Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Samples
2.2. Feeding Groups
2.3. Growth Parameters
2.4. Analysis of Nutritional Composition
2.5. Analysis of Amino Acid Content
2.6. Statistics
3. Results
3.1. Growth Parameters
3.2. Proximate Composition of Tenebrio molitor Larvae
3.3. Amino Acid Composition of Tenebrio molitor Larvae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- Shockley, M.; Dossey, A.T. Insects for Human Consumption. In Mass Production of Beneficial Organisms; Academic Press: Cambridge, UK, 2014; pp. 617–652. [Google Scholar] [CrossRef]
- Bessa, L.W.; Pieterse, E.; Sigge, G.; Hoffman, L.C. Insects as human food; from farm to fork. J. Sci. Food Agric. 2020, 100, 5017–5022. [Google Scholar] [CrossRef]
- Grimmond, N.M.; Preest, M.R.; Pough, F.H. Energetic Cost of Feeding on Different Kinds of Prey for the Lizard Chalcides ocellatus. Funct. Ecol. 1994, 8, 17. [Google Scholar] [CrossRef]
- Jin, X.H.; Heo, P.S.; Hong, J.S.; Kim, N.J.; Kim, Y.Y. Supplementation of Dried Mealworm (Tenebrio molitor larva) on Growth Performance, Nutrient Digestibility and Blood Profiles in Weaning Pigs. Asian Australas. J. Anim. Sci. 2016, 29, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Gessner, D.K.; Braune, M.S.; Friedhoff, T.; Most, E.; Höring, M.; Liebisch, G.; Zorn, H.; Eder, K.; Ringseis, R. Comprehensive evaluation of the metabolic effects of insect meal from Tenebrio molitor L. in growing pigs by transcriptomics, metabolomics and lipidomics. J. Anim. Sci. Biotechnol. 2020, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Elorduy, J.; González, E.A.; Hernández, A.R.; Pino, J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol. 2002, 95, 214–220. [Google Scholar] [CrossRef] [PubMed]
- De Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Katz, H.; Dabbou, S.; et al. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed. Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Rojas, M.G.; Morales-Ramos, J.A.; Riddick, E.W. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) powder to enhance artificial diet formulations for Coleomegilla maculata (Coleoptera: Coccinellidae). Biol. Control. 2016, 100, 70–78. [Google Scholar] [CrossRef]
- Van Huis, A.; Tomberlin, J.K. Insects as Food and Feed. From Production to Consumption; Wageningen Academic Publishers: Wageningen, The Netherlands, 2017. [Google Scholar]
- Oonincx, D.G.A.B.; van Broekhoven, S.; van Huis, A.; van Loon, J.J.A. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef]
- Ravzanaadii, N.; Kim, S.-H.; Choi, W.-H.; Hong, S.-J.; Kim, N.-J. Nutritional Value of Mealworm, Tenebrio molitor as Food Source. Int. J. Ind. Entomol. 2012, 25, 93–98. [Google Scholar] [CrossRef]
- Van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 1–14. [Google Scholar] [CrossRef]
- Chen, H.; Chaudhury, M.F.; Sagel, A.; Phillips, P.L.; Skoda, S.R. Artificial diets used in mass production of the New World screwworm, Cochliomyia hominivorax. J. Appl. Entomol. 2014, 138, 708–714. [Google Scholar] [CrossRef]
- Huynh, M.P.; Hibbard, B.E.; Lapointe, S.L.; Niedz, R.P.; French, B.W.; Pereira, A.E.; Finke, D.L.; Shelby, K.S.; Coudron, T.A. Multidimensional approach to formulating a specialized diet for northern corn rootworm larvae. Sci. Rep. 2019, 9, 3709. [Google Scholar] [CrossRef] [PubMed]
- Morales-Ramos, J.A. Mass Production of Beneficial Organisms. Invertebrates and Entomopathogens, 2nd ed.; Elsevier Science & Technology: San Diego, CA, USA, 2023. [Google Scholar]
