Survey Results of Honey Bee Colony Losses in Winter in China (2009–2021)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Survey Design and Data Validation
2.2. Statistical Analysis
3. Results
3.1. Survey Sample
3.2. Winter Colony Losses in China (2009–2021)
3.3. Annual Losses (2009–2021)
3.4. Provincial Losses
3.5. Operation Sizes and Loss Rates
3.6. Differences in Colony Losses between A. mellifera and A. cerana in China
3.7. Risk Factors Attributed to Winter Colony Losses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COLOSS | prevention of honey bee COlony LOSSes. |
FAO | the Food and Agriculture Organization of the United Nations |
References
- Khalifa, S.A.M.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, A.F.; Musharraf, S.G.; AlAjmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Overview of Bee Pollination and Its Economic Value for Crop Production. Insects 2021, 12, 688. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dicks, L.V.; Breeze, T.D.; Ngo, H.T.; Senapathi, D.; An, J.; Aizen, M.A.; Basu, P.; Buchori, D.; Galetto, L.; Garibaldi, L.A.; et al. A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 2021, 5, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D.; Nicholls, E.; Botias, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Mashilingi, S.K.; Zhang, H.; Garibaldi, L.A.; An, J. Honeybees are far too insufficient to supply optimum pollination services in agricultural systems worldwide. Agric. Ecosyst. Environ. 2022, 335, 108003. [Google Scholar] [CrossRef]
- Ratnieks, F.L.; Carreck, N.L. Ecology. Clarity on honey bee collapse? Science 2010, 327, 152–153. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Johannesen, J.; Wohl, S.; Berg, S.; Otten, C. Annual Fluctuations in Winter Colony Losses of Apis mellifera L. Are Predicted by Honey Flow Dynamics of the Preceding Year. Insects 2022, 13, 829. [Google Scholar] [CrossRef]
- Stahlmann-Brown, P.; Hall, R.J.; Pragert, H.; Robertson, T. Varroa Appears to Drive Persistent Increases in New Zealand Colony Losses. Insects 2022, 13, 589. [Google Scholar] [CrossRef]
- van der Zee, R.; Gray, A.; Pisa, L.; de Rijk, T. An Observational Study of Honey Bee Colony Winter Losses and Their Association with Varroa destructor, Neonicotinoids and Other Risk Factors. PLoS ONE 2015, 10, e0131611. [Google Scholar] [CrossRef] [Green Version]
- Morawetz, L.; Koglberger, H.; Griesbacher, A.; Derakhshifar, I.; Crailsheim, K.; Brodschneider, R.; Moosbeckhofer, R. Health status of honey bee colonies (Apis mellifera) and disease-related risk factors for colony losses in Austria. PLoS ONE 2019, 14, e0219293. [Google Scholar] [CrossRef] [PubMed]
- van Engelsdorp, D.; Underwood, R.; Caron, D.; Hayes, J. An Estimate of Managed Colony Losses in the Winter of 2006–2007 A Report Commissioned by the Apiary Inspectors of America. Am. Bee J. 2007, 147, 599–603. [Google Scholar]
- van Engelsdorp, D.; Hayes, J., Jr.; Underwood, R.M.; Pettis, J. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS ONE 2008, 3, e4071. [Google Scholar] [CrossRef]
- Steinhauer, N.A.; Rennich, K.; Wilson, M.E.; Caron, D.M.; Lengerich, E.J.; Pettis, J.S.; Rose, R.; Skinner, J.A.; Tarpy, D.R.; Wilkes, J.T.; et al. A national survey of managed honey bee 2012–2013 annual colony losses in the USA: Results from the Bee Informed Partnership. J. Apic. Res. 2014, 53, 1–18. [Google Scholar] [CrossRef]
- Lee, K.V.; Steinhauer, N.; Rennich, K.; Wilson, M.E.; Tarpy, D.R.; Caron, D.M.; Rose, R.; Delaplane, K.S.; Baylis, K.; Lengerich, E.J.; et al. A national survey of managed honey bee 2013–2014 annual colony losses in the USA. Apidologie 2015, 46, 292–305. [Google Scholar] [CrossRef] [Green Version]
- Kulhanek, K.; Steinhauer, N.; Rennich, K.; Caron, D.M.; Sagili, R.R.; Pettis, J.S.; Ellis, J.D.; Wilson, M.E.; Wilkes, J.T.; Tarpy, D.R.; et al. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Apic. Res. 2017, 56, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Steinhauer, N.A.D.; Bruckner, S.; Wilson, M.; Rennich, K. United States Honey Bee Colony Losses 2020–2021: Preliminary Results Embargoed until Wednesday, 23 June 2021, 12.00 PM Noon CST. Available online: https://beeinformed.org/2021/06/21/united-states-honey-bee-colony-losses-2020-2021-preliminary-results/ (accessed on 13 May 2022).
