Influences of Microbial Symbionts on Chemoreception of Their Insect Hosts
Abstract
Simple Summary
Abstract
1. Introduction
2. Physiological Processes of Insect Chemoreception
2.1. Insect Olfaction
2.2. Insect Gustation
3. Influence of Microbial Symbionts on Insect Chemoreception
Insect Hosts | Presence of Microbial Symbionts | Influences of Symbionts on Insect Hosts |
---|---|---|
Aedes aegypti | Dengue virus [Virus] | Upregulate AeObp22 expression [29] |
Double subgenomic Sindbis virus [Virus] | Downregulate expression of AaegObp1 and AaegObp2 [30] | |
Wolbachia [Bacterium] | Increase dopamine levels [31] | |
Apis mellifera | Deformed wing virus [Virus] | Downregulate OBP expression [20] |
Gut microbiota [Bacterium] | Elevate olfactory sensitivity to sucrose [27] | |
Gut Lactobacillus [Bacterium] | Improve learning and memory performance [32] | |
Nosema ceranae [Microsporid] | Downregulate OBP expression [33] | |
Bemisia tabaci | Tomato chlorosis virus [Virus] | Upregulate OBP3 expression [26] |
Caenorhabditis elegans | Providencia [Bacterium] | Modulate an aversive olfactory response [34] |
Drosophila melanogaster | Erwinia carotovora carotovora 15 [Bacterium] | Decrease olfactory discrimination [35] |
Gut microbiota [Bacterium] | Increase chemotaxis response to odorants [24] | |
Gut microbiota [Bacterium] | Reduce memory of olfactory appetitive [36] | |
Wolbachia [Bacterium] | Upregulate expression of Pale and Ddc [37] | |
Drosophila simulans | Wolbachia [Bacterium] | Upregulate expression of or83b [25] |
Glossina morsitans morsitans | Wigglesworthia [Bacterium] | Upregulate expression of obp6 [38] |
Locusta migratoria | Metarhizium anisopliae [Fungus] | Upregulate expression of LmOBP11 [39] |
Nasonia giraulti | Wolbachia pipientis [Bacterium] | Increase mate acceptance of infected females [19] |
Solenopsis invicta | Beauveria bassiana [Fungus] | Upregulate expression of SiCSPs and SiOBPs [40] |
Spodoptera exigua | Spodoptera exigua multiple nucleopolyhedrovirus [Virus] | Upregulate OR35 expression [41] |
Trichogramma brassicae | Wolbachia [Bacterium] | Decrease memory retention [42] |
4. Mechanism of Symbiont-Mediated Insect Chemoreception
4.1. Regulating Host OBP/CSP Expression
4.2. Regulating Host OR/GR Expression
4.3. Regulating Host ODE Expression
4.4. Regulating Host Neurotransmission
5. Evolutionary Significance of Symbiont-Mediated Chemoreception
6. Summary and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abd El-Ghany, N.M. Semiochemicals for controlling insect pests. J. Plant Prot. Res. 2019, 59, 1–11. [Google Scholar] [CrossRef]
- Ali, M.F.; Morgan, E.D. Chemical communication in insect communities: A guide to insect pheromones with special emphasis on social insects. Biol. Rev. 1990, 65, 227–247. [Google Scholar] [CrossRef]
- Sokolinskaya, E.L.; Kolesov, D.V.; Lukyanov, K.A.; Bogdanov, A.M. Molecular principles of insect chemoreception. Acta Nat. 2020, 12, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Depetris-Chauvin, A.; Galagovsky, D.; Grosjean, Y. Chemicals and chemoreceptors: Ecologically relevant signals driving behavior in Drosophila. Front. Ecol. Evol. 2015, 3, 41. [Google Scholar] [CrossRef]
- Engl, T.; Kaltenpoth, M. Influence of microbial symbionts on insect pheromones. Nat. Prod. Rep. 2018, 35, 386. [Google Scholar] [CrossRef]
- Calcagnile, M.; Tredici, S.M.; Tala, A.; Alifano, P. Bacterial semiochemicals and transkingdom interactions with insects and plants. Insects 2019, 10, 441. [Google Scholar] [CrossRef]
- Fischer, C.Y.; Detrain, C.; Thonart, P.; Haubruge, E.; Francis, F.; Verheggen, F.J.; Lognay, G.C. Bacteria may contribute to distant species recognition in ant-aphid mutualistic relationships. Insect Sci. 2017, 24, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Gaburro, J.; Paradkar, P.N.; Klein, M.; Bhatti, A.; Nahavandi, S.; Duchemin, J. Dengue virus infection changes Aedes aegypti oviposition olfactory preferences. Sci. Rep. 2018, 8, 13179. [Google Scholar] [CrossRef]