- Cortes Ortiz, J.A.; Ruiz, A.T.; Morales-Ramos, J.A.; Thomas, M.; Rojas, M.G.; Tomberlin, J.K.; Yi, L.; Han, R.; Giroud, L.; Jullien, R.L. Insect Mass Production Technologies. In Insects as Sustainable Food Ingredients; Academic Press: Cambridge, UK, 2016; pp. 153–201. [Google Scholar] [CrossRef]
- Cammack, J.A.; Tomberlin, J.K. The Impact of Diet Protein and Carbohydrate on Select Life-History Traits of The Black Soldier Fly Hermetia illucens (L.) (Diptera: Stratiomyidae). Insects 2017, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Azagoh, C.; Ducept, F.; Garcia, R.; Rakotozafy, L.; Cuvelier, M.-E.; Keller, S.; Lewandowski, R.; Mezdour, S. Extraction and physicochemical characterization of Tenebrio molitor proteins. Food Res. Int. 2016, 88, 24–31. [Google Scholar] [CrossRef]
- Osimani, A.; Garofalo, C.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Pasquini, M.; Mozzon, M.; Raffaelli, N.; Ruschioni, S.; et al. Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. Eur. Food Res. Technol. 2017, 243, 1157–1171. [Google Scholar] [CrossRef]
- Fasel, N.J.; Mene-Saffrane, L.; Ruczynski, I.; Komar, E.; Christe, P. Diet Induced Modifications of Fatty-Acid Composition in Mealworm Larvae (Tenebrio molitor). J. Food Res. 2017, 6, 22. [Google Scholar] [CrossRef]
- Dreassi, E.; Cito, A.; Zanfini, A.; Materozzi, L.; Botta, M.; Francardi, V. Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids 2017, 52, 285–294. [Google Scholar] [CrossRef]
- Stull, V.J.; Kersten, M.; Bergmans, R.S.; Patz, J.A.; Paskewitz, S. Crude Protein, Amino Acid, and Iron Content of Tenebrio molitor (Coleoptera, Tenebrionidae) Reared on an Agricultural Byproduct from Maize Production: An Exploratory Study. Ann. Entomol. Soc. Am. 2019, 112, 533–543. [Google Scholar] [CrossRef]
- Heckmann, L.-H.; Andersen, J.L.; Gianotten, N.; Calis, M.; Fischer, C.H.; Calis, H. Sustainable Mealworm Production for Feed and Food. In Edible Insects in Sustainable Food Systems; Springer: Cham, Switzerland, 2018; pp. 321–328. [Google Scholar]
- Fraenkel, G.; Blewett, M.; Coles, M. The nutrition of the mealworm, tenebrio molitor L (tenebrionidae, coleoptera). Physiol. Zool. 1950, 23, 92–108. [Google Scholar] [CrossRef]
- Davis, G.R. Protein nutrition of “Tenebrio molitor” L. X. Improvement of the nutritional value of lactalbumin by supplementation with amino acids. Arch. Int. Physiol. Biochim. 1969, 77, 741–748. [Google Scholar] [CrossRef]
- Davis, G.R. Protein nutrition of “Tenebrio molitor” L. 13. Consideration of some dietary factors of casein, lactalbumin, and lactalbumin hydrolysate. Arch. Int. Physiol. Biochim. 1970, 78, 467–473. [Google Scholar] [CrossRef]
- Davis, G.R. Essential dietary amino acids for growth of larvae of the yellow mealworm, Tenebrio molitor L. J. Nutr. 1975, 105, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- Davis, G. Growth response of larvae of Tenebrio molitor L. to concentrations of dietary amino acids. J. Stored Prod. Res. 1978, 14, 69–71. [Google Scholar] [CrossRef]
- Morales-Ramos, J.A.; Rojas, M.G.; Shapiro-Ilan, D.I.; Tedders, W.L. Developmental Plasticity in Tenebrio molitor (Coleoptera: Tenebrionidae): Analysis of Instar Variation in Number and Development Time under Different Diets. J. Entomol. Sci. 2010, 45, 75–90. [Google Scholar] [CrossRef]
- Ribeiro, N.; Abelho, M.; Costa, R. A Review of the Scientific Literature for Optimal Conditions for Mass Rearing Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 2018, 53, 434–454. [Google Scholar] [CrossRef]
