Detection of Putative Mutation I873S in the Sodium Channel of Megalurothrips usitatus (Bagnall) Which May Be Associated with Pyrethroid Resistance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Insecticide Bioassay
2.3. DNA Extraction and Sodium Channel Cloning of M. usitatus
2.4. Phylogenetic Analysis
2.5. Identification of Mutation Sites in the Para Domain II
3. Results
3.1. Toxicity of Lambda-Cyhalothrin and Deltamethrin on M. usitatus
3.2. Sequence Analysis of Sodium Channel Gene of M. usitatus
3.3. Identification of Mutations of Domain II of M. usitatus to Pyrethroids
3.4. Identification of Mutation Frequency
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Years | Insecticides Type | Insecticides Name | Reference |
---|---|---|---|
2010–2015 | Pyrethroid | Lambda-cyhalothrin, Beta-cypermethrin, Bifenthrin | [37,51] |
Diamide | Cyantraniliprole, Chlorantraniliprole | [52] | |
Organophosphorus | Chlorpyrifos | [51] | |
Spinosyns | Spinetoram | [37,51] | |
Avermectins | Emamectin benzoate | [51] | |
2016–2021 | Pyrethroid | Lambda-cyhalothrin, Beta-cypermethrin, Bifenthrin | [53,54] |
Avermectins | Emamectin benzoate | [54,55] | |
Spinosyns | Spinetoram | [38,53] | |
Pyrrole | Chlorfenapyr | [53] | |
Insect growth regulator | Pyriproxyfen | [53] | |
Nicotine | Acetamiprid, Imidacloprid, Clothianidin | [38,54,55] |
Appendix B
Appendix C
Appendix D
References
- Tang, L.D.; Zhao, H.Y.; Fu, B.L.; Han, Y.; Liu, K.; Wu, J.H. Colored sticky traps to selectively survey thrips in cowpea ecosystem. Neotrop. Entomol. 2016, 45, 96–101. [Google Scholar] [CrossRef]
- Wu, R.F.; Du, F.Z.; Luo, H.L. Identification and control of cowpea fusarium wilt. J. Chang. Veg. 2011, 15, 45–46. (In Chinese) [Google Scholar]
- Statistical Bureau of Hainan Province. Online Statistical Database: Hainan Statistical Yearbook; The People’s Government of Hainan Province: Haikou, China, 2021.
- Goldarazena, A.; Dianzinga, N.T.; Frago, E.; Michel, B.; Reynaud, P. A new species of the genus Thrips (Thysanoptera, Thripidae) from the Malagasy Region. Zootaxa 2020, 4750, 443–446. [Google Scholar] [CrossRef]
- Tang, L.D.; Yan, L.; Fu, B.L.; Wu, J.H.; Liu, K.; Lu, Y.Y. The Life table parameters of Megalurothrips usitatus (Thysanoptera: Thripidae) on four leguminous crops. Fla. Entomol. 2015, 98, 620–625. [Google Scholar] [CrossRef]
- Cai, W.Z.; Pang, X.F.; Hua, B.Z.; Liang, G.Y.; Song, X.L. General Entomology, 2nd ed.; China Agricultural University Press: Beijing, China, 2001; pp. 245–246. [Google Scholar]
- Reitz, S.R.; Gao, Y.L.; Kirk, W.D.J.; Hoddle, M.S.; Leiss, K.A.; Funderburk, J.E. Invasion biology, ecology, and management of western flower thrips. Annu. Rev. Entomol. 2020, 65, 17–37. [Google Scholar] [CrossRef]
- Fan, Y.M.; Tong, X.L.; Gao, L.Y.; Wang, M.; Liu, Z.Q.; Zhang, Y.; Yang, Y. The spatial aggregation pattern of dominant species of thrips on cowpea in Hainan. J. Environ. Entomol. 2013, 35, 737–743. (In Chinese) [Google Scholar]
