Insect Colonisation and the Decomposition Process in Aerated versus Watertight Burial Systems
Abstract
:Simple Summary
Abstract
1. Introduction
- -
- No chemical embalming, which keeps pollutants out of the ground;
- -
- Headstones that are biodegradable or smaller, less intrusive grave markers;
- -
- Coffins that are made of biodegradable materials such as cardboard or wood. Materials such as finished lacquered wood and metal rails are not used in their construction;
- -
- A shroud that is non-bleached, undyed, and made of natural fibre is used to cover a body;
- -
- A choice of a grave that helps speed up the decomposition of human remains.
- -
- Oxygen availability over time for determining aerobic conditions inside the mound that accelerate decomposition processes, which would otherwise occur mainly in an anaerobic environment.
- -
- The evacuation of cadaveric fluids from inside the coffin, thus eliminating the stagnation of the part of the corpse in contact with a considerable amount of cadaveric liquids and thus reducing the phenomena that are contrary to decomposition [9].
2. Materials and Methods
2.1. Study Site and Animal Models
2.2. Procedures of Exhumed
2.3. Molecular Insects’ Identification
2.4. Microbial Community Sampling
3. Results
3.1. Insect Species Taxonomic and Genetic Identification
3.2. Microbial Community
4. Discussion
5. Conclusions
- i.
- In bodies buried in a watertight environment (where a coffin is placed inside a sealed niche), skeletonisation occurs much more slowly with respect to bodies entombed in the same environment but aerated. It is probable that bacteria rapidly consume the oxygen inside the sealed metallic coffin. This creates a micro-environment that promotes an almost indefinite preservation of the body.
- ii.
- The rapid decomposition of bodies under aerated conditions, probably due to increased circulation of air and entomofauna, valuable elements in the degradation of organic matter.
- iii.
- The body concealment in coffins significantly affected the composition of the cadaveric fauna. The results reported in this paper emphasise how the burial system plays a key role in the selection of entomofauna associated with body colonisation. Our data, in agreement with previous work [31], highlight the role of M. scalaris and H. capensis in the colonisation and recycling of organic material in bodies located under confined conditions, unlike in exposed bodies, where blowflies are the most important taxon in body colonisation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gwenzi, W. Autopsy, thanatopraxy, cemeteries and crematoria as hotspots of toxic organic contaminants in the funeral industry continuum. Sci. Total. Environ. 2021, 753, 141819. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.; Quinteiro, P.; Caetano, C.; Nadais, H.; Arroja, L.; Ferreira da Silva, E.; Senos Matias, M. Burial grounds’ impact on groundwater and public health: An overview. Water Environ. J. 2013, 27, 99–106. [Google Scholar] [CrossRef]
- Park, D.S.; Foottit, R.; Maw, E.; Hebert, P.D.N. Barcoding Bugs: DNA-Based Identification of the True Bugs (Insecta: Hemiptera: Heteroptera). PLoS ONE 2011, 6, e18749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neckel, A.; Costa, C.; Mario, D.N.; Sabadin, C.E.S.; Bodah, E.T. Environmental damage and public health threat caused by cemeteries: A proposal of ideal cemeteries for the growing urban sprawl. Urbe Rev. Bras. Gest. Urbana 2017, 9, 216–230. [Google Scholar] [CrossRef] [Green Version]
- Neckel, A.; Korcelski, C.; Kujawa, H.A.; da Silva, I.S.; Prezoto, F.; Walker Amorin, A.L.; Maculan, L.S.; Gonçalves, A.C.; Bodah, E.T.; Bodah, B.W.; et al. Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability. Chemosphere 2021, 262, 128248. [Google Scholar] [CrossRef] [PubMed]
- Egbimhanlu, A.E.; Sophia, O.D.; Korede, A.S.; Adenike, O.E.; Adegboyega, A.O.; Omonigho, D.E.; Efeovbokhan, E.V. Contamination assessment of underground water around a cemetery: Case study of Ayobo cemetery in Lagos, Nigeria. Int. J. Eng. Res. Technol. 2020, 13, 1283–1288. [Google Scholar] [CrossRef]
- Mc Manus, J.; The World is Running Out of Burial Space. BBC News. 2015. Available online: https://www.bbc.com/news/uk-31837964 (accessed on 15 February 2023).