- Van Broekhoven, S.; Oonincx, D.G.A.B.; van Huis, A.; van Loon, J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol. 2015, 34, 554–564. [Google Scholar] [CrossRef]
- Morales-Ramos, J.A.; Rojas, M.G.; Shapiro-llan, D.I.; Tedders, W.L. Use of Nutrient Self-Selection as a Diet Refining Tool in Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 2013, 48, 206–221. [Google Scholar] [CrossRef]
- Mancini, S.; Fratini, F.; Turchi, B.; Mattioli, S.; Dal Bosco, A.; Tuccinardi, T.; Nozic, S.; Paci, G. Former Foodstuff Products in Tenebrio Molitor Rearing: Effects on Growth, Chemical Composition, Microbiological Load, and Antioxidant Status. Animals 2019, 9, 484. [Google Scholar] [CrossRef]
- Liu, C.; Masri, J.; Perez, V.; Maya, C.; Zhao, J. Growth Performance and Nutrient Composition of Mealworms (Tenebrio Molitor) Fed on Fresh Plant Materials-Supplemented Diets. Foods 2020, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Waldbauer, G.P. The Consumption and Utilization of Food by Insects. In Advances in Insect Physiology; Academic Press: London, UK, 1968; Volume 5, pp. 229–288. [Google Scholar]
- Kröncke, N.; Grebenteuch, S.; Keil, C.; Demtröder, S.; Kroh, L.; Thünemann, A.F.; Benning, R.; Haase, H. Effect of Different Drying Methods on Nutrient Quality of the Yellow Mealworm (Tenebrio molitor L.). Insects 2019, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten. VDLUFA Methodenbuch III. In VDLUFA-Verlag (Vol Ed), Band III-Die Chemische Untersuchung von Futtermitteln; VDLUFA-Verlag: Bonn, Germany, 2013; p. 2190. [Google Scholar]
- Roth, M. Fluorescence reaction for amino acids. Anal. Chem. 1971, 43, 880–882. [Google Scholar] [CrossRef] [PubMed]
- Rumbos, C.I.; Karapanagiotidis, I.T.; Mente, E.; Psofakis, P.; Athanassiou, C.G. Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor. Sci. Rep. 2020, 10, 11224. [Google Scholar] [CrossRef]
- Rho, M.S.; Lee, K.P. Geometric analysis of nutrient balancing in the mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae). J. Insect Physiol. 2014, 71, 37–45. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, H.; Chen, G.; Qiao, L.; Li, J.; Liu, B.; Liu, Z.; Li, M.; Liu, X. Growth performance and nutritional profile of mealworms reared on corn stover, soybean meal, and distillers’ grains. Eur. Food Res. Technol. 2019, 245, 2631–2640. [Google Scholar] [CrossRef]
- Ochoa Sanabria, C.; Hogan, N.; Madder, K.; Gillott, C.; Blakley, B.; Reaney, M.; Beattie, A.; Buchanan, F. Yellow Mealworm Larvae (Tenebrio molitor) Fed Mycotoxin-Contaminated Wheat-A Possible Safe, Sustainable Protein Source for Animal Feed? Toxins 2019, 11, 282. [Google Scholar] [CrossRef]
- Canavoso, L.E.; Jouni, Z.E.; Karnas, K.J.; Pennington, J.E.; Wells, M.A. Fat metabolism in insects. Annu. Rev. Nutr. 2001, 21, 23–46. [Google Scholar] [CrossRef]
- Rho, M.S.; Lee, K.P. Balanced intake of protein and carbohydrate maximizes lifetime reproductive success in the mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae). J. Insect Physiol. 2016, 91, 93–99. [Google Scholar] [CrossRef]
- Kröncke, N.; Neumeister, M.; Benning, R. Near-Infrared Reflectance Spectroscopy for Quantitative Analysis of Fat and Fatty Acid Content in Living Tenebrio molitor Larvae to Detect the Influence of Substrate on Larval Composition. Insects 2023, 14, 114. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B. What is fibre and fibre in food? Nutr. Rev. 1977, 35, 12–22. [Google Scholar] [CrossRef]