- Du, Y.Z.; Nomura, Y.; Luo, N.; Liu, Z.; Lee, J.E.; Khambay, B.; Dong, K. Molecular determinants on the insect sodium channel for the specific action of type II pyrethroid insecticides. Toxicol. Appl. Pharmacol. 2009, 234, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Dong, K. Insect sodium channels and insecticide resistance. Invertebr. Neurosci. 2007, 7, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Du, Y.Z.; Rinkevich, F.; Nomura, Y.; Xu, P.; Wang, L.; Silver, K.; Zhorov, B.S. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem. Mol. Biol. 2014, 50, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Soderlund, D.M. Pyrethroids, knockdown resistance and sodium channels. Pest Manag. Sci. 2008, 64, 610–616. [Google Scholar] [CrossRef]
- O’Reilly, A.O.; Khambay, B.P.S.; Williamson, M.S.; Field, L.A.; Wallace, B.A.; Davies, T.G.E. Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochem. J. 2006, 396, 255–263. [Google Scholar] [CrossRef]
- Du, Y.Z.; Nomura, Y.; Satar, G.; Hu, Z.N.; Nauen, R.; He, S.Y.; Zhorov, B.S.; Dong, K. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel. Proc. Natl. Acad. Sci. USA 2013, 110, 11785–11790. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, M.; Ohyama, K.; Dunlap, D.Y.; Matsumura, F. Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica). Mol. Gen. Genet. 1996, 252, 61–68. [Google Scholar] [CrossRef]
- Williamson, M.S.; Martinez-Torres, D.; Hick, C.A.; Devonshire, A.L. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet. 1996, 252, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Eleftherianos, I.; Foster, S.P.; Williamson, M.S.; Denholm, I. Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer). Bull. Entomol. Res. 2008, 98, 183–191. [Google Scholar] [CrossRef]
- Busvine, J.R. Mechanism of resistance to insecticide in house-flies. Nature 1951, 168, 193–195. [Google Scholar] [CrossRef]
- Milani, R. Mendelian behavior of resistance to the knock-down action of DDT and correlation between knock-down and mortality in Musca domestica L. Rend.-Ist. Super. Di Sanita 1956, 19, 1107–1143. [Google Scholar]
- Forcioli, D.; Frey, B.; Frey, J.E. High nucleotide diversity in the para-like voltage-sensitive sodium channel gene sequence in the western flower thrips (Thysanoptera: Thripidae). J. Econ. Entomol. 2002, 95, 838–848. [Google Scholar] [CrossRef]
- Toda, S.; Morishita, M. Identification of three point mutations on the sodium channel gene in pyrethroid-resistant Thrips tabaci (Thysanoptera: Thripidae). J. Econ. Entomol. 2009, 102, 2296–2300. [Google Scholar] [CrossRef]
- Foster, S.P.; Paul, V.L.; Slater, R.; Warren, A.; Denholm, I.; Field, L.M.; Williamson, M.S. A mutation (L1014F) in the voltage-gated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides. Pest Manag. Sci. 2014, 70, 1249–1253. [Google Scholar] [CrossRef]
- Bacca, T.; Haddi, K.; Pineda, M.; Guedes, R.N.; Oliveira, E.E. Pyrethroid resistance is associated with a kdr-type mutation (L1014F) in the potato tuber moth Tecia solanivora. Pest Manag. Sci. 2017, 73, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Zhan, H.; Huang, Y.H.; Lin, Z.Q.; Bhatt, P.; Chen, S.H. New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids. Environ. Res. 2020, 182, 109138. [Google Scholar] [CrossRef] [PubMed]
