A Summary of Concepts, Procedures and Techniques Used by Forensic Entomologists and Proxies
Abstract
:Simple Summary
Abstract
1. Introduction to Review
Introduction to Forensic Science
2. Forensic Entomology for Crime Scene Investigations
2.1. Forensic Entomologist: An Apprentice to an Expert
2.2. Forensic Entomology in Crime Investigation: Complexity and Constraints
2.3. Progression and Standardisation in Forensic Entomology
3. Crime Scene and Health Pathology Facility
3.1. Collection of Onsite Data
3.2. Collection of Microclimatic Data at a Crime Scene
3.3. Recovery of Insects for Storage or Rearing Purposes
3.3.1. Preservation of Insects
3.3.2. Preparation of Insects at the Crime Scene for Rearing Purposes
3.4. Laboratory
3.5. Identification
3.6. Examining Larvae and Full Puparia for Age Determination
3.7. Rearing
3.8. Xenobiotic Detection
4. Documentation
4.1. Referring to the Literature
4.2. Fly Development Studies
4.3. Insect Successional Studies
4.4. Casework
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hall, M.; Whitaker, A.; Richards, C. Forensic Entomology. In The Forensic Ecology Handbook: From Crime Scene to Court, 1st ed.; Marques-Grant, N., Roberts, J., Eds.; John Wiley and Sons Ltd.: Chichester, UK, 2012; pp. 111–140. ISBN 978-1-119-97419-2. [Google Scholar]
- Amendt, J.; Campobasso, C.P.; Gaudry, E.; Reiter, C.; LeBlanc, H.N.; Hall, M. Best practice in forensic entomology—Standards and guidelines. Int. J. Legal Med. 2007, 121, 90–104. [Google Scholar] [CrossRef] [PubMed]
- James, S.H.; Nordby, J.J. Forensic Science: An Introduction to Scientific and Investigative Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2002; ISBN 0-8493-1246-9. [Google Scholar]
- Saks, M.J.; Koehler, J.J. The coming paradigm shift in forensic identification science. Science 2005, 309, 892–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saferstein, R. Criminalistics: An Introduction to Forensic Science, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2001.
- Brettell, T.A.; Butler, J.M.; Saferstein, R. Forensic science. Anal. Chem. 2005, 77, 3839–3860. [Google Scholar] [CrossRef]
- Horswell, J. Crime Scene Investigation. In The Practice of Crime Scene Investigation, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Katz, E.; Halámek, J. Forensic science: A multidisciplinary approach. J. Forensic Leg. Investig. Sci. 2016, 1, 1–4. [Google Scholar]
- Byrd, J.H.; Tomberlin, J.K. Forensic Entomology: The Utility of Arthropods in Legal Investigations, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-0-8153-5020-0. [Google Scholar]
- Dadour, I.R.; Morris, B. Forensic Entomology: A Synopsis, Guide, and Update. In Essentials of Autopsy Practice, 1st ed.; Rutty, G.N., Ed.; Springer: London, UK, 2014; pp. 105–130. [Google Scholar] [CrossRef]
- Robinson, W.H. Urban Insects and Arachnids: A Handbook of Urban Entomology, 1st ed.; Cambridge University Press: Cambridge, UK, 2005; ISBN 9780521812535. [Google Scholar]
- Bugelli, V.; Tarozzic, I.; Galante, N.; Bortolini, S.; Franceschetti, L. Review on forensic importance of myiasis: Focus on medicolegal issues on post-mortem interval estimation and neglect evaluation. Legal Med. 2023, 63, 102263. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Athanassiou, C.G. Improving stored product insect pest management: From theory to practice. Insects 2019, 10, 332. [Google Scholar] [CrossRef] [Green Version]
- Haines, A.M.; Webb, S.L.; Wallace, J.R. Conservation Forensics: The Intersection of Wildlife Crime, Forensics, and Conservation. In Wildlife Biodiversity Conservation, 1st ed.; Underkoffler, S.C., Adams, H.R., Eds.; Springer: Cham, Switzerland, 2021; pp. 125–146. [Google Scholar] [CrossRef]
- Matuszewski, S. Post-mortem interval estimation based on insect evidence: Current challenges. Insects 2021, 12, 314. [Google Scholar] [CrossRef] [PubMed]
- Bambaradeniya, Y.T.B.; Karunaratne, W.A.I.P.; Rakinawasam, S.V.; Tomberlin, J.K.; Goonerathne, I.; Kotakadeniya, R.B. Myiasis incidences reported in and around central province of Sri Lanka. Int. J. Dermatol. 2019, 58, 336–342. [Google Scholar] [CrossRef]
- Catts, E.P.; Goff, M.L. Forensic entomology in criminal investigations. Annu. Rev. Entomol. 1992, 37, 253–272. [Google Scholar] [CrossRef]
- Forbes, S.L.; Carter, D.O. Processes and Mechanisms of Death and Decomposition of Vertebrate Carrion. In Carrion Ecology, Evolution, and Their Applications, 1st ed.; Benbow, M.E., Tomberlin, J.K., Torone, A.M., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 13–30. [Google Scholar] [CrossRef]
- Payne, J.A.; King, E.W.; Beinhart, G. Arthropod succession and decomposition of buried pigs. Nature 1968, 219, 1180–1181. [Google Scholar] [CrossRef]
- Noriki, S.; Iino, S.; Kinoshita, K.; Fukazawa, Y.; Inai, K.; Sakai, T.; Kimura, H. Pathological analysis of cadavers for educational dissection by using postmortem imaging. Pathol. Int. 2019, 69, 580–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajerlein, D.; Taberski, D.; Matuszewski, S. Estimation of postmortem interval (PMI) based on empty puparia of Phormia regina (Meigen) (Diptera: Calliphoridae) and third larval stage of Necrodes littoralis (L.) (Coleoptera: Silphidae)–Advantages of using different PMI indicators. J. Forensic Leg. Med. 2018, 55, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Pittner, S.; Bugelli, V.; Weitgasser, K.; Zissler, A.; Sanit, S.; Lutz, L.; Amendt, J. A field study to evaluate PMI estimation methods for advanced decomposition stages. Int. J. Legal Med. 2020, 134, 1361–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bambaradeniya, Y.T.B.; Magni, P.A.; Dadour, I.R. Current Status of Five Warm Season Diptera Species in Estimating the Post-Mortem Interval. Ann. Entomol. Soc. Am. 2023, 116, 19–50. [Google Scholar] [CrossRef]
- Kreitlow, K.L.T. Insect Succession in a Natural Environment. In Forensic Entomology, 2nd ed.; Byrd, J.H., Castner, J.L., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 251–269. [Google Scholar]
- Amendt, J.; Richards, C.S.; Campobasso, C.P.; Zehner, R.; Hall, M.J. Forensic entomology: Applications and limitations. Forensic Sci. Med. Pathol. 2011, 7, 379–392. [Google Scholar] [CrossRef]
- Campobasso, C.P.; Di Vella, G.; Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 2001, 120, 18–27. [Google Scholar] [CrossRef]
- Kulshrestha, P.; Satpathy, D.K. Use of beetles in forensic entomology. Forensic Sci. Int. 2001, 120, 15–17. [Google Scholar] [CrossRef]
- Frost, C.L.; Braig, H.R.; Amendt, J.; Perotti, M.A. Indoor Arthropods of Forensic Importance: Insects Associated with Indoor Decomposition and Mites as Indoor Markers. In Current Concepts in Forensic Entomology, 1st ed.; Amendt, J., Goff, M.L., Campobasso, C.P., Grassberger, M., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 93–108. [Google Scholar] [CrossRef] [Green Version]