- Meireles, E.A.; Carneiro, C.N.B.; DaMatta, R.A.; Samuels, R.I.; Silva, C.P. Digestion of starch granules from maize, potato and wheat by larvae of the the yellow mealworm, Tenebrio molitor and the Mexican bean weevil, Zabrotes subfasciatus. J. Insect Sci. 2009, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- Applebaum, S.W. Digestion of potato starch by larvae of the flour beetle, Tribolium castaneum. J. Nutr. 1966, 90, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Morales-Ramos, J.A.; Rojas, M.G.; Kelstrup, H.C.; Emery, V. Self-Selection of Agricultural By-Products and Food Ingredients by Tenebrio molitor (Coleoptera: Tenebrionidae) and Impact on Food Utilization and Nutrient Intake. Insects 2020, 11, 827. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Z.; Liu, H. Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronaut. 2013, 92, 103–109. [Google Scholar] [CrossRef]
- John, A.M.; Davis, G.R.; Sosulski, F.W. Protein nutrition of Tenebrio molitor L. XX. Growth response of larvae to graded levels of amino acids. Arch. Int. Physiol. Biochim. 1979, 87, 997–1004. [Google Scholar] [CrossRef]
- Hong, J.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef]
- Tang, Y.; Debnath, T.; Choi, E.-J.; Kim, Y.W.; Ryu, J.P.; Jang, S.; Chung, S.U.; Choi, Y.-J.; Kim, E.-K. Changes in the amino acid profiles and free radical scavenging activities of Tenebrio molitor larvae following enzymatic hydrolysis. PLoS ONE 2018, 13, e0196218. [Google Scholar] [CrossRef] [PubMed]
- Adámková, A.; Mlček, J.; Adámek, M.; Borkovcová, M.; Bednářová, M.; Hlobilová, V.; Knížková, I.; Juríková, T. Tenebrio molitor (Coleoptera: Tenebrionidae)-Optimization of Rearing Conditions to Obtain Desired Nutritional Values. J. Insect Sci. 2020, 20, 24. [Google Scholar] [CrossRef]
- Dettner, K.; Peters, W. Lehrbuch der Entomologie, 2nd ed.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2010. [Google Scholar]
- Chen, P.S. Amino Acid and Protein Metabolism in Insect Development. In Advances in Insect Physiology; Academic Press: London, UK, 1966; Volume 3, pp. 53–132. [Google Scholar]
- Ferrance, J.P.; Goel, A.; Ataai, M.M. Utilization of glucose and amino acids in insect cell cultures: Quantifying the metabolic flows within the primary pathways and medium development. Biotechnol. Bioeng. 1993, 42, 697–707. [Google Scholar] [CrossRef]
- Fondevila, G.; Fondevila, M. Productive performance of Tenebrio molitor larvae in response to the protein level in the substrate. J. Insects Food Feed. 2022, 9, 205–211. [Google Scholar] [CrossRef]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible Insects in a Food Safety and Nutritional Perspective: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Payne, C.L.; Scarborough, P.; Rayner, M.; Nonaka, K. A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends Food Sci. Technol. 2016, 47, 69–77. [Google Scholar] [CrossRef]
- Finke, M.D. Gut loading to enhance the nutrient content of insects as food for reptiles: A mathematical approach. Zoo Biol. 2003, 22, 147–162. [Google Scholar] [CrossRef]
- Anderson, S.J. Increasing calcium levels in cultured insects. Zoo Biol. 2000, 19, 1–9. [Google Scholar] [CrossRef]
- Jajić, I.; Krstović, S.; Petrović, M.; Urošević, M.; Glamočić, D.; Samardžić, M.; Popović, A.; Guljaš, D. Changes in the chemical composition of the yellow mealworm (Tenebrio molitor L.) reared on different feedstuffs. J. Anim. Feed Sci. 2022, 31, 191–200. [Google Scholar] [CrossRef]