- Ai, S.; Zhang, Y.; Chen, Y.; Zhang, T.; Zhong, G.; Yi, X. Insect-microorganism interaction has implicates on insect olfactory systems. Insects 2022, 13, 1094. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Nair, S. Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front. Microbiol. 2020, 11, 1357. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Morgan-Richards, M.; Trewick, S.A.; Clavijo-McCormick, A. Chemical ecology and olfaction in short-horned grasshoppers (Orthoptera: Acrididae). J. Chem. Ecol. 2022, 48, 121–140. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, T.; Guo, H.; Liang, X.; Cheng, Y. Ultrastructure of the olfactory sensilla across the antennae and maxillary palps of Bactrocera dorsalis (Diptera: Tephritidae). Insects 2021, 12, 289. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Zhou, J.; Ban, L.P.; Calvello, M. Soluble proteins in insect chemical communication. Cell. Mol. Life. Sci. 2006, 63, 1658–1676. [Google Scholar] [CrossRef]
- Li, Y.; Hao, E.; Li, H.; Yuan, X.; Lu, P.; Qiao, H. Computational interaction analysis of Sirex noctilio odorant-binding protein (SnocOBP7) combined with female sex pheromones and symbiotic fungal volatiles. Agronomy 2021, 11, 2461. [Google Scholar] [CrossRef]
- Chertemps, T.; Younus, F.; Steiner, C.; Durand, N.; Coppin, C.W.; Pandey, G.; Oakeshott, J.G.; Maibeche, M. An antennal carboxylesterase from Drosophila melanogaster, esterase 6, is a candidate odorant-degrading enzyme toward food odorants. Front. Physiol. 2015, 6, 315. [Google Scholar] [CrossRef]
- Freeman, E.G.; Dahanukar, A. Molecular neurobiology of Drosophila taste. Curr. Opin. Neurobiol. 2015, 34, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Mullin, C.A.; Chyb, S.; Eichenseer, H.; Hollister, B.; Frazier, J.L. Neuroreceptor mechanisms in insect gustation: A pharmacological approach. J. Insect Physiol. 1994, 40, 913–931. [Google Scholar] [CrossRef]
- Schoonhoven, L.M.; van Loon, J.J.A. An inventory of taste in caterpillars: Each species its own key. Acta Zool. Acad. Sci. Hung. 2002, 48 (Suppl. 1), 215–263. Available online: https://edepot.wur.nl/184891 (accessed on 25 May 2023).
- Chafee, M.E.; Zecher, C.N.; Gourley, M.L.; Schmidt, V.T.; Chen, J.H.; Bordenstein, S.R.; Clark, M.E.; Bordenstein, S.R. Decoupling of host-symbiont-phage coadaptations following transfer between insect species. Genetics 2011, 187, 203–215. [Google Scholar] [CrossRef][Green Version]
- Silva, D.; Ceballos, R.; Arismendi, N.; Dalmon, A.; Vargas, M. Variant A of the deformed wings virus alters the olfactory sensitivity and the expression of odorant binding proteins on antennas of Apis mellifera. Insects 2021, 12, 895. [Google Scholar] [CrossRef]
- George, J.; Blanford, S.; Domingue, M.J.; Thomas, M.B.; Read, A.F.; Baker, T.C. Reduction in host-finding behaviour in fungus-infected mosquitoes is correlated with reduction in olfactory receptor neuron responsiveness. Malar. J. 2011, 10, 219. [Google Scholar] [CrossRef]
- Huntley, N.F.; Nyachoti, C.M.; Patience, J.F. Lipopolysaccharide immune stimulation but not β-mannanase supplementation affects maintenance energy requirements in young weaned pigs. J. Anim. Sci. Biotechnol. 2018, 9, 47. [Google Scholar] [CrossRef]
- Yadav, S.; Frazer, J.; Banga, A.; Pruitt, K.; Harsh, S.; Jaenike, J.; Eleftherianos, I. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection. PLoS ONE 2018, 13, e0192183. [Google Scholar] [CrossRef] [PubMed]
- Slankster, E.; Lee, C.; Hess, K.M.; Odell, S.; Mathew, D. Effect of gut microbes on olfactory behavior of Drosophila melanogaster larva. Bios 2019, 90, 227–238. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y. Infection of Wolbachia may improve the olfactory response of Drosophila. Chin. Sci. Bull. 2009, 54, 1369–1375. [Google Scholar] [CrossRef]