- Burkepile, D.E.; Parker, J.D.; Woodson, C.B.; Mills, H.J.; Kubanek, J.; Sobecky, P.A.; Hay, M.E. Chemically mediated competition between microbes and animals: Microbes as consumers in food webs. Ecology 2006, 87, 2821–2831. [Google Scholar] [CrossRef]
- Guareschi, E.E.; Dadour, I.R.; Magni, P.A. Taphonomic Examination of Inhumed and Entombed Remains in Parma Cemeteries, Italy. Glob. J. Forensic Sci. Med. 2019, 1, 1–8. [Google Scholar]
- Janzen, D.H. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 1977, 111, 691–713. [Google Scholar] [CrossRef]
- Nayduch, D.; Noblet, G.P.; Stutzenberger, F.J. Vector potential of houseflies for the bacterium Aeromonas caviae. Med. Vet. Entomol. 2002, 16, 193–198. [Google Scholar] [CrossRef]
- Curran, A.M.; Rabin, S.I.; Prada, P.A.; Furton, K.G. Comparison of the Volatile Organic Compounds Present in Human Odor Using Spme-GC/MS. J. Chem. Ecol. 2005, 31, 1607–1619. [Google Scholar] [CrossRef]
- Mari, M.; Domingo, J.L. Toxic emissions from crematories: A review. Environ. Int. 2010, 36, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Teo, C.H.; Hing, H.L.; Hamzah, N.H.; Hamzah, S.P.A.A. The effect of different coverings on Total Body Score development of buried carcasses. Malays. J. Med. Sci. 2021, 28, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Un nouveau document pour décrypter la marque NF pour la qualité des caveaux autonomes préfabriqués en béton. Reson. Funer. 2009.
- Decreto 2263/1974, de 20 de Julio, por el Que se Aprueba el Reglamento de Policía Sanitaria Mortuoria. 1974. Available online: https://www.boe.es/eli/es/d/1974/07/20/2263/dof/spa/pdf (accessed on 13 June 2022).
- AA.VV. Regolamento in Materia di Piani Cimiteriali Comunali e di Inumazione e Tumulazione, Previsto Dall’art. 2, Comma 2, Della Legge Regionale N. 19/2004. 2006. Available online: https://demetra.regione.emilia-romagna.it/al/articolo?urn=er:assemblealegislativa:regolamento:2006;4 (accessed on 13 June 2022).
- European Standard EVS EN 15017 Funeral Services—Requirement, Prepared by Technical Committee CEN/TC BT/TF 139 (2005). Available online: https://www.excecert.it/eng/iso-15017-funeral-service/ (accessed on 16 February 2023).
- Belk, A.D.; Deel, H.L.; Burcham, Z.M.; Knight, R.; Carter, D.O.; Metcalf, J.L. Animal models for understanding microbial decomposition of human remains. Drug Discov. Today Dis. Model. 2018, 28, 117–125. [Google Scholar] [CrossRef]
- Schoenly, K.G.; Hall, R.D. Testing Reliability of Animal Models in Research and Training Programs in Forensic Entomology, Part II, Final Report; US Department of Justice: Rockville, MD, USA, 2002.
- Disney, R.H.L. Scuttle flies: Diptera, Phoridae (except Megaselia). In Handbooks for the Identification of British Insects; Royal Entomological Society: St Albans, UK, 1989; Volume 10, pp. 56, 155. [Google Scholar]
- Gregor, F. The Muscidae (Diptera) of Central Europe; Masaryk University: Brno, Czech Republic, 2002. [Google Scholar]
- Jalali, S.K.; Ojha, R.; Venkatesan, T. DNA barcoding for identification of agriculturally important insects. In New Horizons in Insect Science: Towards Sustainable Pest Management; Chakravarthy, A.K., Ed.; Springer: New Delhi, India, 2015. [Google Scholar] [CrossRef]
- Vass, A.A. Beyond the grave-understanding human decomposition. Microbiol. Today 2001, 28, 190–192. [Google Scholar]