- Vanin, S. Advances in Forensic Entomology in Missing Persons Investigations. In Handbook of Missing Persons, 1st ed.; Morewitz, S.J., Colls, C.S., Eds.; Springer: Cham, Switzerland, 2016; pp. 309–317. [Google Scholar] [CrossRef]
- Prasad, S.; Aneesh, E.M. Tools and techniques in forensic entomology—A critical review. Int. J. Trop. Insect Sci. 2020, 42, 2785–2794. [Google Scholar] [CrossRef]
- Charabidze, D.; Gosselin, M.; Hedouin, V. Use of necrophagous insects as evidence of cadaver relocation: Myth or reality? Peer J. 2017, 5, e3506. [Google Scholar] [CrossRef]
- Weatherbee, C.R.; Pechal, J.L.; Eric Benbow, M. The dynamic maggot mass microbiome. Ann. Entomol. Soc. Am. 2017, 110, 45–53. [Google Scholar] [CrossRef]
- Di Luise, E.; Magni, P.; Staiti, N.; Spitaleri, S.; Romano, C. Genotyping of human nuclear DNA recovered from the gut of fly larvae. Forensic Sci. Int. 2008, 1, 591–592. [Google Scholar] [CrossRef]
- Wells, J.D.; Stevens, J.R. Application of DNA-based methods in forensic entomology. Annu. Rev. Entomol. 2008, 53, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. The metagenomics worldwide research. Curr. Genet. 2017, 63, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Roumpeka, D.D.; Wallace, R.J.; Escalettes, F.; Fotheringham, I.; Watson, M. A review of bioinformatics tools for bioprospecting from metagenomic sequence data. Front. Genet. 2017, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.; Dadour, I.R.; Groth, D.M.; Harvey, M.L. Isolation and detection of ingested DNA from the immature stages of Calliphora dubia (Diptera: Calliphoridae) A forensically important blowfly. Forensic Sci. Med. Pathol. 2005, 1, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Baqué, M.; Amendt, J.; Verhoff, M.A.; Zehner, R. Descriptive analyses of differentially expressed genes during larval development of Calliphora vicina (Diptera: Calliphoridae). Int. J. Legal Med. 2015, 129, 891–902. [Google Scholar] [CrossRef]
- Kintz, P.; Tracqui, A.; Ludes, B.; Waller, J.; Boukhabza, A.; Mangin, P.; Chaumont, A.J. Fly larvae and their relevance in forensic toxicology. Am. J. Forensic Med. Pathol. 1990, 11, 63–65. [Google Scholar] [CrossRef]
- Gosselin, M.; Wille, S.M.; Fernandez, M.D.M.R.; Di Fazio, V.; Samyn, N.; De Boeck, G.; Bourel, B. Entomotoxicology, experimental set-up and interpretation for forensic toxicologists. Forensic Sci. Int. 2011, 208, 1–9. [Google Scholar] [CrossRef]
- Stewart, M.A. The teaching of entomology. J. Econ. Entomol. 1929, 22, 777–781. [Google Scholar] [CrossRef]
- Morris, B.; Harvey, M.L.; Dadour, I.R. International Collaborations and Training. In International Dimensions & Frontiers in Forensic Entomology, 1st ed.; Tomberlin, J., Benbow, E., Eds.; CRC Press: Boca Raton, FL, USA, 2015; Volume 30, pp. 399–416. [Google Scholar] [CrossRef]
- Schoenly, K.G.; Haskell, N.H.; Mills, D.K.; Bieme-Ndi, C.; Larsen, K.; Lee, Y. Recreating death’s acre in the school yard: Using pig carcasses as model corpses to teach concepts of forensic entomology & ecological succession. Am. Biol. Teach. 2006, 68, 402–410. [Google Scholar]
- Magni, P.; Guercini, S.; Leighton, A.; Dadour, I. Forensic entomologists: An evaluation of their status. J. Insect Sci. 2013, 13, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenly, K.G.; Michaud, J.P.; Moreau, G. Design and Analysis of Field Studies in Carrion Ecology. In Carrion Ecology, Evolution, and Their Applications, 1st ed.; Benbow, M.E., Tomberlin, J.K., Torone, A.M., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 129–148. ISBN 978-1-4665-7547-9. [Google Scholar]
- Benbow, M.E.; Pechal, J.L. Forensic Entomology and the Microbiome. In Forensic Entomology: The Utility of Arthropods in Legal Investigations, 3rd ed.; Byrd, J.H., Tomberlin, J.K., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 499–517. [Google Scholar]
- Michaud, J.P.; Schoenly, K.G.; Moreau, G. Rewriting ecological succession history: Did carrion ecologists get there first? Q. Rev. Biol. 2015, 90, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Benecke, M.; Barksdale, L. Distinction of bloodstain patterns from fly artifacts. Forensic Sci. Int. 2003, 137, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Dadour, I.R.; Cook, D.F.; Fissioli, J.N.; Bailey, W.J. Forensic entomology: Application, education and research in Western Australia. Forensic Sci. Int. 2001, 120, 48–52. [Google Scholar] [CrossRef]
- Archer, M.S.; Wallman, J.F. The development of forensic entomology in Australia and New Zealand: An overview of casework practice, quality control and standards. Aust. J. Forensic Sci. 2017, 49, 125–133. [Google Scholar] [CrossRef]
- Lutz, L.; Zehner, R.; Verhoff, M.A.; Bratzke, H.; Amendt, J. It is all about the insects: A retrospective on 20 years of forensic entomology highlights the importance of insects in legal investigations. Int. J. Legal Med. 2021, 135, 2637–2651. [Google Scholar] [CrossRef]
- Mégnin, P. La faune des Cadavres. Application de l’entomologie a la Médicine Légal (Fauna of Cadavers. Application of Enomology in Legal Medicine); Encyclopdie scientifique des Aides-Mémoire; Les Belles Lettres: Paris, France, 1894; p. 214. [Google Scholar]
- Payne, J.A. A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 1965, 46, 592–602. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Mohr, R.; Benbow, M.E.; Tarone, A.M.; Vanlaerhoven, S. A roadmap for bridging basic and applied research in forensic entomology. Annu. Rev. Entomol. 2011, 56, 401–421. [Google Scholar] [CrossRef] [Green Version]
- Keh, B. Scope and applications of forensic entomology. Annu. Rev. Entomol. 1985, 30, 137–154. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Byrd, J.H.; Wallace, J.R.; Benbow, M.E. Assessment of decomposition studies indicates need for standardized and repeatable research methods in forensic entomology. J. Forensic Res. 2012, 3, 1000147. [Google Scholar] [CrossRef] [Green Version]
- Moreau, G. The pitfalls in the path of probabilistic inference in forensic entomology: A review. Insects 2021, 12, 240. [Google Scholar] [CrossRef] [PubMed]
- Gaudry, E.; Dourel, L. Forensic entomology: Implementing quality assurance for expertise work. Int. J. legal Med. 2013, 127, 1031–1037. [Google Scholar] [CrossRef]
- Magni, P.A.; Dadour, I. SmartInsects–Smartphone & Forensic Entomology. 2013 (Version 1.0). Mobile Application Software: IOS. Retrieved from App Store. Available online: https://apps.apple.com/us/app/smartinsects/id985074731 (accessed on 15 December 2022).