- Melis, R.; Braca, A.; Sanna, R.; Spada, S.; Mulas, G.; Fadda, M.L.; Sassu, M.M.; Serra, G.; Anedda, R. Metabolic response of yellow mealworm larvae to two alternative rearing substrates. Metab. Off. J. Metab. Soc. 2019, 15, 113. [Google Scholar] [CrossRef]
- Bordiean, A.; Krzyżaniak, M.; Aljewicz, M.; Stolarski, M.J. Influence of Different Diets on Growth and Nutritional Composition of Yellow Mealworm. Foods 2022, 11, 3075. [Google Scholar] [CrossRef]
- Van Peer, M.; Frooninckx, L.; Coudron, C.; Berrens, S.; Álvarez, C.; Deruytter, D.; Verheyen, G.; van Miert, S. Valorisation Potential of Using Organic Side Streams as Feed for Tenebrio molitor, Acheta domesticus and Locusta migratoria. Insects 2021, 12, 796. [Google Scholar] [CrossRef]
- Mlcek, J.; Rop, O.; Borkovcova, M.; Bednarova, M. A Comprehensive Look at the Possibilities of Edible Insects as Food in Europe—A Review. Pol. J. Food Nutr. Sci. 2014, 64, 147–157. [Google Scholar] [CrossRef]
- Schlüter, O.; Rumpold, B.; Holzhauser, T.; Roth, A.; Vogel, R.F.; Quasigroch, W.; Vogel, S.; Heinz, V.; Jäger, H.; Bandick, N.; et al. Safety aspects of the production of foods and food ingredients from insects. Mol. Nutr. Food Res. 2017, 61, 1600520. [Google Scholar] [CrossRef] [PubMed]
- Hoc, B.; Genva, M.; Fauconnier, M.-L.; Lognay, G.; Francis, F.; Caparros Megido, R. About lipid metabolism in Hermetia illucens (L. 1758): On the origin of fatty acids in prepupae. Sci. Rep. 2020, 10, 11916. [Google Scholar] [CrossRef]
- Giannetto, A.; Oliva, S.; Ceccon Lanes, C.F.; de Araújo Pedron, F.; Savastano, D.; Baviera, C.; Parrino, V.; Lo Paro, G.; Spanò, N.C.; Cappello, T.; et al. Hermetia illucens (Diptera: Stratiomydae) larvae and prepupae: Biomass production, fatty acid profile and expression of key genes involved in lipid metabolism. J. Biotechnol. 2020, 307, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.R. Protein nutrition of Tenbrio molitor L. XVII. Improved amino acid mixture and interaction with dietary carbohydrate. Arch. Int. Physiol. Biochim. 1974, 82, 631–637. [Google Scholar] [CrossRef]
- Martin, H.E.; Hare, L. The nutritive requirements of Tenebrio molitor larvae. Biol. Bull. 1942, 83, 428–437. [Google Scholar] [CrossRef]
- Kröncke, N.; Benning, R. Determination of Moisture and Protein Content in Living Mealworm Larvae (Tenebrio molitor L.) Using Near-Infrared Reflectance Spectroscopy (NIRS). Insects 2022, 13, 560. [Google Scholar] [CrossRef]
- Murray, D.R.P. The importance of water in the normal growht of larvae of Tenebrio molitor. Entomol. Exp. Appl. 1968, 11, 149–168. [Google Scholar] [CrossRef]
- Yang, S.; Mao, X.-Y.; Li, F.-F.; Zhang, D.; Leng, X.-J.; Ren, F.-Z.; Teng, G.-X. The improving effect of spray-drying encapsulation process on the bitter taste and stability of whey protein hydrolysate. Eur. Food Res. Technol. 2012, 235, 91–97. [Google Scholar] [CrossRef]
- Ma, J.-J.; Mao, X.-Y.; Wang, Q.; Yang, S.; Zhang, D.; Chen, S.-W.; Li, Y.-H. Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate. LWT Food Sci. Technol. 2014, 56, 296–302. [Google Scholar] [CrossRef]
Group | Substrate Amount (%) | |||||
---|---|---|---|---|---|---|
Pea Protein Flour (PPF) | Rice Protein Flour (RPF) | Sweet Lupine Flour (SLF) | Cassava Flour (CF) | Potato Flakes (PF) | Wheat Bran (WB) | |
PPF80 | 100.0 | - | - | - | - | - |
PPF60 | 69.3 | - | - | - | - | 30.7 |
PPF40 | 38.6 | - | - | - | - | 61.4 |
PPF20 | 7.9 | - | - | - | - | 92.1 |
RPF80 | - | 100.0 | - | - | - | - |