- Ellis, J.D.; Evans, J.D.; Pettis, J. Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. J. Apic. Res. 2010, 49, 134–136. [Google Scholar] [CrossRef] [Green Version]
- Brodschneider, R.; Gray, A.; Adjlane, N.; Ballis, A.; Brusbardis, V.; Charrière, J.-D.; Chlebo, R.; Coffey, M.F.; Dahle, B.; de Graaf, D.C.; et al. Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. J. Apic. Res. 2018, 57, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Brodschneider, R.; Gray, A.; van der Zee, R.; Adjlane, N.; Brusbardis, V.; Charrière, J.-D.; Chlebo, R.; Coffey, M.F.; Crailsheim, K.; Dahle, B.; et al. Preliminary analysis of loss rates of honey bee colonies during winter 2015/16 from the COLOSS survey. J. Apic. Res. 2016, 55, 375–378. [Google Scholar] [CrossRef] [Green Version]
- Gray, A.; Adjlane, N.; Arab, A.; Ballis, A.; Brusbardis, V.; Bugeja Douglas, A.; Cadahía, L.; Charrière, J.-D.; Chlebo, R.; Coffey, M.F.; et al. Honey bee colony loss rates in 37 countries using the COLOSS survey for winter 2019–2020: The combined effects of operation size, migration and queen replacement. J. Apic. Res. 2022, 62, 204–210. [Google Scholar] [CrossRef]
- Gray, A.; Adjlane, N.; Arab, A.; Ballis, A.; Brusbardis, V.; Charrière, J.-D.; Chlebo, R.; Coffey, M.F.; Cornelissen, B.; Amaro da Costa, C.; et al. Honey bee colony winter loss rates for 35 countries participating in the COLOSS survey for winter 2018–2019, and the effects of a new queen on the risk of colony winter loss. J. Apic. Res. 2020, 59, 744–751. [Google Scholar] [CrossRef]
- Gray, A.; Brodschneider, R.; Adjlane, N.; Ballis, A.; Brusbardis, V.; Charrière, J.-D.; Chlebo, R.; Coffey, M.F.; Cornelissen, B.; Amaro da Costa, C.; et al. Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources. J. Apic. Res. 2019, 58, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Van Der Zee, R.; Brodschneider, R.; Brusbardis, V.; Charrière, J.-D.; Chlebo, R.; Coffey, M.F.; Dahle, B.; Drazic, M.M.; Kauko, L.; Kretavicius, J.; et al. Results of international standardised beekeeper surveys of colony losses for winter 2012–2013: Analysis of winter loss rates and mixed effects modelling of risk factors for winter loss. J. Apic. Res. 2014, 53, 19–34. [Google Scholar] [CrossRef] [Green Version]
- van der Zee, R.; Pisa, L.; Andonov, S.; Brodschneider, R.; Charrière, J.-D.; Chlebo, R.; Coffey, M.F.; Crailsheim, K.; Dahle, B.; Gajda, A.; et al. Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10. J. Apic. Res. 2012, 51, 100–114. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Chen, C.; Niu, Q.; Qi, W.; Yuan, C.; Su, S.; Liu, S.; Zhang, Y.; Zhang, X.; Ji, T.; et al. Survey results of honey bee (Apis mellifera) colony losses in China (2010–2013). J. Apic. Res. 2016, 55, 29–37. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Z.; Luo, Y.; Xu, Z.; Wang, S.; Zhang, X.; Dai, R.; Gao, J.; Chen, X.; Guo, H.; et al. Managed honeybee colony losses of the Eastern honeybee (Apis cerana) in China (2011–2014). Apidologie 2017, 48, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Ma, C.; Shi, W.; Chen, X.; Liu, Z.; Wang, H.; Chen, C. A National Survey of Managed Honey Bee Colony Winter Losses (Apis mellifera) in China (2013–2017). Diversity 2020, 12, 318. [Google Scholar] [CrossRef]