- Campobasso, C.P.; Introna, F. The forensic entomologist in the context of the forensic pathologist’s role. Forensic Sci. Int. 2001, 120, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Amendt, J.; Krettek, R.; Niess, C.; Zehner, R.; Bratzke, H. Forensic entomology in Germany. Forensic Sci. Int. 2000, 113, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Dolinski, C.; Shapiro-Ilan, D.; Lewis, E.E. Insect Cadaver Applications: Pros and Cons. In Nematode Pathogenesis of Insects and Other Pests, 1st ed.; Campos-Herrera, R., Ed.; Springer: Cham, Switzerland, 2015; pp. 207–229. [Google Scholar] [CrossRef]
- LeBlanc, H.N.; Logan, J.G. Exploiting Insect Olfaction in Forensic Entomology. In Current Concepts in Forensic Entomology, 1st ed.; Amendt, J., Goff, M.L., Campobasso, C.P., Grassberger, M., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 205–221. [Google Scholar] [CrossRef]
- Charabidze, D.; Depeme, A.; Devigne, C.; Hedouin, V. Do necrophagous blowflies (Diptera: Calliphoridae) lay their eggs in wounds?: Experimental data and implications for forensic entomology. Forensic Sci. Int. 2015, 253, 71–75. [Google Scholar] [CrossRef]
- Kinnaird, E.L. Decomposition and Insect Succession on Hanging Carcasses in Western Australia. Master by Research, The University of Western Australia, Perth, 3 November 2016. Available online: https://research-repository.uwa.edu.au/en/publications/decomposition-and-insect-succession-on-hanging-carcasses-in-weste (accessed on 15 December 2022).
- Bhadra, P.; Hart, A.J.; Hall, M.J.R. Factors affecting accessibility to blowflies of bodies disposed in suitcases. Forensic Sci. Int. 2014, 239, 62–72. [Google Scholar] [CrossRef]
- Wescott, D.J. Recent advances in forensic anthropology: Decomposition research. Forensic Sci. Res. 2018, 3, 278–293. [Google Scholar] [CrossRef] [Green Version]
- Finley, S.J.; Benbow, M.E.; Javan, G.T. Microbial communities associated with human decomposition and their potential use as postmortem clocks. Int. J. Legal Med. 2015, 129, 623–632. [Google Scholar] [CrossRef]
- Wallace, J.R. Aquatic Vertebrate Carrion Decomposition. In Carrion Ecology, Evolution, and Their Applications, 1st ed.; Benbow, M.E., Tomberlin, J.K., Torone, A.M., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 247–271. [Google Scholar]
- Neven, L.G. Physiological responses of insects to heat. Postharvest Biol. Technol. 2000, 21, 103–111. [Google Scholar] [CrossRef]
- Sharanowski, B.J.; Walker, E.G.; Anderson, G.S. Insect succession and decomposition patterns on shaded and sunlit carrion in Saskatchewan in three different seasons. Forensic Sci. Int. 2008, 179, 219–240. [Google Scholar] [CrossRef]
- Bambaradeniya, Y.T.B.; Karunarathne, W.A.I.P.; Goonerathne, I.; Kotakadeniya, R.B.; Tomberlin, J.K. Use of development data to estimate colonization time of the myiasis-causing fly, Chrysomya bezziana (Diptera: Calliphoridae) collected from human wounds. Sri Lanka J. Forensic Med. Sci. Law 2016, 7, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Iancu, L.; Dean, D.E.; Purcarea, C. Temperature influence on prevailing necrophagous Diptera and bacterial taxa with forensic implications for postmortem interval estimation: A review. J. Med. Entomol. 2018, 55, 1369–1379. [Google Scholar] [PubMed]
- Guo, J.; Fu, X.; Liao, H.; Hu, Z.; Long, L.; Yan, W.; Cai, J. Potential use of bacterial community succession for estimating post-mortem interval as revealed by high-throughput sequencing. Sci. Rep. 2016, 6, 24197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofer, I.M.; Hart, A.J.; Martín-Vega, D.; Hall, M.J. Estimating crime scene temperatures from nearby meteorological station data. Forensic Sci. Int. 2020, 306, 110028. [Google Scholar] [CrossRef] [PubMed]
- Charabidze, D.; Hedouin, V. Temperature: The weak point of forensic entomology. Int. J. Legal Med. 2019, 133, 633–639. [Google Scholar] [CrossRef]
- Johnson, A.P.; Wallman, J.F.; Archer, M.S. Experimental and casework validation of ambient temperature corrections in forensic entomology. J. Forensic Sci. 2012, 57, 215–221. [Google Scholar] [CrossRef]
- Hofer, I.M.; Hart, A.J.; Martín-Vega, D.; Hall, M.J. Optimising crime scene temperature collection for forensic entomology casework. Forensic Sci. Int. 2017, 270, 129–138. [Google Scholar] [CrossRef]
- Turchetto, M.; Vanin, S. Climate Change and Forensic Entomology. In Current Concepts in Forensic Entomology, 1st ed.; Amendt, J., Goff, M.L., Campobasso, C.P., Grassberger, M., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 327–351. [Google Scholar] [CrossRef]
- Michaud, J.P.; Schoenly, K.G.; Moreau, G. Sampling flies or sampling flaws? Experimental design and inference strength in forensic entomology. J. Med. Entomol. 2012, 49, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G.S.; Cervenka, V.J.; Haglund, W.; Sorg, M. Insects Associated with the Body: Their Use and Analyses. In Advances in Forensic Taphonomy: Method, Theory, and Archaeological Perspectives, 1st ed.; Haglund, W.D., Sorg, M., Eds.; CRC Press: Boca Raton, FL, USA, 2002; p. 173200. ISBN 13: 978-14200-5835-2. [Google Scholar]
- Touroo, R.; Fitch, A. Crime Scene Findings and the Identification, Collection, and Preservation of Evidence. In Veterinary Forensic Pathology, 1st ed.; Brooks, J.S., Ed.; Springer: Cham, Switzerland, 2018; pp. 9–25. [Google Scholar] [CrossRef]
- Mohr, R.M.; Tomberlin, J.K. Development and validation of a new technique for estimating a minimum postmortem interval using adult blow fly (Diptera: Calliphoridae) carcass attendance. Int. J. Legal Med. 2015, 129, 851–859. [Google Scholar] [CrossRef]
- Martín-Vega, D.; Hall, M.J.R. Estimating the age of Calliphora vicina eggs (Diptera: Calliphoridae): Determination of embryonic morphological landmarks and preservation of egg samples. Int. J. Legal Med. 2016, 130, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Tyndale-Biscoe, M. Age-grading methods in adult insects: A review. Bull. Entomol. Res. 1984, 74, 341–377. [Google Scholar] [CrossRef]
- Firoozfar, F.; Moosa-Kazemi, H.; Baniardalani, M.; Abolhassani, M.; Khoobdel, M.; Rafinejd, J. Mass rearing of Lucilia sericata Meigen (Diptera: Calliphoridae). Asian Pac. J. Trop. Biomed. 2011, 1, 54–56. [Google Scholar] [CrossRef] [Green Version]
- Bilaniuk, V.; Beresford, D.V. Sampling adult blow flies (Diptera: Calliphoridae) at pig carcasses with sticky traps: Effects of trap colour, height, and inclination. J. Can. Soc. Forensic Sci. 2010, 43, 181–190. [Google Scholar] [CrossRef]
- Adams, Z.J.; Hall, M.J. Methods used for the killing and preservation of blowfly larvae, and their effect on post-mortem larval length. Forensic Sci. Int. 2003, 138, 50–61. [Google Scholar] [CrossRef]