- Wrzesińska, B.; Czerwoniec, A.; Wieczorek, P.; Węgorek, P.; Zamojska, J.; Obrępalska-Stęplowska, A. A survey of pyrethroid-resistant populations of Meligethes aeneus F. in Poland indicates the incidence of numerous substitutions in the pyrethroid target site of voltage-sensitive sodium channels in individual beetles. Insect Mol. Biol. 2014, 23, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Dang, K.; Toi, C.S.; Lilly, D.G.; Lee, C.Y.; Naylor, R.; Tawatsin, A.; Thavara, U.; Bu, W.; Doggett, S.L. Identification of putative kdr mutations in the tropical bed bug, Cimex hemipterus (Hemiptera: Cimicidae). Pest Manag. Sci. 2015, 71, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.S.; Kwon, D.H.; Strycharz, J.P.; Hollingsworth, C.S.; Lee, S.H.; Clark, J.M. Biochemical and molecular analysis of deltamethrin resistance in the common bed bug (Hemiptera: Cimicidae). J. Med. Entomol. 2008, 45, 1092–1101. [Google Scholar] [CrossRef]
- Hodgdon, H.E.; Yoon, K.S.; Previte, D.J.; Kim, H.J.; Aboelghar, G.E.; Lee, S.H.; Clark, J.M. Determination of knockdown resistance allele frequencies in global human head louse populations using the serial invasive signal amplification reaction. Pest Manag. Sci. 2010, 66, 1031–1040. [Google Scholar] [CrossRef]
- Jonsson, N.N.; Cutullè, C.; Corley, S.W.; Seddon, J.M. Identification of a mutation in the para-sodium channel gene of the cattle tick Rhipicephalus microplus associated with resistance to flumethrin but not to cypermethrin. Int. J. Parasitol. 2010, 40, 1659–1664. [Google Scholar] [CrossRef]
- Singh, O.P.; Dykes, C.L.; Das, M.K.; Pradhan, S.; Bhatt, R.M.; Agrawal, O.P.; Adak, T. Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na+ channel of Anopheles culicifacies from Orissa, India. Malar. J. 2010, 9, 1–6. [Google Scholar] [CrossRef]
- Capriotti, N.; Mougabure-Cueto, G.; Rivera-Pomar, R.; Ons, S. L925I mutation in the Para-type sodium channel is associated with pyrethroid resistance in Triatoma infestans from the Gran Chaco region. PLoS Negl. Trop. Dis. 2014, 8, e2659. [Google Scholar] [CrossRef] [PubMed]
- İnak, E.; Alpkent, Y.N.; Çobanoğlu, S.; Dermauw, W.; Van, Leeuwen, T. Resistance incidence and presence of resistance mutations in populations of Tetranychus urticae from vegetable crops in Turkey. Exp. Appl. Acarol. 2019, 78, 343–360. [Google Scholar] [CrossRef] [PubMed]
- Naw, H.; Su, M.N.C.; Võ, T.C.; Lê, H.G.; Kang, J.M.; Jun, H.; Mya, Y.Y.; Myint, M.K.; Lee, J.; Sohn, W.M.; et al. Overall Prevalence and distribution of knockdown resistance (kdr) mutations in Aedes aegypti from Mandalay Region, Myanmar. Korean J. Parasitol. 2020, 58, 709–714. [Google Scholar] [CrossRef]
- Rueda, A.; Shelton, A.M. Development of a bioassay system for monitoring susceptibility in Thrips tabaci. Pest Manag. Sci. 2003, 59, 553–558. [Google Scholar] [CrossRef]
- Jouraku, A.; Kuwazaki, S.; Iida, H.; Ohta, I.; Kusano, H.; Takagi, M.; Yokoyama, T.; Kubota, N.; Shibao, M.; Shirotsuka, K.; et al. T929I and K1774N mutation pair and M918L single mutation identified in the voltage-gated sodium channel gene of pyrethroid-resistant Thrips tabaci (Thysanoptera: Thripidae) in Japan. Pestic. Biochem. Physiol. 2019, 158, 77–87. [Google Scholar] [CrossRef]