- Pirk, C.W.W.; Human, H.; Crewe, R.M.; vanEngelsdorp, D. A survey of managed honey bee colony losses in the Republic of South Africa–2009 to 2011. J. Apic. Res. 2014, 53, 35–42. [Google Scholar] [CrossRef]
- Spleen, A.M.; Lengerich, E.J.; Rennich, K.; Caron, D.; Rose, R.; Pettis, J.S.; Henson, M.; Wilkes, J.T.; Wilson, M.; Stitzinger, J.; et al. A national survey of managed honey bee 2011–12 winter colony losses in the United States: Results from the Bee Informed Partnership. J. Apic. Res. 2013, 52, 44–53. [Google Scholar] [CrossRef] [Green Version]
- vanEngelsdorp, D.; Caron, D.; Hayes, J.; Underwood, R.; Henson, M.; Rennich, K.; Spleen, A.; Andree, M.; Snyder, R.; Lee, K.; et al. A national survey of managed honey bee 2010–11 winter colony losses in the USA: Results from the Bee Informed Partnership. J. Apic. Res. 2012, 51, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Currie, R.W.; Pernal, S.F.; Guzmán-Novoa, E. Honey bee colony losses in Canada. J. Apic. Res. 2010, 49, 104–106. [Google Scholar] [CrossRef]
- Castilhos, D.; Bergamo, G.C.; Gramacho, K.P.; Gonçalves, L.S. Bee colony losses in Brazil: A 5-year online survey. Apidologie 2019, 50, 263–272. [Google Scholar] [CrossRef]
- Requier, F.; Antúnez, K.; Morales, C.L.; Aldea Sánchez, P.; Castilhos, D.; Garrido, P.M.; Giacobino, A.; Reynaldi, F.J.; Rosso Londoño, J.M.; Santos, E.; et al. Trends in beekeeping and honey bee colony losses in Latin America. J. Apic. Res. 2018, 57, 657–662. [Google Scholar] [CrossRef]
- Requier, F.; Antúnez, K.; Aldea, P.; Castilhos, D.; Garrido, M.; Giacobino, A.; Morales, C.; Reynaldi, F.; Rosso, J.; Santos, E.; et al. Honey bee colony losses in Latin America over the last seven years. In Proceedings of the 13th COLOSS Conference, Athens, Greece, 2–3 November 2017. [Google Scholar]
- Genersch, E.; von der Ohe, W.; Kaatz, H.; Schroeder, A.; Otten, C.; Büchler, R.; Berg, S.; Ritter, W.; Mühlen, W.; Gisder, S.; et al. The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 2010, 41, 332–352. [Google Scholar] [CrossRef] [Green Version]
- Brodschneider, R.; Moosbeckhofer, R.; Crailsheim, K. Surveys as a tool to record winter losses of honey bee colonies: A two year case study in Austria and South Tyrol. J. Apic. Res. 2010, 49, 23–30. [Google Scholar] [CrossRef]
- Porrini, C.; Mutinelli, F.; Bortolotti, L.; Granato, A.; Laurenson, L.; Roberts, K.; Gallina, A.; Silvester, N.; Medrzycki, P.; Renzi, T.; et al. The Status of Honey Bee Health in Italy: Results from the Nationwide Bee Monitoring Network. PLoS ONE 2016, 11, e015541110. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.; Newstrom-Lloyd, L.E.; Foster, B.J.; Badger, P.H.; McLean, J.A. Winter 2016 honey bee colony losses in New Zealand. J. Apic. Res. 2018, 57, 278–291. [Google Scholar] [CrossRef] [Green Version]
- Döke, M.A.; Frazier, M.; Grozinger, C.M. Overwintering honey bees: Biology and management. Curr. Opin. Insect Sci. 2015, 10, 185–193. [Google Scholar] [CrossRef]
- Giampieri, F.; Quiles, J.L.; Cianciosi, D.; Forbes-Hernandez, T.Y.; Orantes-Bermejo, F.J.; Alvarez-Suarez, J.M.; Battino, M. Bee Products: An Emblematic Example of Underutilized Sources of Bioactive Compounds. J. Agric. Food Chem. 2022, 70, 6833–6848. [Google Scholar] [CrossRef]