- Davies, K.; Harvey, M.L. Internal morphological analysis for age estimation of blow fly pupae (Diptera: Calliphoridae) in postmortem interval estimation. J. Forensic Sci. 2013, 58, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Thorne, A.; Harvey, M. Calliphora vicina (Diptera: Calliphoridae) pupae: A timeline of external morphological development and a new age and PMI estimation tool. Int. J. Legal Med. 2015, 129, 835–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weithmann, S.; von Hoermann, C.; Degasperi, G.; Brandt, K.; Steiger, S.; Ayasse, M. Temporal variability of the rove beetle (Coleoptera: Staphylinidae) community on small vertebrate carrion and its potential use for forensic entomology. Forensic Sci. Int. 2021, 323, 110792. [Google Scholar] [CrossRef]
- Dalal, J.; Sharma, S.; Bhardwaj, T.; Dhattarwal, S.K. Assessment of post-mortem submersion interval using total aquatic decomposition scores of drowned human cadavers. J. Forensic. Sci. 2023, 68, 549–557. [Google Scholar] [CrossRef]
- Rivers, D.B.; Dahlem, G.A. The Science of Forensic Entomology, 2nd ed.; John Wiley & Sons: Toronto, ON, Canada, 2023; ISBN 97811199403664. [Google Scholar]
- Stamper, T.; Weidner, L.; Nigoghosian, G.; Johnson, N.; Wang, C.; Levesque-Bristol, C. Towards understanding how to instruct students in dichotomous identification keys in a mixed STEM forensic science education environment. JFSE 2020, 2, 1. [Google Scholar]
- Drijfhout, F.P. Cuticular Hydrocarbons: A New Tool in Forensic Entomology? In Current Concepts in Forensic Entomology, 1st ed.; Amendt, J., Goff, M.L., Campobasso, C.P., Grassberger, M., Eds.; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Pechal, J.L.; Moore, H.; Drijfhout, F.; Benbow, M.E. Hydrocarbon profiles throughout adult Calliphoridae aging: A promising tool for forensic entomology. Forensic Sci. Int. 2014, 245, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Sukontason, K.; Sukontason, K.L.; Boonchu, N.; Chaiwong, T.; Piangjai, S. Ultrastructure of eggshell of Chrysomya nigripes Aubertin (Diptera: Calliphoridae). Parasitol. Res. 2004, 93, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Velásquez, Y.; Magaña, C.; Martínez-Sánchez, A.; Rojo, S. Diptera of forensic importance in the Iberian Peninsula: Larval identification key. Med. Vet. Entomol. 2010, 24, 293–308. [Google Scholar] [CrossRef] [PubMed]
- James, M.T. The Flies That Cause Myiasis in Man; US Department of Agriculture, Government Printing Office: Washington, DC, USA, 1947. [Google Scholar]
- Zumpt, F. Myiasis in Man and Animals in the Old World: A Textbook for Physicians, Veterinarians and Zoologists; Butterworth & Co., Ltd.: London, UK, 1965. [Google Scholar]
- Smith, K.V.G. A Manual of Forensic Entomology, 1st ed.; Department of Entomology, British Museum: London, UK, 1986; ISBN 9780565009908. [Google Scholar]
- Wood, D.M.; Borkent, A. Phylogeny and Classification of the Nematocera. In Manual of Nearctic Diptera, 1st ed.; McAlpine, J.F., Wood, D.M., Eds.; Research Branch Agriculture Canada Monograph No. 32; Canadian Government Publishing Centre: Hull, QC, Canada, 1989; pp. 1333–1370. [Google Scholar]
- Carvalho, C.J.B.D.; Mello-Patiu, C.A.D. Chave de identificação para as espécies comuns de Diptera da América do Sul de interesse forense. Rev. Bras. Entomol. 2008, 52, 390–406. [Google Scholar] [CrossRef] [Green Version]
- Szpila, K.; Richet, R.; Pape, T. Third instar larvae of flesh flies (Diptera: Sarcophagidae) of forensic importance—Critical review of characters and key for European species. Parasitol. Res. 2015, 114, 2279–2289. [Google Scholar] [CrossRef] [Green Version]
- Whitworth, T. Keys to the Genera and Species of Blow Flies (Diptera: Calliphoridae) of America, North of Mexico. In Forensic Entomology: The Utility of Arthropods in Legal Investigations, 3rd ed.; Byrd, J.H., Tomberlin, J.K., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 413–443. [Google Scholar]
- Wallman, J.F. A key to the adults of species of blowflies in southern Australia known or suspected to breed in carrion. Med. Vet. Entomol. 2001, 15, 433–437. [Google Scholar] [CrossRef] [Green Version]
- Hanley, G.A.; Cuthrell, D.L. The Carrion Beetles of North Dakota, Including Species Descriptions and Identification Keys for the Entire North American Silphid Fauna; Minot State University: Minot, ND, USA, 2010. [Google Scholar]
- Brunke, A.; Newton, A.; Klimaszewski, J.; Majka, C.; Marshall, S. Staphylinidae of eastern Canada and adjacent United States. Key to subfamilies: Staphylininae: Tribes and subtribes, and species of Staphylinina. Can. J. Arthropod Identif. 2011, 12, 1–110. [Google Scholar] [CrossRef]
- Mendonça, P.M.; dos Santos-Mallet, J.R.; de Mello, R.P.; Gomes, L.; de Carvalho Queiroz, M.M. Identification of fly eggs using scanning electron microscopy for forensic investigations. Micron 2008, 39, 802–807. [Google Scholar] [CrossRef]
- Ubero-Pascal, N.; Arnaldos, I.; López-Esclapez, R.; García, M.D. Microscopy and forensic entomology. Microsc. Sci. Technol. Appl. Educ. Microsc. Book Ser. 2010, 4, 1548–1556. [Google Scholar]
- Grzywacz, A. Third instar larva morphology of Hydrotaea cyrtoneurina (Zetterstedt, 1845) (Diptera: Muscidae)-a species of forensic interest. Pol. J. Entomol. 2013, 82, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Hore, G.; Maity, A.; Naskar, A.; Ansar, W.; Ghosh, S.; Saha, G.K.; Banerjee, D. Scanning electron microscopic studies on antenna of Hemipyrellia ligurriens (Wiedemann, 1830) (Diptera: Calliphoridae)—A blow fly species of forensic importance. Acta Trop. 2017, 172, 20–28. [Google Scholar] [CrossRef]
- Giglio, A.; Ferrero, E.A.; Perrotta, E.; Tripepi, S.; Brandmayr, T.Z. Ultrastructure and comparative morphology of mouth-part sensilla in ground beetle larvae (Insecta, Coleoptera, Carabidae). Zool. Anz. 2003, 242, 277–292. [Google Scholar] [CrossRef]
- Ortloff, A.; Zanetti, N.; Centeno, N.; Silva, R.; Bustamante, F.; Olave, A. Ultramorphological characteristics of mature larvae of Nitidula carnaria (Schaller 1783) (Coleoptera: Nitidulidae), a beetle species of forensic importance. Forensic Sci. Int. 2014, 239, e1–e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.Y.; Hung, T.H.; Shiao, S.F. Molecular identification of forensically important blow fly species (Diptera: Calliphoridae) in Taiwan. J. Med. Entomol. 2004, 41, 47–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batovska, J.; Blacket, M.J.; Brown, K.; Lynch, S.E. Molecular identification of mosquitoes (Diptera: Culicidae) in southeastern Australia. Ecol. Evol. 2016, 6, 3001–3011. [Google Scholar] [CrossRef] [Green Version]
- Magni, P.A.; Harvey, M.L.; Saravo, L.; Dadour, I.R. Entomological evidence: Lessons to be learnt from a cold case review. Forensic Sci. Int. 2012, 223, 31–34. [Google Scholar] [CrossRef]
- Rolo, E.S.A. DNA Barcoding and Forensic Entomology: A Molecular Approach for Diptera Species’ Identification. Ph.D. Thesis, University of Lisbon, Lisboa, Portugal, 2010. Available online: https://hdl.handle.net/10451/2024 (accessed on 15 December 2022).