- Fu, D.H.; Zhang, S.Y.; Wang, M.; Liang, X.Y.; Xie, Y.L.; Zhang, Y.; Zhang, C.H. Dissipation behavior, residue distribution and dietary risk assessment of cyromazine, acetamiprid and their mixture in cowpea and cowpea field soil. J. Sci. Food Agric. 2020, 100, 4540–4548. [Google Scholar] [CrossRef]
- Tang, L.D.; Fu, B.L.; Qiu, H.Y.; Han, Y.; Li, P.; Liu, K. Studied on the toxicity of different insecticides to against Megalurothrips usitatus by using a modified TIBS method. Chin. J. Trop. Crops 2015, 36, 570–574. (In Chinese) [Google Scholar]
- Tang, L.D.; Zhao, H.Y.; Fu, B.L.; Han, Y.; Yan, K.L.; Qiu, H.Y.; Liu, K.; Wu, J.H.; Li, P. Monitoring the insecticide resistance of the field populations of Megalurothrips usitatus in Hainan area. J. Environ. Entomol. 2016, 38, 1032–1037. (In Chinese) [Google Scholar]
- Tang, L.D.; Zhao, H.Y.; Fu, B.L.; Qiu, H.Y.; Wu, J.H.; Li, P.; Liu, K. Insecticide resistance monitoring of the Hainan field populations of Megalurothrips usitatus and their susceptibility to 6 insecticides. J. Environ. Entomol. 2018, 40, 1175–1181. (In Chinese) [Google Scholar]
- Soderlund, D.M.; Knipple, D.C. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem. Mol. Biol. 2003, 33, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Fallang, A.; Denholm, I.; Horsberg, T.E.; Williamson, M.S. Novel point mutation in the sodium channel gene of pyrethroid-resistant sea lice Lepeophtheirus salmonis (Crustacea: Copepoda). Dis. Aquat. Org. 2005, 65, 129–136. [Google Scholar] [CrossRef]
- Bao, W.X.; Kataoka, Y.; Kohara, Y.; Sonoda, S. Genomic analyses of sodium channel α-subunit genes from strains of melon thrips, Thrips palmi, with different sensitivities to cypermethrin. Pestic. Biochem. Physiol. 2014, 108, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.X.; Gotoh, H.; Waters, T.; Walsh, D.B.; Lavine, L.C. Identification of an alternative knockdown resistance (kdr)-like mutation, M918L, and a novel mutation, V1010A, in the Thrips tabaci voltage-gated sodium channel gene. Pest Manag. Sci. 2014, 70, 977–981. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Jagdale, S.S.; Dietzgen, R.G.; Jain, R.K. Genetics of Thrips palmi (Thysanoptera: Thripidae). J. Pest Sci. 2020, 93, 27–39. [Google Scholar] [CrossRef]
- Silva, J.J.; Scott, J.G. Conservation of the voltage-sensitive sodium channel protein within the Insecta. Insect Mol. Biol. 2020, 29, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Smith, T.J.; Knipple, D.C.; Soderlund, D.M. Mutations in the house fly Vssc1 sodium channel gene associated with super-kdr resistance abolish the pyrethroid sensitivity of Vssc1/tipE sodium channels expressed in Xenopus oocytes. Insect Biochem. Mol. Biol. 1999, 29, 185–194. [Google Scholar] [PubMed]
- Rinkevich, F.D.; Du, Y.Z.; Dong, K. Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pestic. Biochem. Physiol. 2013, 106, 93–100. [Google Scholar] [CrossRef]