RPF60 | - | 69.3 | - | - | - | 30.7 |
RPF40 | - | 38.6 | - | - | - | 61.4 |
RPF20 | - | 7.9 | - | - | - | 92.1 |
SLF40 | - | - | 89.4 | - | - | 10.6 |
SLF20 | - | - | 18.2 | - | - | 81.8 |
CF10 | - | - | - | 37.0 | - | 63.0 |
PF10 | - | - | - | - | 70.1 | 29.9 |
WB (Control) | - | - | - | - | - | 100.0 |
Group | Moisture (%) | Crude Protein * (% FW) | Crude Fat (% FW) | Crude Carbohydrate (% FW) | Crude Fiber (% FW) | Crude Ash (% FW) |
---|---|---|---|---|---|---|
PPF80 | 2.7 | 80.0 | 8.0 | 4.9 | 4.2 | 0.2 |
PPF60 | 5.6 | 60.0 | 7.0 | 17.2 | 8.3 | 1.9 |
PPF40 | 8.4 | 40.0 | 6.0 | 29.5 | 12.5 | 3.6 |
PPF20 | 11.3 | 20.0 | 5.0 | 41.8 | 16.6 | 5.3 |
RPF80 | 3.9 | 80.0 | 2.9 | 9.6 | 3.3 | 0.3 |
RPF60 | 6.4 | 60.0 | 3.5 | 20.5 | 5.4 | 4.2 |
RPF40 | 8.9 | 40.0 | 4.0 | 31.3 | 10.9 | 4.9 |
RPF20 | 11.4 | 20.0 | 4.6 | 42.2 | 16.3 | 5.5 |
SLF40 | 6.3 | 40.0 | 11.2 | 13.7 | 26.9 | 1.9 |
SLF20 | 10.8 | 20.0 | 6.1 | 38.6 | 19.6 | 4.9 |
CF10 | 9.6 | 10.1 | 3.0 | 60.2 | 13.4 | 3.7 |
PF10 | 10.0 | 10.3 | 1.8 | 66.9 | 8.5 | 2.5 |
WB (Control) | 12.0 | 14.9 | 4.7 | 45.0 | 17.7 | 5.7 |
Amino Acid (% DM) | Group | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PPF80 | PPF60 | PPF40 | PPF20 | RPF80 | RPF60 | RPF40 | RPF20 | SLF40 | SLF20 | CF10 | PF10 | WB | |
Ala | 4.1 ± 0.08 | 3.1 ± 0.03 | 2.0 ± 0.07 | 0.9 ± 0.07 | 4.0 ± 0.03 | 2.9 ± 0.08 | 1.9 ± 0.05 | 0.9 ± 0.05 | 1.1 ± 0.03 | 0.9 ± 0.04 | 0.3 ± 0.04 | 0.5 ± 0.05 | 0.6 ± 0.05 |
Arg | 6.4 ± 0.04 | 4.6 ± 0.02 | 3.0 ± 0.08 | 1.2 ± 0.04 | 8.2 ± 0.02 | 5.9 ± 0.07 | 3.7 ± 0.03 | 1.4 ± 0.04 | 3.5 ± 0.02 | 2.4 ± 0.05 | 0.5 ± 0.05 | 0.6 ± 0.03 | 0.8 ± 0.06 |
Asp | 7.1 ± 0.04 | 5.2 ± 0.06 | 3.4 ± 0.04 | 1.5 ± 0.03 | 11.3 ± 0.04 | 8.1 ± 0.08 | 5.0 ± 0.05 | 1.8 ± 0.02 | 3.3 ± 0.05 | 2.4 ± 0.04 | 0.5 ± 0.08 | 1.3 ± 0.07 | 1.0 ± 0.04 |
Glu | 14.9 ± 0.03 | 11.4 ± 0.07 | 7.9 ± 0.03 | 4.4 ± 0.06 | 18.2 ± 0.03 | 13.6 ± 0.05 | 9.2 ± 0.07 | 4.7 ± 0.07 | 7.8 ± 0.07 | 6.1 ± 0.05 | 1.8 ± 0.03 | 2.4 ± 0.09 | 3.5 ± 0.08 |
Gly | 3.4 ± 0.07 | 2.5 ± 0.03 | 1.7 ± 0.05 | 0.9 ± 0.03 | 3.7 ± 0.06 | 2.7 ± 0.05 | 1.8 ± 0.03 | 0.9 ± 0.06 | 1.3 ± 0.04 | 1.0 ± 0.05 | 1.8 ± 0.02 | 0.5 ± 0.07 | 0.6 ± 0.08 |
His | 1.7 ± 0.08 | 1.3 ± 0.04 | 0.9 ± 0.08 | 0.4 ± 0.06 | 2.1 ± 0.04 | 1.6 ± 0.04 | 1.0 ± 0.05 | 0.4 ± 0.04 | 0.4 ± 0.07 | 0.4 ± 0.08 | 0.2 ± 0.06 | 0.2 ± 0.05 | 0.3 ± 0.07 |
Ile | 3.2 ± 0.05 | 2.3 ± 0.07 | 1.5 ± 0.09 | 0.6 ± 0.07 | 4.5 ± 0.02 | 3.2 ± 0.07 | 2.0 ± 0.03 | 0.8 ± 0.08 | 1.3 ± 0.04 | 1.0 ± 0.05 | 0.2 ± 0.06 | 0.4 ± 0.03 | 0.4 ± 0.05 |
Leu | 6.2 ± 0.03 | 4.6 ± 0.08 | 3.0 ± 0.03 | 1.4 ± 0.07 | 8.0 ± 0.07 | 5.8 ± 0.03 | 3.7 ± 0.05 | 1.5 ± 0.09 | 2.4 ± 0.08 | 1.8 ± 0.03 | 0.5 ± 0.06 | 0.8 ± 0.05 | 1.0 ± 0.05 |
Lys | 2.4 ± 0.04 | 1.7 ± 0.03 | 1.1 ± 0.02 | 0.5 ± 0.08 | 6.3 ± 0.09 | 4.5 ± 0.03 | 2.7 ± 0.06 | 0.8 ± 0.09 | 0.9 ± 0.04 | 0.7 ± 0.06 | 0.2 ± 0.08 | 0.3 ± 0.07 | 0.3 ± 0.08 |
Phe | 4.1 ± 0.05 | 3.0 ± 0.04 | 1.9 ± 0.05 | 0.8 ± 0.04 | 5.3 ±0.04 | 3.9 ± 0.06 | 2.4 ± 0.07 | 0.9 ± 0.04 | 1.2 ± 0.07 | 0.9 ± 0.08 | 0.3 ± 0.09 | 0.5 ± 0.09 | 0.6 ± 0.08 |
Ser | 3.9 ± 0.07 | 2.9 ± 0.05 | 1.9 ± 0.06 | 0.9 ± 0.03 | 4.9 ± 0.07 | 3.6 ± 0.07 | 2.3 ± 0.09 | 1.0 ± 0.04 | 1.8 ± 0.08 | 1.3 ± 0.04 | 0.4 ± 0.07 | 0.5 ± 0.06 | 0.7 ± 0.06 |
Thr | 2.7 ± 0.03 | 2.0 ± 0.06 | 1.3 ± 0.03 | 0.5 ± 0.07 | 3.1 ± 0.01 | 2.3 ± 0.03 | 1.4 ± 0.05 | 0.6 ± 0.06 | 1.1 ± 0.05 | 0.8 ± 0.02 | 0.2 ± 0.03 | 0.4 ± 0.05 | 0.3 ± 0.04 |
Tyr | 4.3 ± 0.05 | 3.1 ± 0.02 | 1.9 ± 0.08 | 0.7 ± 0.04 | 4.0 ± 0.06 | 2.9 ± 0.02 | 1.8 ± 0.03 | 0.7 ± 0.03 | 1.4 ± 0.03 | 1.0 ± 0.01 | 0.2 ± 0.02 | 0.4 ± 0.03 | 0.4 ± 0.07 |