- Boehme, P.; Amendt, J.; Disney, R.H.L.; Zehner, R. Molecular identification of carrion-breeding scuttle flies (Diptera: Phoridae) using COI barcodes. Int. J. Legal Med. 2010, 124, 577–581. [Google Scholar] [CrossRef]
- Stevens, J.; Wall, R. Genetic relationships between blowflies (Calliphoridae) of forensic importance. Forensic Sci. Int. 2001, 120, 116–123. [Google Scholar] [CrossRef]
- Wallman, J.F.; Leys, R.; Hogendoorn, K. Molecular systematics of Australian carrion-breeding blowflies (Diptera: Calliphoridae) based on mitochondrial DNA. Invertebr. Syst. 2005, 19, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Harvey, M.L.; Dadour, I.R.; Gaudieri, S. Mitochondrial DNA cytochrome oxidase I gene: Potential for distinction between immature stages of some forensically important fly species (Diptera) in western Australia. Forensic Sci. Int. 2003, 131, 134–139. [Google Scholar] [CrossRef]
- Harvey, M.L.; Mansell, M.W.; Villet, M.H.; Dadour, I.R. Molecular identification of some forensically important blowflies of southern Africa and Australia. Med. Vet. Entomol. 2003, 17, 363–369. [Google Scholar] [CrossRef]
- Harvey, M.L.; Gaudieri, S.; Villet, M.H.; Dadour, I.R. A global study of forensically significant calliphorids: Implications for identification. Forensic Sci. Int. 2008, 177, 66–76. [Google Scholar] [CrossRef]
- Day, D.M.; Wallman, J.F. Width as an alternative measurement to length for post-mortem interval estimations using Calliphora augur (Diptera: Calliphoridae) larvae. Forensic Sci. Int. 2006, 159, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yuan, X.; Zhu, F.; Lei, C. Development time and size-related traits in the oriental blowfly, Chrysomya megacephala along a latitudinal gradient from China. J. Therm. Bio. 2010, 35, 366–371. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Yang, L.; Tao, L.; Wang, J. Development of Chrysomya megacephala at constant temperatures within its colony range in Yangtze River Delta region of China. Forensic Sci. Res. 2018, 3, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bambaradeniya, Y.T.B.; Karunaratne, W.I.P.; Tomberlin, J.K.; Goonerathne, I.; Kotakadeniya, R.B.; Magni, P.A. Effect of temperature and tissue type on the development of the forensic fly Chrysomya megacephala (Diptera: Calliphoridae). J. Med. Entomol. 2019, 56, 1571–1581. [Google Scholar] [CrossRef]
- Hu, G.; Wang, Y.; Sun, Y.; Zhang, Y.; Wang, M.; Wang, J. Development of Chrysomya rufifacies (Diptera: Calliphoridae) at constant temperatures within its colony range in Yangtze River Delta Region of China. J. Med. Entomol. 2019, 56, 1215–1224. [Google Scholar] [CrossRef]
- Bambaradeniya, Y.T.B.; Karunaratne, W.A.I.P.; Tomberlin, J.K.; Magni, P.A. Effect of type of tissue on the development of Chrysomya rufifacies (Diptera: Calliphoridae) in Sri Lanka. J. Med. Entomol. 2021, 58, 1673–1679. [Google Scholar] [CrossRef]
- Bambaradeniya, Y.T.B.; Karunaratne, W.A.I.P.; Tomberlin, J.K.; Goonerathne, I.; Kotakadeniya, R.B. Effect of temperature and tissue type on the development of myiasis causing fly; Chrysomya bezziana (Diptera: Calliphoridae). J. Med. Entomol. 2019, 56, 625–631. [Google Scholar] [CrossRef]
- Grassberger, M.; Reiter, C. Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen-and isomorphen-diagram. Forensic Sci. Int. 2001, 120, 32–36. [Google Scholar] [CrossRef]
- Bambaradeniya, Y.T.B.; Karunaratne, W.I.P.; Tomberlin, J.K.; Goonerathne, I.; Kotakadeniya, R.B. Temperature and tissue type impact development of Lucilia cuprina (Diptera: Calliphoridae) in Sri Lanka. J. Med. Entomol. 2018, 55, 285–291. [Google Scholar] [CrossRef]
- Ma, T.; Huang, J.; Wang, J.F. Study on the pupal morphogenesis of Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) for postmortem interval estimation. Forensic Sci. Int. 2015, 253, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.X.; Liu, G.C. Pupal age estimation of forensically important Megaselia spiracularis Schmitz (Diptera: Phoridae). Forensic Sci. Int. 2013, 231, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.X.; Liu, G.C. Pupal age estimation of forensically important Megaselia scalaris (Loew) (Diptera: Phoridae). Forensic Sci. Int. 2014, 236, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, J.; Wang, Y. A comparative study of the decomposition of pig carcasses in a methyl methacrylate box and open-air conditions. J. Forensic Legal Med. 2016, 42, 92–95. [Google Scholar] [CrossRef]
- Nur Aliah, N.A.; Heo, C.C.; Noor Shafini, M.; Mohd Hafizi, M. Age estimation of forensically important blowfly, Chrysomya megacephala (Diptera: Calliphoridae) pupae using micro-computed tomography imaging. Trop. Biomed. 2019, 36, 640–653. [Google Scholar]
- Feng, D.X.; Wu, J.; Sun, D.P. Intrapuparial age estimation of forensically important Dohrniphora cornuta (Diptera: Phoridae). J. Med. Entomol. 2021, 58, 616–624. [Google Scholar] [CrossRef]
- Voss, S.C.; Magni, P.; Dadour, I.; Nansen, C. Reflectance-based determination of age and species of blowfly puparia. Int. J. Legal Med. 2017, 131, 263–274. [Google Scholar] [CrossRef]
- Brown, K.; Harvey, M. Optical coherence tomography: Age estimation of Calliphora vicina pupae in vivo? Forensic Sci. Int. 2014, 242, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Moore, H.E.; Adam, C.D.; Drijfhout, F.P. Potential Use of Hydrocarbons for Aging Lucilia sericata Blowfly Larvae to Establish the Postmortem Interval. J. Forensic Sci. 2013, 58, 404–412. [Google Scholar] [CrossRef]
- Frederickx, C.; Dekeirsschieter, J.; Brostaux, Y.; Wathelet, J.P.; Verheggen, F.J.; Haubruge, E. Volatile organic compounds released by blowfly larvae and pupae: New perspectives in forensic entomology. Forensic Sci. Int. 2012, 219, 215–220. [Google Scholar] [CrossRef]
- Yanmanee, S.; Husemann, M.; Benbow, M.E.; Suwannapong, G. Larval development rates of Chrysomya rufifacies Macquart, 1842 (Diptera: Calliphoridae) within its native range in South-East Asia. Forensic Sci. Int. 2016, 266, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Van der Merwe, S.S. The Identification of Diptera of the Grave and Their Succession Patterns during Winter and Summer in Central South Africa, with Reference to Forensic Applications. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2016. Available online: http://hdl.handle.net/11660/4033 (accessed on 2 May 2023).