- Pechal, J.L.; Crippen, T.L.; Tarone, A.M.; Lewis, A.J.; Tomberlin, J.K.; Benbow, M.E. Microbial Community Functional Change during Vertebrate Carcass Decomposition. PLoS ONE 2013, 8, e79035. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, M.; Alessandrini, F.; Tagliabracci, A.; Wells, J.D.; Campobasso, C.P. DNA degradation and genetic analysis of empty puparia: Genetic identification limits in forensic entomology. Forensic Sci. Int. 2010, 195, 99–102. [Google Scholar] [CrossRef]
- Pastula, E.C.; Merritt, R.W. Insect arrival pattern and succession on buried carcass in Michigan. J. Med. Entomol. 2013, 50, 432–439. [Google Scholar] [CrossRef] [Green Version]
- Mariani, R.; García-Mancuso, R.; Varela, G.L.; Kierbel, I. New records of forensic entomofauna in legally buried and exhumed human infants remains in Buenos Aires, Argentina. J. Forensic Leg. Med. 2017, 52, 215–220. [Google Scholar] [CrossRef]
- Grzywacz, A.; Walczak, K.; Niewiadomska, M.; Pape, T. Larval morphology and temperature-dependent development models of Fannia pusio (Wiedemann): A forensic indicator with expanding distribution. Acta Trop. 2022, 233, 106546. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.G.V. A Manual of Forensic Entomology Trustees of the British Museum; Natural History and Cornell University Press: London, UK, 1986. [Google Scholar]
- Loni, A.; Fornaciari, A.; Canale, A.; Giuffra, V.; Vanin, S.; Benelli, G. Insights on Funeral Practices and Insects Associated with the Tombs of King Ferrante II d’Aragona and Other Renaissance Nobles. J. Med. Entomol. 2019, 56, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
Type of Niche | Identification Niche | Time of Exhumation (Month) |
---|---|---|
Aerated | AX | 6 and 60 |
A1 | 12, 36 and 60 | |
A2 | 24 and 60 | |
A5 | 60 | |
Watertight | Z1 | 12, 36 and 60 |
Z2 | 24 and 60 | |
Z5 | 60 |
Month | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|
January | 2.1 ± 1.7 | 6.3 ± 2.1 | 2.9 ± 1.9 | 4.7 ± 2.2 | 3.5 ± 1.9 | |
February | 7.3 ± 1.5 | 4.2 ± 2.7 | 7.2 ± 2.1 | 8.7 ± 1.5 | 7.8 ± 3.2 | |
March | 12.4 ± 1.9 | 7.6 ± 4.1 | 11.3 ± 2.2 | 9.9 ± 2.4 | 9.8 ± 2.1 | |
April | 14.7 ± 2.4 | 16.6 ± 3.2 | 13.8 ± 2.2 | 15 ± 2.9 | 12.3 ± 3.3 | |
May | 19 ± 3.9 | 20 ± 2.9 | 15.3 ± 2.9 | 19.2 ± 1.7 | 17.2 ± 1.5 | |
June | 24.9 ± 2.1 | 23.7 ± 2 | 25.8 ± 2.3 | 22.4 ± 2.9 | 24.7 ± 2.4 | |
July | 25.9 ± 1.8 | 26 ± 2 | 26. ± 2.7 | 25 ± 2.3 | 25.8 ± 1.7 | |
August | 26.6 ± 2.7 | 26.2 ± 2.8 | 25.9 ± 1.4 | 25.6 ± 2.5 | 25 ± 3 | |
September | 18.5 ± 2.3 | 21.7 ± 2.8 | 20.7 ± 2.8 | 21.5 ± 3.4 | 21.4 ± 1.9 | |
October | 15.3 ± 1.6 | 16.6 ± 1.8 | 16.8 ± 2.1 | 14.3 ± 2.5 | 14.5 ± 2.5 | |
November | 10.3 ± 3.9 | 8.7 ± 2.6 | 11.1 ± 3.7 | 10.6 ± 1.8 | 9.5 ± 3.4 | 10.8 ± 1.5 |
December | 3.8 ± 2.4 | 3.9 ± 1.6 | 3.5 ± 2.7 | 6.2 ± 2.7 | 5.8 ± 2.3 |
Month | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|
January | 7.4 | 6.4 | 31.2 | 26.4 | 33.6 | |
February | 61 | 111.6 | 15 | 2.6 | 5.8 | |
March | 9.8 | 62.8 | 6.4 | 20.4 | 0.2 | |
April | 21.2 | 13.2 | 40 | 17.8 | 0 | |
May | 69.2 | 62.8 | 20.6 | Nd | ||
June | 18 | 50.8 | 43.4 | Nd | ||
July | 4.8 | 19.2 | 43.2 | 111.6 | Nd | |
August | 5.4 | 33.2 | 12.2 | 75 | Nd | |
September | 137.4 | 47.8 | 75 | 36.6 | Nd | |
October | 49.6 | 63.8 | 41.2 | 67.6 | Nd | |
November | 46.4 | 94.4 | 76.6 | 160 | 12.8 | Nd |
December | 10 | 12.2 | 15.2 | 64.8 | 77.6 |
Taxon | 12 Months | 24 Months | 36 Months | 60 Months |
---|---|---|---|---|
Diptera | ||||