- Tauber, J.P.; Collins, W.R.; Schwarz, R.S.; Chen, Y.; Grubbs, K.; Huang, Q.; Lopez, D.; Peterson, R.; Evans, J.D. Natural Product Medicines for Honey Bees: Perspective and Protocols. Insects 2019, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Su, S.K.; Chen, S.L. The beekeeping and ecology. J. Bee 2009, 1, 8–10. [Google Scholar]
- Yancan, L.; Tianle, C.; Yunhan, F.; Delong, L.; Guizhi, W. Population genomics and morphological features underlying the adaptive evolution of the eastern honey bee (Apis cerana). BMC Genomics 2019, 20, 869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The National Animal Genetic Resources Committee. Animal Genetic Resources in China Bees; China Agriculture Press: Beijing, China, 2011; pp. 8–9. ISBN 978-7-109-15212-0. [Google Scholar]
- Theisen-Jones, H.; Bienefeld, K. The Asian Honey Bee (Apis cerana) is significantly in Decline. Bee World 2016, 93, 90–97. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Z.; Pan, Q.; Chen, X.; Wang, H.; Guo, H.; Liu, S.; Lu, H.; Tian, S.; Li, R.; et al. Genomic Analyses Reveal Demographic History and Temperate Adaptation of the Newly Discovered Honey Bee Subspecies Apis mellifera sinisxinyuan n. ssp. Mol. Biol. Evol. 2016, 33, 1337–1348. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Yang, S.; Wang, Z.-W.; Radloff, S.E.; Oldroyd, B.P. Differences in foraging and broodnest temperature in the honey bees Apis cerana and A. mellifera. Apidologie 2012, 43, 618–623. [Google Scholar] [CrossRef] [Green Version]
- Park, D.; Jung, J.W.; Choi, B.S.; Jayakodi, M.; Lee, J.; Lim, J.; Yu, Y.; Choi, Y.S.; Lee, M.L.; Park, Y.; et al. Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genom. 2015, 16, 1. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ma, W.; Shen, J.; Long, D.; Feng, Y.; Su, W.; Xu, K.; Du, Y.; Jiang, Y. Tolerance and response of two honeybee species Apis cerana and Apis mellifera to high temperature and relative humidity. PLoS ONE 2019, 14, e0217921. [Google Scholar] [CrossRef] [Green Version]
- Hou, C.; Li, B.; Luo, Y.; Deng, S.; Diao, Q. First detection of Apis mellifera filamentous virus in Apis cerana cerana in China. J. Invertebr. Pathol. 2016, 138, 112–115. [Google Scholar] [CrossRef]
- Chen, F.; Chen, W.; Xie, Y.; Tang, X. Visiting behavior of Apis cerana on rape and characteristics if flowering and seed setting in the early spring. Southwest China J. Agric. Sci. 2015, 2, 498–503. [Google Scholar]
- van der Zee, R.; Gray, A.; Holzmann, C.; Pisa, L.; Brodschneider, R.; Chlebo, R.; Coffey, M.F.; Kence, A.; Kristiansen, P.; Mutinelli, F.; et al. Standard survey methods for estimating colony losses and explanatory risk factors in Apis mellifera. J. Apic. Res. 2013, 52, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Ogle, D.H.; Doll, J.C.; Wheeler, P.; Dinno, A. FSA: Fisheries Stock Analysis; R package version 0.9.3.9000. 2022. Available online: https://fishr-core-team.github.io/FSA/ (accessed on 15 January 2023).
- Bates, D.; Machler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization Corporate Statistical Database. 2022. Available online: http://www.fao.org/faostat/en/#home (accessed on 15 January 2023).