- Swiger, S.L.; Hogsette, J.A.; Butler, J.F. Laboratory colonization of the blow flies, Chrysomya megacephala (Diptera: Calliphoridae) and Chrysomya rufifacies (Diptera: Calliphoridae). J. Econ. Entomol. 2014, 107, 1780–1784. [Google Scholar] [CrossRef]
- Archer, M.S.; Jones, S.D.; Wallman, J.F. Delayed reception of live blowfly (Calliphora vicina and Chrysomya rufifacies) larval samples: Implications for minimum postmortem interval estimates. Forensic Sci. Res. 2018, 3, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Pounder, D.J. Forensic entomo-toxicology. J. Forensic Sci. Soc. 1991, 31, 469–472. [Google Scholar] [CrossRef]
- Introna, F.; Campobasso, C.P.; Goff, M.L. Entomotoxicology. Forensic Sci. Int. 2001, 120, 42–47. [Google Scholar] [CrossRef]
- Scott, A.M. Crime Scene Documentation. In Wiley Encyclopedia of Forensic Science, 1st ed.; Jamieson, A., Moenssens, A., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Byrd, J.; Sutton, L. Forensic entomology for the investigator. Wiley Interdiscip. Rev. Forensic Sci. 2020, 2, 1370. [Google Scholar] [CrossRef]
- Miller, M.T. Crime Scene Investigation. In Forensic Science: An Introduction to Scientific and Investigative Techniques, 1st ed.; James, S.H., Nordby, J.J., Eds.; CRC Press: Boca Raton, FL, USA, 2002; pp. 143–164. [Google Scholar]
- Hall, M.J.R. The relationship between research and casework in forensic entomology. Insects 2021, 12, 174. [Google Scholar] [CrossRef] [PubMed]
- Krinsky, W.L. Forensic Entomology. Med. Vet. Entomol. 2019, 5, 51–60. [Google Scholar] [CrossRef]
- Weidner, L.M.; Meeds, A.W.; Noblesse, A.P.; Hans, K.R. A review of Forensic Entomology literature in the southwestern United States. Wiley Interdiscip. Rev. Forensic Sci. 2021, 3, e1421. [Google Scholar] [CrossRef]
- Niederegger, S.; Pastuschek, J.; Mall, G. Preliminary studies of the influence of fluctuating temperatures on the development of various forensically relevant flies. Forensic Sci. Int. 2010, 199, 72–78. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.L.; Wang, J.F.; Wang, M.; Yang, L.J.; Tao, L.Y.; Hou, Z.L. Development of the green bottle fly Lucilia illustris at constant temperatures. Forensic Sci. Int. 2016, 267, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, B.; Tantawi, T.I. Different developmental strategies in two boreal blow flies (Diptera: Calliphoridae). J. Med. Entomol. 1993, 30, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Ames, C.; Turner, B. Low temperature episodes in development of blowflies: Implications for postmortem interval estimation. Med. Vet. Entomol. 2003, 17, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Ireland, S.; Turner, B. The effects of larval crowding and food type on the size and development of the blowfly, Calliphora vomitoria. Forensic Sci. Int. 2006, 159, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Niederegger, S.; Wartenberg, N.; Spiess, R.; Mall, G. Influence of food substrates on the development of the blowflies Calliphora vicina and Calliphora vomitoria (Diptera, Calliphoridae). Parasitol. Res. 2013, 112, 2847–2853. [Google Scholar] [CrossRef]
- Wood, T.; Pyper, K.; Casali, F. Effects of cocaine and heroin, and their combination, on the development rate of Calliphora vomitoria (Diptera: Calliphoridae). Sci. Justice 2022, 62, 471–475. [Google Scholar] [CrossRef]
- Donovan, S.E.; Hall, M.J.R.; Turner, B.D.; Moncrieff, C.B. Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures. Med. Vet. Entomol. 2006, 20, 106–114. [Google Scholar] [CrossRef]
- Hwang, C.C.; Turner, B.D. Small-scaled geographical variation in life-history traits of the blowfly Calliphora vicina between rural and urban populations. Entomol. Exp. Appl. 2009, 132, 218–224. [Google Scholar] [CrossRef]
- Aak, A.; Birkemoe, T.; Leinaas, H.P. Phenology and life history of the blowfly Calliphora vicina in stockfish production areas. Entomol. Exp. Appl. 2011, 139, 35–46. [Google Scholar] [CrossRef]
- Sanei-Dehkordi, A.; Khamesipour, A.; Akbarzadeh, K.; Akhavan, A.A.; Rassi, Y.; Oshaghi, M.A.; Rafinejad, J. Experimental colonization and life table of the Calliphora vicina (Robineau-Desvoidy) (Diptera: Calliphoridae). J. Entomol. Zool. Stud. 2014, 2, 45–48. [Google Scholar]
- Baqué, M.; Filmann, N.; Verhoff, M.A.; Amendt, J. Establishment of developmental charts for the larvae of the blow fly Calliphora vicina using quantile regression. Forensic Sci. Int. 2015, 248, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.H.; Allen, J.C. The development of the black blow fly, Phormia regina (Meigen). Forensic Sci. Int. 2001, 120, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Nabity, P.D.; Higley, L.G.; Heng-Moss, T.M. Light-induced variability in development of forensically important blow fly Phormia regina (Diptera: Calliphoridae). J. Med. Entomol. 2007, 44, 351–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roe, A.L. Development Modeling of Lucilia sericata and Phormia regina (Diptera: Calliphoridae). Ph.D. Thesis, University of Nebraska-Lincoin, Lincoln, NE, USA, 2014. [Google Scholar]
- Roe, A.L.; Higley, L.G. Stage Transitions in Lucilia sericata and Phormia regina (Diptera: Calliphoridae) and Implications for Forensic Science. Insects 2023, 14, 315. [Google Scholar] [CrossRef]
- Sukhapanth, N.; Upatham, E.S.; Ketavan, C. Effects of feed and media on egg production, growth and survivorship of flies (Diptera: Calliphoridae, Muscidae and Sarcophagidae). J. Sci. Soc. Thailand 1988, 14, 41–50. [Google Scholar] [CrossRef]
- Amoudi, M.A.; Diab, F.M.; Abou-Fannah, S.S. Development rate and mortality of immature Parasarcophaga (Liopygia) ruficornis (Diptera: Sarcophagidae) at constant laboratory temperatures. J. Med. Entomol. 1994, 31, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Nassu, M.P.; Thyssen, P.J.; Linhares, A.X. Developmental rate of immatures of two fly species of forensic importance: Sarcophaga (Liopygia) ruficornis and Microcerella halli (Diptera: Sarcophagidae). Parasitol. Res. 2014, 113, 217–222. [Google Scholar] [CrossRef]
- Adhikari, K.; Khanikor, B.; Sarma, R.; Mahanta, S.; Kalita, J. Study on the life history and protein content of Sarcophaga ruficornis (Diptera: Sarcophagidiae) a forensically important insect. J. Zool. Stud. 2016, 3, 1–8. [Google Scholar]
- Bansode, S.A.; More, V.R.; Zambare, S.P. Effect of Constant Temperature (20 °C, 25 °C, 30 °C, 35 °C, 40 °C) on the Development of Sarcophagidae: Diptera (FAB) (Sarcophagidae: Diptera). J. Pet. Environ. Biotechnol. 2016, 7, 2. [Google Scholar]
- Barbosa, T.M.; Cruz, M.R.P.; Pontes, W.J.T.; Vasconcelos, S.D. Aspects of the reproductive behaviour and development of two forensically relevant species, Blaesoxipha (Gigantotheca) stallengi (Lahille, 1907) and Sarcophaga (Liopygia) ruficornis (Fabricius, 1794) (Diptera: Sarcophagidae). Rev. Bras. Entomol. 2019, 63, 124–129. [Google Scholar] [CrossRef]
- Prawirodisastro, M.; Benjamin, D.M. Laboratory study on the biology and ecology of Megaselia scalaris (Diptera: Phoridae). J. Med. Entomol. 1979, 16, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Trumble, J.T.; Pienkowski, R.L. Development and survival of Megaselia scalaris (Diptera: Phoridae) at selected temperatures and photoperiods. Proc. Entomol. Soc. Wash. 1979, 81, 207–210. [Google Scholar]