- Vais, H.; Williamson, M.S.; Goodson, S.J.; Devonshire, A.L.; Warmke, J.W.; Usherwood, P.N.; Cohen, C.J. Activation of Drosophila sodium channels promotes modification by deltamethrin: Reductions in affinity caused by knock-down resistance mutations. J. Gen. Physiol. 2000, 115, 305–318. [Google Scholar] [CrossRef]
- Vais, H.; Williamson, M.S.; Devonshire, A.L.; Usherwood, P.N. The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Manag. Sci. 2001, 57, 877–888. [Google Scholar] [CrossRef]
- Smith, T.J.; Lee, S.H.; Ingles, P.J.; Knipple, D.C.; Soderlund, D.M. The L1014F point mutation in the house fly Vssc1 sodium channel confers knockdown resistance to pyrethroids. Insect Biochem. Mol. Biol. 1997, 27, 807–812. [Google Scholar] [CrossRef]
- Liu, K.; Tang, L.D.; Li, P.; Han, Z.W.; Qiu, H.Y.; Fu, B.L.; Fan, Y.M. Toxicity and Synergistic effect of the complex formulation of several insecticides to Megalurothrips usitatus (Bagnall). Chin. J. Trop. Crops 2014, 35, 1615–1618. (In Chinese) [Google Scholar]
- Sang, S.; Zhang, K.; Wang, P.D.; Hu, M.T.; Dong, X.L. Control effects of cyantraniliprole against thrips on cowpea. Guizhou Agric. Sci. 2014, 42, 69–70+93. (In Chinese) [Google Scholar]
- Dong, L.N.; Hua, D.K.; Zheng, X.B.; Zhang, K.; Yuan, J.J.; Liu, T.H.; Wu, Q.J. Toxicity and field efficacy of different insecticides to Thrips tabaci Lindemam. Plant Prot. 2021, 47, 262–266. (In Chinese) [Google Scholar]
- Lin, Z.F.; Ji, X.C.; Pan, F.; Liang, Y.P.; Xiao, T.B.; Xie, S.H. Investigation and analysis of the current status of pesticide application in winter melon and vegetable pest control in Hainan Province, southern China. Acta Entomol. Sin. 2016, 59, 1282–1290. (In Chinese) [Google Scholar]
- Ye, H.C.; Wang, Q.; Yan, C.; Zhu, F.D.; Zhang, J. The field efficacy and joint toxicity of emamectin benzoate and acetamiprid against cowpea thrips. Chin. J. Trop. Agric. 2020, 40, 76–81. (In Chinese) [Google Scholar]
Insecticide | Year | Population | N a | Slope ± SEM b | LC50 (95% FL c) (mg/L) | Chi-Squared | p d | df | RR e |
---|---|---|---|---|---|---|---|---|---|
Lambda-cyhalothrin | Susceptible population | 360 | 1.204 ± 1.827 | 1.492 (1.204–1.827) | 25.756 | 0.211 | 5 | 1 | |
2019 | Haikou | 380 | 1.368 ± 0.130 | 617.753 (479.626–807.666) | 5.274 | 0.720 | 6 | 414 | |
2020 | 383 | 1.632 ± 0.229 | 1166.426 (896.381–1683.527) | 15.467 | 0.289 | 6 | 782 | ||
2019 | Ledong | 376 | 1.233 ± 0.130 | 902.456 (679.613–1251.270) | 13.385 | 0.194 | 6 | 605 | |
2020 | 376 | 1.152 ± 0.130 | 1171.423 (857.377–1715.986) | 11.764 | 0.732 | 6 | 785 | ||
2019 | Sanya | 376 | 0.982 ± 0.118 | 1377.514 (960.220–2211.041) | 9.29 | 0.336 | 6 | 923 | |
2020 | 420 | 0.804 ± 0.122 | 1683.521 (981.776–4082.404) | 6.019 | 0.475 | 6 | 1128 | ||
Deltamethrin | Susceptible population | 360 | 2.048 ± 0.183 | 1.976 (1.586–2.461) | 20.756 | 0.279 | 5 | 1 | |
2019 | Haikou | 348 | 1.422 ± 0.160 | 317.335 (238.852–424.582) | 18.171 | 0.257 | 6 | 161 | |
2020 | 373 | 2.124 ± 0.219 | 439.950 (354.242–552.580) | 19.940 | 0.211 | 6 | 223 | ||
2019 | Ledong | 348 | 1.596 ± 0.162 | 376.314 (303.747–473.193) | 7.358 | 0.599 | 6 | 190 | |