- Shi, X.; Wang, X.; Zhang, D.; Zhang, Z.; Zhang, Z.; Cheng, J.; Zheng, L.; Zhou, X.; Tan, X.; Liu, Y. Silencing of odorant-binding protein gene OBP3 using RNA interference reduced virus transmission of Tomato chlorosis virus. Int. J. Mol. Sci. 2019, 20, 4969. [Google Scholar] [CrossRef]
- Zheng, H.; Powell, J.E.; Steele, M.I.; Dietrich, C.; Moran, N.A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. USA 2017, 114, 4775–4780. [Google Scholar] [CrossRef] [PubMed]
- Bernays, E.A.; Singer, M.S. Insect defences: Taste alteration and endoparasites. Nature 2005, 436, 476. [Google Scholar] [CrossRef]
- Wang, J.; Murphy, E.J.; Nix, J.C.; Jones, D.N.M. Aedes aegypti odorant binding protein 22 selectively binds fatty acids through a conformational change in its C-terminal tail. Sci. Rep. 2020, 10, 3300. [Google Scholar] [CrossRef] [PubMed]
- Sengul, M.S.; Tu, Z. Expression analysis and knockdown of two antennal odorant-binding protein genes in Aedes aegypti. J. Insect Sci. 2010, 10, 171. [Google Scholar] [CrossRef]
- Bi, J.; Wang, Y. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. Insect Sci. 2020, 27, 846–858. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Mu, X.; Cao, Q.; Shi, Y.; Hu, X.; Zheng, H. Honeybee gut Lactobacillus modulates host learning and memory behaviors via regulating tryptophan metabolism. Nat. Commun. 2022, 13, 2037. [Google Scholar] [CrossRef] [PubMed]
- Badaoui, B.; Fougeroux, A.; Petit, F.; Anselmo, A.; Gorni, C.; Cucurachi, M.; Cersini, A.; Granato, A.; Cardeti, G.; Formato, G.; et al. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae. PLoS ONE 2017, 12, e0173438. [Google Scholar] [CrossRef]
- O’Donnell, M.P.; Fox, B.W.; Chao, P.; Schroeder, F.C.; Sengupta, P. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 2020, 583, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.T.; Li, H.; Jensen, M.B.; Maksoud, E.; Borneo, J.; Liang, Y.; Quake, S.R.; Luo, L.; Haghighi, P.; Jasper, H. Gut cytokines modulate olfaction through metabolic reprogramming of glia. Nature 2021, 596, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Palacios-Munoz, A.; Okray, Z.; Adair, K.L.; Waddell, S.; Douglas, A.E.; Ewer, J. The impact of the gut microbiome on memory and sleep in Drosophila. J. Exp. Biol. 2021, 224, jeb233619. [Google Scholar] [CrossRef]
- Bi, J.; Sehgal, A.; Williams, J.A.; Wang, Y. Wolbachia affects sleep behavior in Drosophila melanogaster. J. Insect Physiol. 2018, 107, 81–88. [Google Scholar] [CrossRef]
- Benoit, J.B.; Vigneron, A.; Broderick, N.A.; Wu, Y.; Sun, J.S.; Carlson, J.R.; Aksoy, S.; Weiss, B.L. Symbiont-induced odorant binding proteins mediate insect host hematopoiesis. eLife 2017, 6, e19535. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, M.; Eleftherianos, I.; Mohamed, A.; Cao, Y.; Song, B.; Zang, L.; Jia, C.; Bian, J.; Keyhani, N.O.; et al. An odorant binding protein is involved in counteracting detection-avoidance and Toll-pathway innate immunity. J. Adv. Res. 2023, 48, 1–16. [Google Scholar] [CrossRef]
- Wei, Z.; Ortiz-Urquiza, A.; Keyhani, N.O. Altered expression of chemosensory and odorant binding proteins in response to fungal infection in the red imported fire ant, Solenopsis invicta. Front. Physiol. 2021, 12, 596571. [Google Scholar] [CrossRef]
- Llopis-Gimenez, A.; Caballero-Vidal, G.; Jacquin-Joly, E.; Crava, C.M.; Herrero, S. Baculovirus infection affects caterpillar chemoperception. Insect Biochem. Mol. Biol. 2021, 138, 103648. [Google Scholar] [CrossRef] [PubMed]
- Farahani, H.K.; Ashouri, A.; Goldansaz, S.H.; Shapiro, M.S.; Pierre, J.; van Baaren, J. Decrease of memory retention in a parasitic wasp: An effect of host manipulation by Wolbachia? Insect Sci. 2017, 24, 569–583. [Google Scholar] [CrossRef]
- Zhang, Z.; Mu, X.; Shi, Y.; Zheng, H. Distinct roles of honeybee gut bacteria on host metabolism and neurological processes. Microbiol. Spectr. 2022, 10, e02438-21. [Google Scholar] [CrossRef]
