCGAATCCCTCCCAARTW | 2 | 2 | 2 |
ACAGSCGKGRGGTGSGTYRMATCCCTCCCMAATT | 1 | 0 | 0 |
AYAGSCGKRSGGKGSGTYRMATYCCTCCYMARTW | 1 | 0 | 0 |
ACAGSCGKGGGGTGSGTCGAATCCCTCCCAAATT | 1 | 0 | 0 |
ACAGCCGTGGGGTGCGTCGAATYCCTCYYAARTW | 3 | 4 | 0 |
ACAGSCGKGGGGTGYGTYRMATYCCTCYYAAGTA | 1 | 0 | 0 |
ACYGSCGKGSGGTGSGTYRMATYCCTCYYAARTW | 1 | 0 | 0 |
ACAGCCGTGGGGTGCGTYRMATYCCTCYYAARTA | 1 | 0 | 0 |
ACAGSCGKGGGGTGSGTYRMATYCCTCYYMARTW | 1 | 0 | 0 |
RCAGCCGTGGGGTGCGTCGAATYCCTCYYAAGTA | 1 | 0 | 0 |
ACAGCCGKGGGGTGYGTYRMATYCCTCYYAAGTA | 1 | 0 | 0 |
AYAGSCGKRGGGTGSGTYRMATYCCTCYYAAGTW | 1 | 0 | 0 |
ACAGSCGKGGGGTGSGTYRMATYCCTCCYAARTW | 1 | 0 | 0 |
ACAGSCGKGGGGTGYGTYRMATYCCTCYYAARTA | 1 | 0 | 0 |
ACAGCCGTGGGGTGCGTYRMATTCCTCTTAAGTA | 1 | 0 | 0 |
ACAGCCGTGGGGTGCGTCGAATCCCTCCCAAGTA | 1 | 0 | 0 |
ACAGCCGKGGGGTGYGTYRMATYCCTCYYAARTA | 1 | 0 | 0 |
ACAGCYGKGGGGTGYGYYRMATTCCTCTTAARTA | 1 | 0 | 0 |
ACAGSCGKGRGGTGSGYTACAYTCCTCTTARGTW | 0 | 1 | 0 |
ACAGSYGKGGGGTGBGYYRMATYCCTCYYAARTW | 0 | 1 | 1 |
ACAGCCGTGGGGTGCGYYRMATYCCTCYYAARTW | 0 | 3 | 8 |
ACAGSCGKGGGGTRSGTCGMATTCYKCWTMAGTW | 0 | 1 | 0 |
ACAGSYGKGGGGTGYGYYRMATYCCTCYYAARTW | 0 | 1 | 0 |
ACAGCCGTGGGGTGCGYYRMATYCCTCYYAARTA | 0 | 6 | 2 |
ACAGSYGKGGGGTGYGYYRMATYCCTCYYAAGTA | 0 | 2 | 1 |
ACAGSCGKGGGGTGSGTCGMATYCCTCYYAARTW | 0 | 1 | 0 |
ACAGCCGTGGGGTGSGTCGAATCCCTCCCAARTW | 0 | 1 | 0 |
ACMGGCRKGGGGTGGGTYRCRTTCCTSCTMAATT | 0 | 1 | 0 |
ACAGCCGTGGGGTGCGYYRMATTCCTCYTAARTA | 0 | 1 | 0 |
ACAGSCGKGGGGTGSGTYRMMTYCCTSCYAARTW | 0 | 1 | 0 |
ACAGSYGKGGGGTGCGYYRMATYCCTCYYAARTW | 0 | 1 | 0 |
AYAGSCGKGGGGTGSGYYRMATYMCTCYYAARTW | 0 | 1 | 0 |
ACAGSCGKGGGGTGSGYYRMATTCCTCTTAAGTA | 0 | 1 | 0 |
ACAGSYGKGGGGTGYGYYRMATYCCTCYYAARTA | 0 | 2 | 3 |
ACRGSCGKGSGGTGSGTCGAATTCCTCYTMAGTA | 0 | 1 | 0 |
ACAGSYGKGGGGTGSGYYRMATTCCTCYYAARTA | 0 | 1 | 0 |
ACAGCCGTGGGGTGSGTCGAATYCCTCYYAARTA | 0 | 1 | 0 |
RCAGCCGTGGGGTGCGYYRMATYCCTCYYAAGTA | 0 | 1 | 0 |
ACAGSYGKGGGGTGBGYYRMATYCCTCYYAARTA | 0 | 1 | 0 |
ACWGSCGKGSGGTGSGTYGAATTCCTCYTAARTW | 0 | 1 | 0 |
ACAGCCGTGGGGTGCGYYRMATYCCTCYYAAGTA | 0 | 1 | 1 |
RCAGCCGTGGGGTGCGYYRMATTCCTCTTAAGTA | 0 | 1 | 0 |
ACAGSYGKGGGGTGBGYYRMATTCCTCTTAARTA | 0 | 1 | 0 |
ACAGSYGKGGGGTGYGYYRMATTCCTCTTAAGTA | 0 | 1 | 3 |
ACAGSYGKGGGGTGBGYYRMATTCCTCYTAARTA | 0 | 1 | 0 |
ACAGCCGTGGGGTGCGTCGAATCCCTCCCAARTA | 0 | 1 | 1 |
ACAGSYGKGGGGTGYGYYRMATYCCTCYYARRTA | 0 | 0 | 1 |
ACAGSYGKGGGGTGSGYYRMATYCCTCYYAARTA | 0 | 0 | 1 |
ACAGSYGGGGKGTGSGYYRMATYCCTCYYAARTA | 0 | 0 | 1 |
ACAGSCGKGGGGTGSGTCGMATTCCTGCTAAATT | 0 | 0 | 1 |
ACAGSYGKGGGGTGBGCTACATTCCTCTTAAGTA | 0 | 0 | 1 |
ACAGSYGKGGKGTGCGYYRMATTCCTCTTAAGTA | 0 | 0 | 1 |
ACAGCCGKGGGGTGCGYYRMATYCCTCYYAARTW | 0 | 0 | 1 |
ACAGSCGKGGGGTGSGTYRMATYCCTCYTAARTW | 0 | 0 | 1 |