- Greenberg, B.; Wells, J.D. Forensic use of Megaselia abdita and M. scalaris (Phoridae: Diptera): Case studies, development rates, and egg structure. J. Med. Entomol. 1998, 35, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.A.; Cooper, R.L. Characterization of development, behavior and neuromuscular physiology in the phorid fly, Megaselia scalaris. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003, 136, 427–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuha, R.M.; Razak, T.A.; Ahmad, N.W.; Omar, B. Interaction effects of temperature and food on the development of forensically important fly, Megaselia scalaris (Loew) (Diptera: Phoridae). Parasitol. Res. 2012, 111, 2179–2187. [Google Scholar] [CrossRef]
- Zuha, R.M.; Omar, B. Developmental rate, size, and sexual dimorphism of Megaselia scalaris (Loew) (Diptera: Phoridae): Its possible implications in forensic entomology. Parasitol. Res. 2014, 113, 2285–2294. [Google Scholar] [CrossRef]
- Chakraborty, A.; Naskar, A.; Parui, P.; Banerjee, D. Developmental variation of Indian thermophilic variety of scuttle fly Megaselia (Megaselia) scalaris (Loew, 1866) (Diptera: Phoridae) on different substrates. Scientifica 2016, 2016, 4257081. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.K.; Sanford, M.R.; Longnecker, M.; Tomberlin, J.K. Effects of temperature and tissue type on the development of Megaselia scalaris (Diptera: Phoridae). J. Med. Entomol. 2016, 53, 519–525. [Google Scholar] [CrossRef]
- Ong, S.Q.; Ahmad, H.; Tan, E.H. Substrate moisture affects the development of Megaselia scalaris (Diptera: Phoridae): An implication of the growth circumstances of the fly in forensic entomology. Environ. Entomol. 2018, 47, 1582–1585. [Google Scholar] [CrossRef]
- Castillo-Alanis, L.A.; González-Hernández, A.E.; Quijano-Mateos, A.; Pedraza-Lara, C.S.; Villavicencio-Queijeiro, A.; Bravo-Gómez, M.E. Standardization of a Culture Medium for Megaselia scalaris (Diptera: Phoridae) for Entomotoxicological Studies. J. Med. Entomol. 2020, 57, 1421–1431. [Google Scholar] [CrossRef]
- Matuszewski, S.; Hall, M.J.; Moreau, G.; Schoenly, K.G.; Tarone, A.M.; Villet, M.H. Pigs vs people: The use of pigs as analogues for humans in forensic entomology and taphonomy research. Int. J. Legal Med. 2020, 134, 793–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss, S.C.; Cook, D.F.; Dadour, I.R. Decomposition and insect succession of clothed and unclothed carcasses in Western Australia. Forensic Sci. Int. 2011, 211, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Kotzé, Z.; Aimar, S.; Amendt, J.; Anderson, G.S.; Bourguignon, L.; Hall, M.J.; Tomberlin, J.K. The forensic entomology case report—A global perspective. Insects 2021, 12, 283. [Google Scholar] [CrossRef] [PubMed]
Category | Specific Entomological Aspect | Gold Standard | Silver Standard | Bronze Standard |
---|---|---|---|---|
General | Person involved in sampling | Forensic entomologist (FE) | FE-trained police officer, medical examiner, or pathologist | Police officer or field technician (generally untrained) |
Number of times visiting a crime scene for and/or mortuary for entomology assessments | Initial visit followed by additional visits to gather climatic data and sift surrounding soil (especially when advanced decomposition is present) | Once | Once | |
Clothing | Standard personal protection equipment 1 supplied by police/agency attending crime scene | Standard personal protection equipment 1 supplied by police/agency overseeing crime scene or person acting in the FE role | Masks and gloves minimum standard personal protection equipment 1 supplied by police/agency overseeing crime scene if present | |
Microclimatic data | Data collecting equipment | Onsite data collection—infrared thermometer, temperature probe, temperature data logging device; Offsite data collection—nearest meteorological station | Nearest meteorological station data, analogue thermometer | Nearest meteorological station data |
Type of data collected at a crime scene | Ambient temperature, larval mass temperature, soil temperature, humidity, photoperiod, rainfall from nearest weather station | Ambient temperature, larval mass temperature), rainfall from nearest weather station | Ambient temperature, rainfall from nearest weather station | |
Duration of data collection | 10–12 days at crime scene after discovery | Not applicable | Not applicable | |
Sampling of insects | Sampling equipment | Entomology kit 2, forceps (various sizes and types), spoons, and artist paint brushes, insect net, sticky traps, containers (closed and ventilated), refrigerated container (cooler or fridge) for transport | Disposable forceps, containers, preservatives (supplied by agency overseeing crime scene) | Disposable forceps, containers, preservatives (supplied by agency overseeing crime scene) |
Type and maturity stages of sampling insects | Eggs, larvae, full and empty puparia, adults of flies, and beetles | Eggs, larvae, full and empty puparia | Eggs, larvae, full and empty puparia | |
Number of insects sampled | Depends on the location, access, and stage of life of the insects. The number of insects should cover the base of the container used | Depends on access, sample available insect material. Number of insects to cover the base of the container used. If possible, a minimum of 10 specimens chosen randomly | Depends on the access, sample available insect material (minimum 10 specimens chosen randomly) | |
Labelling | Include date, time, case reference no., type of specimen via indelible pen on external label. Repeat in pencil and place this label inside container | Include date, time, case reference no., type of specimen via indelible pen on external label. Repeat in pencil and place this label inside container | Include date, time, case reference no., type of specimen using pencil on label both outside and inside container | |
Preservation of insects for morphological analyses and minPMI | Live insects (eggs/larvae/full puparia) | Retain a sample of insects (placed into ventilated containers) for later rearing. Place these in refrigeration or cooler. For eggs, add moist paper to avoid dehydration | Place these in refrigeration or cooler. If cooling device is unavailable, place all insect material into the preservative | Place these in refrigeration or cooler. If cooling device is unavailable, place all insect material into the preservative |
Hot water fix (larvae/full puparia) | Hot water taken to the field via a thermos flask or available at crime scene station set up by agency overseeing crime scene. Place larvae, pupae in hot water (1 min) before placing in preservative. Full puparia pierced, then placed in hot water, then in preservative | Obtain hot water from external source: e.g., take away food outlet. If no available hot water, then place insects directly into preservative (document preservative on label) | Obtain hot water from external source: e.g., take away food outlet or place insects directly into preservative (document preservative on label) | |
Killing method (adults) | Spray bottle of ethanol to spray directly onto the insect collected in net then placed in 70% alcohol | Dipping insects caught in net into preservative and placed into 70% alcohol | Not applicable as adults; not collected | |
Preservative (eggs/larvae/full and empty puparia) for minPMI | 70–80% ethanol | Isopropyl alcohol, formalin or methanol 3 (document preservative on label) | Any white coloured alcohol (≥40% proof) obtained from a liquor outlet (document preservative on label) | |