- Antúnez, K.; Invernizzi, C.; Mendoza, Y.; vanEngelsdorp, D.; Zunino, P. Honeybee colony losses in Uruguay during 2013–2014. Apidologie 2016, 48, 364–370. [Google Scholar] [CrossRef] [Green Version]
- Brodschneider, R.; Brus, J.; Danihlik, J. Comparison of apiculture and winter mortality of honey bee colonies (Apis mellifera) in Austria and Czechia. Agric. Ecosyst. Environ. 2019, 274, 24–32. [Google Scholar] [CrossRef]
- Ricigliano, V.A.; Mott, B.M.; Floyd, A.S.; Copeland, D.C.; Carroll, M.J.; Anderson, K.E. Honey bees overwintering in a southern climate: Longitudinal effects of nutrition and queen age on colony-level molecular physiology and performance. Sci. Rep. 2018, 8, 10475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akyol, E.; Yeninar, H.; Karatepe, M.; Karatepe, B.; Ozkok, D. Effects of queen ages on Varroa (Varroa destructor) infestationlevel in honey bee (Apis mellifera caucasica) colonies and colony performance. Ital. J. Anim. Sci. 2016, 6, 143–149. [Google Scholar] [CrossRef]
- Simeunovic, P.; Stevanovic, E.; Cirkovic, D.; Radojicic, S.; Lakic, N.; Stanisic, L.; Stanimirovic, Z. Nosema ceranae and queen age influence the reproduction and productivity of the honey bee colony. J. Apic. Res. 2015, 53, 545–554. [Google Scholar] [CrossRef]
- Buchler, R.; Costa, C.; Hatjina, F.; Andonov, S.; Meixner, M.D.; Le Conte, Y.; Uzunov, A.; Berg, S.; Bienkowska, M.; Bouga, M.; et al. The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. J. Apic. Res. 2014, 53, 205–214. [Google Scholar] [CrossRef] [Green Version]
- El Agrebi, N.; Steinhauer, N.; Tosi, S.; Leinartz, L.; de Graaf, D.C.; Saegerman, C. Risk and protective indicators of beekeeping management practices. Sci. Total Environ. 2021, 799, 149381. [Google Scholar] [CrossRef]
- Belsky, J.; Joshi, N.K. Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. Insects 2019, 10, 233. [Google Scholar] [CrossRef] [Green Version]
- Oberreiter, H.; Brodschneider, R. Austrian COLOSS Survey of Honey Bee Colony Winter Losses 2018/19 and Analysis of Hive Management Practices. Diversity 2020, 12, 99. [Google Scholar] [CrossRef] [Green Version]
- Steinhauer, N.; Kulhanek, K.; Antunez, K.; Human, H.; Chantawannakul, P.; Chauzat, M.P.; vanEngelsdorp, D. Drivers of colony losses. Curr. Opin. Insect Sci. 2018, 26, 142–148. [Google Scholar] [CrossRef]
- Amiri, E.; Strand, M.K.; Rueppell, O.; Tarpy, D.R. Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health. Insects 2017, 8, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattila, H.R.; Seeley, T.D. Genetic diversity in honey bee colonies enhances productivity and fitness. Science 2007, 317, 362–364. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Li, X.; Shen, J.; Du, Y.; Xu, K.; Jiang, Y. Transcriptomic analysis reveals Apis mellifera adaptations to high temperature and high humidity. Ecotoxicol. Environ. Saf. 2019, 184, 109599. [Google Scholar] [CrossRef] [PubMed]
- Yang, G. The effect of introducing the western honey bee Apis mellifera L. to the Chinese honey bee Apis cerana F. and its ecological impact. Acta Entomol. Sin. 2005, 3, 401–406. [Google Scholar]