Val | 4.6 ± 0.07 | 3.4 ± 0.04 | 2.2 ± 0.05 | 1.0 ± 0.07 | 4.9 ± 0.04 | 3.6 ± 0.06 | 2.3 ± 0.07 | 1.0 ± 0.07 | 1.3 ± 0.07 | 1.0 ± 0.07 | 0.3 ± 0.05 | 0.5 ± 0.05 | 0.6 ± 0.03 |
Total AAs | 69.0 ± 0.07 | 51.1 ± 0.06 | 33.7 ± 0.07 | 15.7 ± 0.06 | 88.5 ± 0.05 | 64.6 ± 0.06 | 41.2 ± 0.05 | 17.4 ± 0.07 | 28.8 ± 0.07 | 21.7 ± 0.05 | 6.1 ± 0.07 | 6.9 ± 0.06 | 11.1 ± 0.07 |
Essential AAs | 31.3 ± 0.06 | 22.9 ± 0.05 | 14.9 ± 0.06 | 6.4 ± 0.05 | 42.4 ± 0.04 | 30.6 ± 0.04 | 19.2 ± 0.06 | 7.4 ± 0.06 | 12.1 ± 0.06 | 9.0 ± 0.05 | 2.4 ± 0.05 | 3.7 ± 0.05 | 4.3 ± 0.06 |
Time (min) | Eluent A (%) | Eluent B (%) | Flow (mL/min) |
---|---|---|---|
0 | 90 | 10 | 0.4 |
40 | 60 | 40 | 0.4 |
65 | 0 | 100 | 0.4 |
68 | 0 | 100 | 0.4 |
75 | 90 | 10 | 0.4 |
85 | 90 | 10 | 0.4 |
Group | LWGpL (mg) | SGR (% per Day) | FCR (-) | Survival Rate (%) | PER (-) |
---|---|---|---|---|---|
PPF80 | 23.7 ± 5.9 h | 4.9 ± 0.5 d | 3.7 ± 0.9 a | 100.0 ± 0.0 a | 0.6 ± 0.1 d |
PPF60 | 42.5 ± 0.8 g | 6.0 ± 0.1 c | 2.8 ± 0.1 a,b | 100.0 ± 0.0 a | 0.7 ± 0.1 d |
PPF40 | 54.7 ± 1.3 f | 6.6 ± 0.2 c | 2.4 ± 0.1 b | 100.0 ± 0.0 a | 0.9 ± 0.2 d |
PPF20 | 71.1 ± 1.6 d | 7.4 ± 0.1 b | 2.1 ± 0.0 b,c | 99.0 ± 0.1 a | 1.8 ± 0.3 c |
RPF80 | 52.2 ± 5.7 f | 5.5 ± 0.7 c,d | 2.8 ± 0.0 ab | 96.0 ± 0.3 b | 1.1 ± 0.2 c |
RPF60 | 70.3 ± 3.4 d | 7.3 ± 0.1 b | 2.3 ± 0.0 b | 98.0 ± 0.1 a | 1.2 ± 0.1 c |
RPF40 | 82.3 ± 1.8 c | 7.7 ± 0.1 a | 2.2 ± 0.0 b | 100.0 ± 0.0 a | 1.4 ± 0.1 c |
RPF20 | 91.5 ± 1.2 b | 7.9 ± 0.1 a | 2.0 ± 0.0 c | 100.0 ± 0.0 a | 2.3 ± 0.2 b |
SLF40 | 85.9 ± 2.4 c | 7.9 ± 0.1 a | 1.8 ± 0.0 c | 100.0 ± 0.0 a | 1.5 ± 0.1 c |
SLF20 | 90.4 ± 1.1 b | 8.0 ± 0.0 a | 2.2 ± 0.0 b,c | 100.0 ± 0.0 a | 2.5 ± 0.3 b |
CF10 | 62.0 ± 2.0 e | 7.0 ± 0.1 b,c | 3.2 ± 0.1 a | 100.0 ± 0.0 a | 1.5 ± 0.4 c |
PF10 | 90.0 ± 1.0 b | 8.0 ± 0.0 a | 2.2 ± 0.0 b,c | 100.0 ± 0.0 a | 2.7 ± 0.3 b |
WB (Control) | 106.0 ± 0.9 a | 8.1 ± 0.0 a | 2.3 ± 0.0 b | 100.0 ± 0.0 a | 3.6 ± 0.2 a |
p-value linear | <0.001 | <0.001 | <0.001 | 0.041 | <0.01 |
p-value quadratic | <0.001 | <0.01 | <0.01 | 0.043 | <0.01 |
Group | Moisture (%) | Crude Protein (% DM) | Crude Fat (% DM) |
---|---|---|---|
PPF80 | 80.3 ± 0.1 a | 74.1 ± 0.2 a | 20.3 ± 0.3 e |
PPF60 | 80.0 ± 0.4 a, | 74.0 ± 0.0 a | 21.5 ± 0.7 e |
PPF40 | 67.1 ± 0.1 b | 51.1 ± 0.1 d | 31.3 ± 0.4 d |
PPF20 | 64.6 ± 0.1 c | 52.3 ± 0.2 d | 37.3 ± 0.5 c |
RPF80 | 68.4 ± 1.6 b | 70.9 ± 0.1 b | 22.8 ± 0.4 e |
RPF60 | 63.4 ± 0.1 b | 60.4 ± 0.2 c | 29.5 ± 0.3 d |
RPF40 | 64.6 ± 0.3 c | 59.6 ± 0.0 c | 29.9 ± 0.2 d |
RPF20 | 64.2 ± 0.3 c | 57.5 ± 0.1 c | 34.4 ± 0.4 c |
SLF40 | 58.8 ± 1.4 d | 48.8 ± 0.2 d | 37.6 ± 0.4 c |
SLF20 | 60.6 ± 0.6 d | 49.7 ± 0.3 d | 41.9 ± 0.3 b |
CF10 | 58.4 ± 0.4 d | 36.3 ± 0.0 e | 48.6 ± 0.5 a |
PF10 | 59.0 ± 0.2 d | 41.5 ± 0.1 e | 47.8 ± 0.4 a |
WB (Control) | 68.6 ± 0.3 b | 60.5 ± 0.2 c | 35.4 ± 0.5 c |
Start | 57.6 ± 1.6 d | 52.6 ± 0.3 d | 25.5 ± 1.3 d |
p-value linear | <0.001 | <0.001 | <0.001 |
p-value quadratic | <0.001 | <0.001 | <0.01 |
Diet | |||||
---|---|---|---|---|---|
Larvae | Crude Protein | Crude Fat | Crude Carbohydrate | Crude Fiber | Crude Ash |
Protein | 0.573 | 0.114 | 0.432 | 0.143 | 0.073 |
Fat | 0.253 | 0.033 | 0.332 | 0.136 | 0.032 |
Amino Acid (% DM) | Group | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PPF80 | PPF60 | PPF40 | PPF20 | RPF80 | RPF60 | RPF40 | RPF20 | SLF40 | SLF20 | CF10 | PF10 | WB | Start | |