Preservation of insects for toxicological analyses | Larvae, full and empty puparia | −20 °C | Freezer | Freezer |
Preservation of insects for molecular analyses | Eggs, larvae, full and empty puparia, adults | 100% ethanol | Freezer or if a preservative liquid is used (document preservative on label) | Freezer or if a preservative liquid is used (document preservative on label) |
Transportation | Storage of insects for transporting | Refrigeration or cooler with frozen ice packs | If live insects retained, then place in a cooler with frozen ice packs | Not applicable all specimens preserved |
Preparation of insects for rearing | Types of containers used for rearing | Plastic containers with feeding and bedding medium 4 | Plastic containers provided by the police/agency at crime scene 4 | Any sealable container; all specimens preserved |
Identification | Method of identification | Morphological identification keys, molecular methods, hyperspectral and CT imaging, tomography, chemical methods | FE will conduct identification | FE will conduct identification |
Age determination | Method of age determination | Larval instar, ADD method, isomegalen/isomorphen method, growth tables, crime scene resembling study within a growth chamber | FE will conduct age determination | FE will conduct age determination |
Expert verification | Person involving in verification | Conducted by an alternate FE | Conducted by an alternate FE 5 | Conducted by an alternate FE 5 |
Findings needed to be verified | Species and age of the specimen | Conducted by FE 5 | Conducted by FE 5 | |
Documentation | Crime scene | Insect data collection form | Notebook | Notebook |
Decomposition stage | Determination based on carcass characteristics, photos and videos at crime scene and the mortuary. Previous experience and referring to existing publications | Send photographic and video evidence from crime scene to an FE | Send photographic and video evidence from crime scene to an FE |
Type of Protocol | Category | Specific Information |
---|---|---|
Crime scene/autopsy | General case information | Date, case number, date and time of scene examination, name of the FE and investigation officer(s) |
Prior information from investigation officer (IMPORTANT) | Location found, date and time body recovered. Date when reported missing of the decedent and date and time last seen alive SHOULD only be available following the calculated minPMI to avoid bias in the analyses | |
Recordings of the body | Position of body main axis, position of extremities, and position of head and face, location of body in reference to vegetation, and proximity to open doors, windows, or other openings if within a structure, description of clothing, type of debris on body, level exposure of the body (open air or burial; full sun or shade exposure), any detectable alterations to the body (i.e., natural, man-made, and scavenging marks) | |
Recordings of the crime location (outdoor) | General habitat (rural or urban, terrestrial, or aquatic), sun or shade conditions, type of terrestrial ecosystem (1. rural; forest, tillable land, pasture, and crop, 2. urban; vacant lot, pavement, and rubbish container), type of aquatic ecosystem (lake, river, pond, irrigation canal, swamp, marshland), aquatic water type (fresh, brackish, and salt water) | |
Recordings of the crime location (indoor) | Type of building (open or closed), doors and windows closed or open, on or off fans, lights, A/C and heaters | |
Recordings of insect activity | Location of insect aggregations on the body, location of dispersing larvae, full and empty puparia up to 10 m away from the body. Attention should be given to the presence of ants | |
Recordings at autopsy | Date and time of body placed into refrigeration after coming from the scene and removed prior to autopsy, locations of specimens (in/on body, clothing and other covers, body bag) | |
Climate data (temperature) | Ambient temperature, larval mass temperature, temperature readings of A/C and heaters, moon phases | |
Attachments | Diagram of body showing locations of insect mass infestations and sample locations, weather data from nearest meteorological station, photos of body in situ, autopsy photographs | |
Laboratory | Insect sampling | Sampled numbers (live and dead), type of insect (flies, beetles, or mites), growth stages (eggs, larvae, full and empty puparia, and adults) |
Sampling method | Fixation and preservation medium (% alcohol), date and time of preservation and fixation, sampled location (water, soil or arial) | |
Identification | Identification method (morphological or molecular), specific species identified | |
Age determination | Method of age determination, minPMI estimation based on available data |
Species | Reference Studies with Study Locations |
---|---|
Ch. megacephala, Ch. rufifacies, Ch. albiceps, L. sericata, L. cuprina, L. illustris, Calliphora vomitoria (L.), C. vicina, Phormia regina (Meigen) | Bambaradeniya et al. (2023) (Asia, middle east, Australia, Europe) [23], Niederegger et al. (2010) (Germany) [156], Wang et al. (2016) (China) [157], Greenberg and Tantawi (1993) (USA) [158], Ames and Turner (2003) (UK) [159], Ireland and Turner (2006) (UK) [160], Niederegger et al. (2013) (Germany) [161], Wood et al. (2022) (UK) [162], Donovan et al. (2006) (UK) [163], Hwang and Turner (2009) (UK) [164], Aak et al. (2011) (Norway) [165], Sanei- Dehkordi et al. (2014) (Iran) [166], Baque et al. (2015) (Germany) [167], Byrd and Allen (2001) (USA) [168], Nabity et al. (2007) (USA) [169], Roe (2014) (USA) [170], Roe and Higley (2023) (USA) [171] |
Sarcophaga rufucornis (Fabricius) | Sukhapanth et al. (1988) (Thailand) [172], Amoudi et al. (1994) (Saudi Arabia) [173], Nassu et al. (2014) (Brazil) [174], Adhikari et al. (2016) (India) [175], Bansode et al. (2016) (India) [176], Barbosa et al. (Brazil) [177] |
M. scalaris | Prawirodisastro and Benjamin (1979) (USA) [178], Trumble and Pienkowski (1979) (USA) [179], Greenberg and Wells (1998) (USA) [180], Harrison and Cooper (2003) (USA) [181], Zuha et al. (2012) (Malaysia) [182], Feng and Liu (2014) (China) [136], Zuah and Omar (2014) (Malaysia) [183], Chakraborty et al. (2016) (India) [184], Thomas et al. (2016) (USA) [185], Ong et al. (2018) (Malaysia) [186], Castillo-Alanis et al. (2020) (Mexico) [187] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bambaradeniya, T.B.; Magni, P.A.; Dadour, I.R. A Summary of Concepts, Procedures and Techniques Used by Forensic Entomologists and Proxies. Insects 2023, 14, 536. https://doi.org/10.3390/insects14060536
Bambaradeniya TB, Magni PA, Dadour IR. A Summary of Concepts, Procedures and Techniques Used by Forensic Entomologists and Proxies. Insects. 2023; 14(6):536. https://doi.org/10.3390/insects14060536
Chicago/Turabian StyleBambaradeniya, Tharindu B., Paola A. Magni, and Ian R. Dadour. 2023. "A Summary of Concepts, Procedures and Techniques Used by Forensic Entomologists and Proxies" Insects 14, no. 6: 536. https://doi.org/10.3390/insects14060536
APA StyleBambaradeniya, T. B., Magni, P. A., & Dadour, I. R. (2023). A Summary of Concepts, Procedures and Techniques Used by Forensic Entomologists and Proxies. Insects, 14(6), 536. https://doi.org/10.3390/insects14060536