- Yang, W.; Kuang, H.; Wang, S.; Wang, J.; Liu, W.; Wu, Z.; Tian, Y.; Huang, Z.Y.; Miao, X. Comparative sucrose responsiveness in Apis mellifera and A. cerana foragers. PLoS ONE 2013, 8, e79026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remnant, E.J.; Koetz, A.; Tan, K.; Hinson, E.; Beekman, M.; Oldroyd, B.P. Reproductive interference between honeybee species in artificial sympatry. Mol. Ecol. 2014, 23, 1096–1107. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.R.; Chen, X.X.; Chen, Y.P.; Hu, F.L.; Zhang, J.L.; Lin, Z.G.; Yu, J.W.; Zheng, H.Q. Evidence of Apis cerana Sacbrood virus Infection in Apis mellifera. Appl. Environ. Microbiol. 2016, 82, 2256–2262. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.C.; Chang, Z.T.; Ko, C.Y.; Scotty Yang, C.C.; Chen, Y.W.; Nai, Y.S. Sacbrood viruses cross-infection between Apis cerana and Apis mellifera: Rapid detection, viral dynamics, evolution and spillover risk assessment. J. Invertebr. Pathol. 2021, 186, 107687. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, S.; Yan, Z.; Liu, F.; Diao, Q.; Dai, P. Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera. Environ. Pollut. 2019, 249, 860–867. [Google Scholar] [CrossRef]
- Simone-Finstrom, M.; Li-Byarlay, H.; Huang, M.H.; Strand, M.K.; Rueppell, O.; Tarpy, D.R. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Sci. Rep. 2016, 6, 32023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simone-Finstrom, M.; Strand, M.K.; Tarpy, D.R.; Rueppell, O. Impact of Honey Bee Migratory Management on Pathogen Loads and Immune Gene Expression is Affected by Complex Interactions With Environment, Worker Life History, and Season. J. Insect Sci. 2022, 22, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Alger, S.A.; Burnham, P.A.; Lamas, Z.S.; Brody, A.K.; Richardson, L.L. Home sick: Impacts of migratory beekeeping on honey bee (Apis mellifera) pests, pathogens, and colony size. PeerJ 2018, 6, e5812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Lopez, V.; Ruiz, C.; De la Rua, P. Migratory beekeeping and its influence on the prevalence and dispersal of pathogens to managed and wild bees. Int. J. Parasitol. Parasites Wildl. 2022, 18, 184–193. [Google Scholar] [CrossRef]
- Dufour, C.; Fournier, V.; Giovenazzo, P. The impact of lowbush blueberry (Vaccinium angustifolium Ait.) and cranberry (Vaccinium macrocarpon Ait.) pollination on honey bee (Apis mellifera L.) colony health status. PLoS ONE 2020, 15, e0227970. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Ahmed, H.R.; El-Wahed, A.A.A.; Saeed, A.; Algethami, A.F.; Attia, N.F.; Guo, Z.; Musharraf, S.G.; Khatib, A.; Alsharif, S.M.; et al. Bee Stressors from an Immunological Perspective and Strategies to Improve Bee Health. Vet. Sci. 2022, 9, 199. [Google Scholar] [CrossRef] [PubMed]
- Ricigliano, V.A.; Mott, B.M.; Maes, P.W.; Floyd, A.S.; Fitz, W.; Copeland, D.C.; Meikle, W.G.; Anderson, K.E. Honey bee colony performance and health are enhanced by apiary proximity to US Conservation Reserve Program (CRP) lands. Sci. Rep. 2019, 9, 4894. [Google Scholar] [CrossRef] [Green Version]