ACWGSCGKGGGGTGSGTYRMATYCCTCCYAARTW | 0 | 0 | 1 |
ACAGSYGKGGGGTGYGYYRMATTCCTCTTAARTA | 0 | 0 | 1 |
ACAGCCGTGGGGTGSGYYRMATYCCTCYYAARTW | 0 | 0 | 1 |
ACRGSCGKGGGGTGSGTYRMATTCCTCTTARRTW | 0 | 0 | 1 |
ACAGCCGTGGGGTGCGTCGAATTCCTCGTAAGTT | 0 | 0 | 1 |
ACWGGCGGGGGGTGGGTTACMTTCCTSCTMGATT | 0 | 0 | 1 |
ACGGCCGGGGGGTGGGTTACATTCCTCTTAAACA | 0 | 0 | 1 |
ACAGSYGKGGGGTGYGCTACATTCCTCTTAAGTA | 0 | 0 | 1 |
AYAGGYGGGSGGTGKGYTACATTCCTCTTAARTA | 0 | 0 | 1 |
Fis estimates | χ2: >59.2703 Df: 34 Prob: <0.004638 | χ2: >116.3253 Df: 38 Prob: <0.0001 | χ2: >92.1901 Df: 34 Prob: <0.0001 |
Population | Riyadh | Jeddah | Taif |
---|---|---|---|
Riyadh | 9 | 8 | |
Jeddah | 0.0171 | 12 | |
Taif | 0.0569 | 0.0082 |
Country | ATA *→ATG | ATT→GTT | GAG→AAG | GTC→CTC | ACG→ATG | GCT→TCT | CGC→CCC/CGC→CTC | TTT→TAT | GGC→GCC | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|
Ile162Met ** | Ile239Val | Glu243Lys | Val260Leu | Thr310Met | Ala316Ser | Gly342Ala | Gly342Val | Phe470Tyr | Gly445Ala | ||
KSA | - | + | + | + | - | + | + | + | + | ND | This study |
USA | ND | - | - | + | - | + | + | + | + | ND | [5,16] |
Japan | + | - | - | + | - | - | + | + | + | ND | [17,48] |
Denmark | + | - | - | + | + | - | + | + | + | + | [18] |
Kazakhstani | ND | - | - | + | - | - | + | + | + | ND | [35] |
Turkey | ND | - | - | + | - | - | + | + | + | ND | [4] |
Iran | ND | - | - | - | - | - | + | + | + | ND | NCBI-GenBank, acc# MK257692 |
China | + | - | - | + | - | - | + | + | + | ND | [34,44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzabib, A.A.; Al-Sarar, A.S.; Abobakr, Y.; Saleh, A.A. Single and Combined Mutations of Acetylcholinesterase Gene Giving Resistance to Pirimiphos-Methyl in Musca domestica Slaughterhouse Populations. Insects 2023, 14, 218. https://doi.org/10.3390/insects14030218
Alzabib AA, Al-Sarar AS, Abobakr Y, Saleh AA. Single and Combined Mutations of Acetylcholinesterase Gene Giving Resistance to Pirimiphos-Methyl in Musca domestica Slaughterhouse Populations. Insects. 2023; 14(3):218. https://doi.org/10.3390/insects14030218
Chicago/Turabian StyleAlzabib, Ali A., Ali S. Al-Sarar, Yasser Abobakr, and Amgad A. Saleh. 2023. "Single and Combined Mutations of Acetylcholinesterase Gene Giving Resistance to Pirimiphos-Methyl in Musca domestica Slaughterhouse Populations" Insects 14, no. 3: 218. https://doi.org/10.3390/insects14030218
APA StyleAlzabib, A. A., Al-Sarar, A. S., Abobakr, Y., & Saleh, A. A. (2023). Single and Combined Mutations of Acetylcholinesterase Gene Giving Resistance to Pirimiphos-Methyl in Musca domestica Slaughterhouse Populations. Insects, 14(3), 218. https://doi.org/10.3390/insects14030218