2020 | 348 | 1.411 ± 0.158 | 514.285 (403.624–682.587) | 6.175 | 0.553 | 6 | 260 | ||
2019 | Sanya | 348 | 1.441 ± 0.160 | 526.441 (414.539–696.554) | 6.091 | 0.772 | 6 | 266 | |
2020 | 348 | 1.287 ± 0.158 | 695.323 (526.472–994.208) | 7.229 | 0.263 | 6 | 352 |
Population | Year | Number of Insects | Nucleotide Change | Amino Acid Mutation | Mutation in Region | Mutation Type | Mutation Frequency |
---|---|---|---|---|---|---|---|
Haikou | 2019 | 30 | T-G | I873S | DIIS3 | homozygous mutant type | 100% |
2020 | 36 | T-G | I873S | DIIS3 | homozygous mutant type | 100% | |
Ledong | 2019 | 32 | T-G | I873S | DIIS3 | homozygous mutant type | 100% |
2020 | 30 | T-G | I873S | DIIS3 | homozygous mutant type | 100% | |
Sanya | 2019 | 37 | T-G | I873S | DIIS3 | homozygous mutant type | 100% |
2020 | 30 | T-G | I873S | DIIS3 | homozygous mutant type | 100% | |
Haikou | 2019 | 30 | G-A | V1015M | DIIS6 | heterozygous mutant type | 0% |
2020 | 36 | G-A | V1015M | DIIS6 | heterozygous mutant type | 0% | |
Ledong | 2019 | 32 | G-A | V1015M | DIIS6 | heterozygous mutant type | 0% |
2020 | 30 | G-A | V1015M | DIIS6 | heterozygous mutant type | 0% | |
Sanya | 2019 | 37 | G-A | V1015M | DIIS6 | heterozygous mutant type | 0% |
2020 | 30 | G-A | V1015M | DIIS6 | heterozygous mutant type | 3.33% | |
Haikou | 2019 | 30 | T-C | M918 | DIIS4-S5linker | \ | 0% |
2020 | 36 | T-C | M918 | DIIS4-S5linker | \ | 0% | |
Ledong | 2019 | 32 | T-C | M918 | DIIS4-S5linker | \ | 0% |
2020 | 30 | T-C | M918 | DIIS4-S5linker | \ | 0% | |
Sanya | 2019 | 37 | T-C | M918 | DIIS4-S5linker | \ | 0% |
2020 | 30 | T-C | M918 | DIIS4-S5linker | \ | 0% | |
Haikou | 2019 | 30 | G-T | L1014 | DIIS6 | \ | 0% |
2020 | 36 | G-T | L1014 | DIIS6 | \ | 0% | |
Ledong | 2019 | 32 | G-T | L1014 | DIIS6 | \ | 0% |
2020 | 30 | G-T | L1014 | DIIS6 | \ | 0% | |
Sanya | 2019 | 37 | G-T | L1014 | DIIS6 | \ | 0% |
2020 | 30 | G-T | L1014 | DIIS6 | \ | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R.; Lu, R.; Qiu, X.; Wang, L.; Zhang, K.; Wu, S. Detection of Putative Mutation I873S in the Sodium Channel of Megalurothrips usitatus (Bagnall) Which May Be Associated with Pyrethroid Resistance. Insects 2023, 14, 388. https://doi.org/10.3390/insects14040388
Gao R, Lu R, Qiu X, Wang L, Zhang K, Wu S. Detection of Putative Mutation I873S in the Sodium Channel of Megalurothrips usitatus (Bagnall) Which May Be Associated with Pyrethroid Resistance. Insects. 2023; 14(4):388. https://doi.org/10.3390/insects14040388
Chicago/Turabian StyleGao, Ruibo, Rongcai Lu, Xinyao Qiu, Likui Wang, Kun Zhang, and Shaoying Wu. 2023. "Detection of Putative Mutation I873S in the Sodium Channel of Megalurothrips usitatus (Bagnall) Which May Be Associated with Pyrethroid Resistance" Insects 14, no. 4: 388. https://doi.org/10.3390/insects14040388
APA StyleGao, R., Lu, R., Qiu, X., Wang, L., Zhang, K., & Wu, S. (2023). Detection of Putative Mutation I873S in the Sodium Channel of Megalurothrips usitatus (Bagnall) Which May Be Associated with Pyrethroid Resistance. Insects, 14(4), 388. https://doi.org/10.3390/insects14040388