- vanEngelsdorp, D.; Tarpy, D.R.; Lengerich, E.J.; Pettis, J.S. Idiopathic brood disease syndrome and queen events as precursors of colony mortality in migratory beekeeping operations in the eastern United States. Prev. Vet. Med. 2013, 108, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Gajger, I.T.; Tomljanović, Z.; Petrinec, Z. Monitoring health status of Croatian honey bee colonies and possible reasons for winter losses. J. Apic. Res. 2010, 49, 107–108. [Google Scholar] [CrossRef]
- Ji, T.; Yin, L.; Liu, Z.; Liang, Q.; Luo, Y.; Shen, J.; Shen, F. Transcriptional responses in eastern honeybees (Apis cerana) infected with mites. Varroa Destructor. Genet. Mol. Res. 2014, 13, 8888–8900. [Google Scholar] [CrossRef]
- Beyer, M.; Junk, J.; Eickermann, M.; Clermont, A.; Kraus, F.; Georges, C.; Reichart, A.; Hoffmann, L. Winter honey bee colony losses, Varroa destructor control strategies, and the role of weather conditions: Results from a survey among beekeepers. Res. Vet. Sci. 2018, 118, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Brodschneider, R.; Schlagbauer, J.; Arakelyan, I.; Ballis, A.; Brus, J.; Brusbardis, V.; Cadahía, L.; Charrière, J.-D.; Chlebo, R.; Coffey, M.F.; et al. Spatial clusters of Varroa destructor control strategies in Europe. J. Pest Sci. 2022, 96, 759–783. [Google Scholar] [CrossRef]
Year | No. of Apiaries | No. of Colonies | Total Losses % (95% CI) |
---|---|---|---|
2009–2021 | 13,704 | 1,744,324 | 9.84 (9.60–10.08) |
2009–2010 | 1016 | 116,547 | 2.81 (2.38–3.32) |
2010–2011 | 1586 | 188,580 | 9.65 (8.94–10.41) |
2011–2012 | 1419 | 174,009 | 11.78 (10.74–12.91) |
2012–2013 | 1509 | 176,171 | 9.97 (9.30–10.70) |
2013–2014 | 1536 | 216,690 | 9.23 (8.49–10.03) |
2014–2015 | 442 | 50,353 | 8.41 (7.32–9.64) |
2015–2016 | 800 | 110,540 | 10.25 (9.20–11.39) |
2016–2017 | 889 | 103,394 | 7.88 (7.29–8.52) |
2017–2018 | 1279 | 162,849 | 9.82 (9.17–10.51) |
2018–2019 | 668 | 80,427 | 11.17 (10.24–12.17) |
2019–2020 | 821 | 98,591 | 10.49 (9.61–11.43) |
2020–2021 | 1739 | 266,173 | 12.40 (11.76–13.06) |
Province | No. of Apiaries | No. of Colonies | Total Losses % (95% CI) |
---|---|---|---|
Anhui | 144 | 18,699 | 8.35 (7.36–9.47) |
Beijing | 174 | 17,352 | 11.19 (9.64–12.94) |
Chongqing | 800 | 93,459 | 9.43 (8.60–10.33) |
Gansu | 1134 | 87,483 | 2.09 (1.80–2.44) |
Guangdong | 1099 | 146,351 | 10.06 (9.38–10.79) |
Guangxi | 841 | 142,910 | 10.7 (8.5–12.8) |
Guizhou | 100 | 24,770 | 11.58 (8.57–15.48) |
Hainan | 574 | 46,293 | 15.67 (14.41–17.01) |
Heilongjiang | 312 | 31,352 | 7.86 (6.37–9.65) |
Henan | 870 | 70,543 | 16.34 (15.74–16.96) |
Jiangsu | 541 | 62,879 | 6.47 (5.82–7.19) |
Jiangxi | 337 | 41,263 | 16.25 (14.50–18.16) |
Jilin | 1188 | 109,019 | 8.12 (7.63–8.63) |
Liaoning | 996 | 91,527 | 7.80 (7.09–8.59) |
Shandong | 281 | 32,485 | 7.87 (6.70–9.22) |
Shanxi | 842 | 50,392 | 10.68 (9.70–11.75) |
Sichuan | 615 | 134,297 | 7.59 (6.71–8.58) |
Xinjiang | 878 | 272,405 | 15.22 (13.81–16.74) |
Tibet 1 | 9 | 2,041 | 0.64 (0.03–14.07) |
Yunnan | 826 | 107,503 | 5.11 (4.48–5.82) |