Ala | 5.5 ± 0.21 | 4.9 ± 0.03 | 3.2 ± 0.14 | 2.5 ± 0.03 | 4.3 ± 0.07 | 4.7 ± 0.03 | 5.0 ± 0.09 | 5.3 ± 0.05 | 5.2 ± 0.02 | 5.6 ± 0.03 | 4.3 ± 0.02 | 3.3 ± 0.05 | 3.9 ± 0.03 | 4.4 ± 0.03 |
Arg | 2.7 ± 0.03 | 2.5 ± 0.04 | 1.9 ± 0.03 | 1.8 ± 0.04 | 3.1 ± 0.06 | 3.5 ± 0.05 | 3.7 ± 0.03 | 3.9 ± 0.09 | 3.3 ± 0.12 | 3.8 ± 0.05 | 2.3 ± 0.12 | 2.3 ± 0.04 | 2.2 ± 0.04 | 2.8 ± 0.04 |
Asp | 0.5 ± 0.04 | 0.7 ± 0.02 | 1.6 ± 0.02 | 1.8 ± 0.02 | n. d. | n. d. | 3.0 ± 0.22 | 3.2 ± 0.07 | 4.2 ± 0.04 | 4.3 ± 0.07 | n. d. | n. d. | 3.9 ± 0.02 | n. d. |
Glu | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | 8.9 ± 0.01 | 8.9 ± 0.03 | 3.8 ± 0.32 | n. d. | 6.2 ± 0.05 | n. d. |
Gly | 3.7 ± 0.14 | 2.8 ± 0.05 | 2.8 ± 0.13 | 1.7 ± 0.03 | 2.7 ± 0.07 | 2.5 ± 0.08 | 3.2 ± 0.02 | 3.4 ± 0.05 | 3.1 ± 0.21 | 3.5 ± 0.02 | 3.6 ± 0.11 | 2.5 ± 0.03 | 2.5 ± 0.06 | 1.3 ± 0.02 |
His | 1.5 ± 0.13 | 1.3 ± 0.06 | 1.1 ± 0.04 | 1.0 ± 0.04 | 1.7 ± 0.05 | 1.2 ± 0.05 | 1.6 ± 0.02 | 1.7 ± 0.06 | 1.6 ± 0.05 | 2.0 ± 0.05 | 1.3 ± 0.03 | 1.3 ± 0.05 | 1.1 ± 0.07 | 1.6 ± 0.06 |
Ile | 2.8 ± 0.12 | 2.5 ± 0.03 | 1.7 ± 0.05 | 1.5 ± 0.06 | 2.5 ± 0.03 | 2.4 ± 0.03 | 3.2 ± 0.06 | 3.3 ± 0.03 | 2.6 ± 0.07 | 2.7 ± 0.03 | 1.6 ± 0.02 | 1.9 ± 0.03 | 1.9 ± 0.03 | 2.3 ± 0.07 |
Leu | 3.4 ± 0.16 | 2.8 ± 0.02 | 2.8 ± 0.04 | 2.2 ± 0.02 | 3.7 ± 0.06 | 3.6 ± 0.08 | 4.7 ± 0.02 | 4.7 ± 0.03 | 4.0 ± 0.04 | 4.3 ± 0.03 | 10.9 ± 0.10 | 2.8 ± 0.02 | 3.3 ± 0.02 | 3.8 ± 0.05 |
Lys | 2.7 ± 0.19 | 2.6 ± 0.08 | 1.9 ± 0.02 | 1.6 ± 0.05 | 3.3 ± 0.08 | 3.3 ± 0.04 | 3.6 ± 0.07 | 3.7 ± 0.05 | 3.2 ± 0.03 | 3.2 ± 0.03 | 1.2 ± 0.04 | 2.7 ± 0.04 | 2.6 ± 0.03 | 2.7 ± 0.13 |
Phe | 1.9 ± 0.04 | 1.4 ± 0.09 | 1.2 ± 0.04 | 1.5 ± 0.02 | 2.4 ± 0.03 | 2.3 ± 0.03 | 2.7 ± 0.05 | 2.8 ± 0.03 | n. d. | n. d. | 8.2 ± 0.04 | 1.3 ± 0.07 | 1.5 ± 0.05 | 2.1 ± 0.03 |
Ser | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | 2.9 ± 0.08 | 6.6 ± 0.03 | n. d. | 2.2 ± 0.07 | n. d. |
Thr | 1.6 ± 0.05 | 1.5 ± 0.08 | 1.4 ± 0.05 | 1.2 ± 0.03 | 2.2 ± 0.03 | 2.4 ± 0.03 | 2.3 ± 0.08 | 2.4 ± 0.03 | 2.3 ± 0.04 | 2.3 ± 0.04 | 2.0 ± 0.02 | 2.0 ± 0.05 | 1.9 ± 0.04 | 6.4 ± 0.04 |
Tyr | 2.4 ± 0.06 | 2.7 ±0.06 | 2.6 ± 0.07 | 2.2 ± 0.05 | 4.1 ± 0.06 | 4.6 ± 0.07 | 4.6 ± 0.06 | 4.7 ± 0.05 | 5.8 ± 0.04 | 4.4 ± 0.05 | 2.9 ± 0.01 | 2.3 ± 0.06 | 2.9 ± 0.05 | 4.5 ± 0.04 |
Val | n. d. | n. d. | n. d. | n. d. | 3.8 ± 0.07 | n. d. | n. d. | n. d. | n. d. | n. d. | 3.0 ± 0.04 | 2.2 ± 0.04 | 2.7 ± 0.03 | n. d. |
Total AAs | 28.7 ± 0.71 | 25.7 ± 0.07 | 22.2 ± 0.22 | 19.0 ± 0.04 | 33.8 ± 0.06 | 30.5 ± 0.04 | 37.6 ± 0.21 | 35.4 ± 0.05 | 44.2 ± 0.38 | 47.9 ± 0.04 | 51.7 ± 0.52 | 24.6 ± 0.07 | 38.8 ± 0.05 | 31.9 ± 0.11 |
Essential AAs | 16.6 ± 0.41 | 14.6 ± 0.04 | 12.0 ± 0.08 | 10.8 ± 0.06 | 22.7 ± 0.05 | 18.7 ± 0.06 | 21.8 ± 0.04 | 22.5 ± 0.04 | 17.0 ± 0.15 | 18.3 ± 0.04 | 30.4 ± 0.23 | 16.5 ± 0.04 | 17.2 ± 0.05 | 21.7 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kröncke, N.; Benning, R. Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.). Insects 2023, 14, 261. https://doi.org/10.3390/insects14030261
Kröncke N, Benning R. Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.). Insects. 2023; 14(3):261. https://doi.org/10.3390/insects14030261
Chicago/Turabian StyleKröncke, Nina, and Rainer Benning. 2023. "Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.)" Insects 14, no. 3: 261. https://doi.org/10.3390/insects14030261
APA StyleKröncke, N., & Benning, R. (2023). Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.). Insects, 14(3), 261. https://doi.org/10.3390/insects14030261