Megaselia scalaris (Loew, 1866) (Phoridae) | Aerated | Aerated | Aerated + Watertight | Aerated + Watertight |
Hydrotaea capensis (Wiedemann, 1818) (Muscidae) | Aerated + Watertight | Aerated + Watertight | ||
Drosophilidae | Aerated | |||
Fannia pusio (Wiedemann, 1830) (Fannidae) | Aerated | |||
Heleomyzidae | Aerated | |||
Coleoptera | ||||
Atheta sp. (Staphylinidae) | Aerated | |||
Otiorhyncus sp. (Curculionidae) | Aerated | |||
Corylophidae | Aerated | |||
Lepidoptera | ||||
Monopis imella (Hübner, 1813) (Tineidae) | Aerated + Watertight | |||
Psocodea | ||||
Liposcelididae | Aerated | Aerated | ||
Araneae | ||||
Gnaphosidae | Watertight | |||
Isopoda | ||||
Porcellio pumicatus (Budde-Lund, 1885) (Porcellionidae) | Watertight |
Type | Morphological Identification | COI | Molecular Identification |
---|---|---|---|
Aerated | Fannia sp. (Diptera: Fannidae) | + | 100% identity Fannia pusio |
Aerated | Hydrotea sp.(adult) (Diptera: Muscidae) | + | 100% identity Hydrotaea capensis |
Aerated | Hydrotea sp.(pupa) Diptera: Muscidae) | + | mixed sequence |
Aerated | Megaselia sp.(adult) (Diptera: Phoridae) | + | 100% identity Megaselia scalaris |
Aerated | Megaselia sp.(pupa) (Diptera: Phoridae) | + | 99.19% identity Megaselia scalaris |
Aerated | Monopis sp. (Lepidoptera: Tineidae) | − | |
Aerated | Hydrotea sp.(pupa) (Diptera: Muscidae) | + | mixed sequence |
Aerated | Monopis sp. (Lepidoptera: Tineidae) | − | |
Watertight | Megaselia sp. (empty puparium) (Diptera: Phoridae) | + | 100% identity Megaselia scalaris |
Watertight | Anthrenus sp. (empty puparium) (Coleoptera: Dermestidae) | − | |
Watertight | Anthrenus sp. (empty puparium) (Coleoptera: Dermestidae | + | mixed sequence |
Burial Type | Presence of Bacteria | Anatomical Regions |
---|---|---|
Watertight (Z1) | Vagococcus fluvialis Bacillus simplex Providencia stuartii Proteus sp. | Hind limb |
Watertight (Z2) | Negative | |
Watertight (Z5) | Negative | |
Aerated (AX) | Bacillus licheniformis | Hypostatic side |
Aerated (A1) | Bacillus licheniformis Bacillus subtilis Staphylococcus epidermidis | Mouth Abdominal skin Hind limb |
Aerated (A2) | Bacillus pumilus Virgibacillus proomii | Abdominal skin Hind limb |
Aerated (A5) | Virgibacillus proomii Bacillus licheniformis, Acinetobacter ursingii Aliciclobacillus acidoterrestris | Mouth Head Throat Chest Abdomen Hind limb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Defilippo, F.; Munari, M.; Grisendi, A.; Gaudio, R.M.; D’Incau, M.; Lavazza, A.; Rubini, S. Insect Colonisation and the Decomposition Process in Aerated versus Watertight Burial Systems. Insects 2023, 14, 566. https://doi.org/10.3390/insects14060566
Defilippo F, Munari M, Grisendi A, Gaudio RM, D’Incau M, Lavazza A, Rubini S. Insect Colonisation and the Decomposition Process in Aerated versus Watertight Burial Systems. Insects. 2023; 14(6):566. https://doi.org/10.3390/insects14060566
Chicago/Turabian StyleDefilippo, Francesco, Martina Munari, Annalisa Grisendi, Rosa Maria Gaudio, Mario D’Incau, Antonio Lavazza, and Silva Rubini. 2023. "Insect Colonisation and the Decomposition Process in Aerated versus Watertight Burial Systems" Insects 14, no. 6: 566. https://doi.org/10.3390/insects14060566
APA StyleDefilippo, F., Munari, M., Grisendi, A., Gaudio, R. M., D’Incau, M., Lavazza, A., & Rubini, S. (2023). Insect Colonisation and the Decomposition Process in Aerated versus Watertight Burial Systems. Insects, 14(6), 566. https://doi.org/10.3390/insects14060566