Zhejiang | 1143 | 161,301 | 7.26 (6.53–8.07) |
Year | Species | No. of Apiaries | No. of Colonies | Total Losses % (95% CI) |
---|---|---|---|---|
2009–2021 | A. cerana | 4253 | 478,905 | 11.13 (10.73–11.55) |
2009–2010 | A. mellifera A. cerana | 5711 330 | 847,587 30,973 | 9.38 (8.98–9.79) 1.56 (1.10–2.21) |
2010–2011 | A. mellifera A. cerana | 345 446 | 56,575 39,779 | 2.06 (1.33–3.19) 9.85 (8.52–11.38) |
2011–2012 | A. mellifera A. cerana | 545 463 | 86,287 39,625 | 10.02 (8.80–11.39) |
8.99 (7.79–10.36) | ||||
A. mellifera | 602 | 84,881 | 15.33 (13.41–17.48) | |
2012–2013 | A. cerana | 388 | 33,138 | 15.67 (14.11–17.37) |
A. mellifera | 701 | 94,612 | 9.45 (8.45–10.55) | |
2013–2014 | A. cerana | 341 | 35,056 | 12.92 (11.54–14.43) |
A. mellifera | 721 | 127,645 | 8.75 (7.57–10.09) | |
2014–2015 | A. cerana | 80 | 5554 | 12.69 (9.69–16.47) |
A. mellifera | 75 | 12,976 | 4.08 (1.91–8.52) | |
2015–2016 | A. cerana | 207 | 14,981 | 16.89 (14.88–19.10) |
A. mellifera | 452 | 71,759 | 10.14 (8.69–11.80) | |
2016–2017 | A. cerana | 308 | 37,090 | 8.75 (7.58–10.07) |
A. mellifera | 282 | 32,229 | 5.32 (4.52–6.24) | |
2017–2018 | A. cerana | 391 | 56,232 | 9.82 (9.17–10.51) |
A. mellifera | 660 | 85,578 | 8.28 (7.42–9.23) | |
2018–2019 | A. cerana | 320 | 40,435 | 12.83 (11.54–14.24) |
A. mellifera | 198 | 24,231 | 9.46 (7.83–11.39) | |
2019–2020 | A. cerana | 304 | 43,774 | 9.17 (7.90–10.61) |
A. mellifera | 276 | 34,023 | 9.53 (8.03–11.26) | |
2020–2021 | A. cerana | 675 | 102,268 | 14.02 (12.92–15.20) |
A. mellifera | 854 | 136,791 | 10.56 (9.82–11.34) |
Risk Factors | Estimate (SE) | Z Value | p |
---|---|---|---|
Intercept | −3.313 (0.215) | −15.373 | <2 × 10−16 *** |
Operation Size (sideline) | 0.754 (0.081) | 9.335 | <2 × 10−16 *** |
Operation Size (hobby) | 0.969 (0.009) | 9.793 | <2 × 10−16 *** |
Species (A. mellifera) | −0.915 (0.084) | −10.902 | <2 × 10−16 *** |
Migration | −0.729 (0.090) | −8.068 | 7.17 × 10−16 *** |
Queen Problem | 0.111 (0.004) | 24.678 | <2 × 10−16 *** |
Species (A. mellifera) × Migration | 0.436 (0.108) | 4.042 | 5.29 × 10−5 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Ji, C.; Shi, W.; Su, S.; Xue, Y.; Xu, J.; Chen, X.; Zhao, Y.; Chen, C. Survey Results of Honey Bee Colony Losses in Winter in China (2009–2021). Insects 2023, 14, 554. https://doi.org/10.3390/insects14060554
Tang J, Ji C, Shi W, Su S, Xue Y, Xu J, Chen X, Zhao Y, Chen C. Survey Results of Honey Bee Colony Losses in Winter in China (2009–2021). Insects. 2023; 14(6):554. https://doi.org/10.3390/insects14060554
Chicago/Turabian StyleTang, Jiao, Congcong Ji, Wei Shi, Songkun Su, Yunbo Xue, Jinshan Xu, Xiao Chen, Yazhou Zhao, and Chao Chen. 2023. "Survey Results of Honey Bee Colony Losses in Winter in China (2009–2021)" Insects 14, no. 6: 554. https://doi.org/10.3390/insects14060554
APA StyleTang, J., Ji, C., Shi, W., Su, S., Xue, Y., Xu, J., Chen, X., Zhao, Y., & Chen, C. (2023). Survey Results of Honey Bee Colony Losses in Winter in China (2009–2021). Insects, 14(6), 554. https://doi.org/10.3390/insects14060554