- Zheng, R.; Xia, Y.; Keyhani, N.O. Differential responses of the antennal proteome of male and female migratory locusts to infection by a fungal pathogen. J. Proteom. 2021, 232, 104050. [Google Scholar] [CrossRef] [PubMed]
- Dear, T.N.; Boehm, T.; Keverne, E.B.; Rabbitts, T.H. Novel genes for potential ligand-binding proteins in subregions of the olfactory mucosa. EMBO J. 1991, 10, 2813–2819. [Google Scholar] [CrossRef] [PubMed]
- Tzou, P.; Ohresser, S.; Ferrandon, D.; Capovilla, M.; Reichhart, J.; Lemaitre, B.; Hoffmann, J.A.; Imler, J. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 2000, 13, 737–748. [Google Scholar] [CrossRef]
- Sabatier, L.; Jouanguy, E.; Dostert, C.; Zachary, D.; Dimarcq, J.; Bulet, P.; Imler, J. Pherokine-2 and -3: Two Drosophila molecules related to pheromone/odor-binding proteins induced by viral and bacterial infections. Eur. J. Biochem. 2003, 270, 3398–3407. [Google Scholar] [CrossRef]
- Prakash, A.; Khan, I. Why do insects evolve immune priming? A search for crossroads. Dev. Comp. Immunol. 2022, 126, 104246. [Google Scholar] [CrossRef]
- Aguilar, R.; Jedlicka, A.E.; Mintz, M.; Mahairaki, V.; Scott, A.L.; Dimopoulos, G. Global gene expression analysis of Anopheles gambiae responses to microbial challenge. Insect Biochem. Mol. Biol. 2005, 35, 709–719. [Google Scholar] [CrossRef]
- Li, S.; Zhou, C.; Zhou, Y. Olfactory co-receptor Orco stimulated by Rice stripe virus is essential for host seeking behavior in small brown planthopper. Pest Manag. Sci. 2019, 75, 187–194. [Google Scholar] [CrossRef]
- Swartz, T.D.; Duca, F.A.; de Wouters, T.; Sakar, Y.; Covasa, M. Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota. Br. J. Nutr. 2012, 107, 621–630. [Google Scholar] [CrossRef]
- Turner, A.; Veysey, M.; Keely, S.; Scarlett, C.J.; Lucock, M.; Beckett, E.L. Intense sweeteners, taste receptors and the gut microbiome: A metabolic health perspective. Int. J. Environ. Res. Public Health 2020, 17, 4094. [Google Scholar] [CrossRef] [PubMed]
- Duca, F.A.; Swartz, T.D.; Sakar, Y.; Covasa, M. Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota. PLoS ONE 2012, 7, e39748. [Google Scholar] [CrossRef]
- Leung, R.; Covasa, M. Do gut microbes taste? Nutrients 2021, 13, 2581. [Google Scholar] [CrossRef]
- Younus, F.; Chertemps, T.; Pearce, S.L.; Pandey, G.; Bozzolan, F.; Coppin, C.W.; Russell, R.J.; Maibeche-Coisne, M.; Oakeshott, J.G. Identification of candidate odorant degrading gene/enzyme systems in the antennal transcriptome of Drosophila melanogaster. Insect Biochem. Mol. Biol. 2014, 53, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Heydel, J.; Coelho, A.; Thiebaud, N.; Legendre, A.; Le Bon, A.; Faure, P.; Neiers, F.; Artur, Y.; Golebiowski, J.; Briand, L. Odorant-binding proteins and xenobiotic metabolizing enzymes: Implications in olfactory perireceptor events. Anat. Rec. 2013, 296, 1333–1345. [Google Scholar] [CrossRef]
- Francois, A.; Grebert, D.; Rhimi, M.; Mariadassou, M.; Naudon, L.; Rabot, S.; Meunier, N. Olfactory epithelium changes in germfree mice. Sci. Rep. 2016, 6, 24687. [Google Scholar] [CrossRef]
- Yang, N.J.; Chiu, I.M. Bacterial signaling to the nervous system through toxins and metabolites. J. Mol. Biol. 2017, 429, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Minireview: Gut icrobiota: The neglected endocrine organ. Mol. Endocrinol. 2014, 28, 1221–1238. [Google Scholar] [CrossRef] [PubMed]
- Parlog, A.; Schlueter, D.; Dunay, I.R. Toxoplasma gondii-induced neuronal alterations. Parasite Immunol. 2015, 37, 159–170. [Google Scholar] [CrossRef]
- Keita, S.; Masuzzo, A.; Royet, J.; Kurz, C.L. Drosophila larvae food intake cessation following exposure to Erwinia contaminated media requires odor perception, Trpa1 channel and evf virulence factor. J. Insect Physiol. 2017, 99, 25–32. [Google Scholar] [CrossRef]
- Mallon, E.B.; Brockmann, A.; Schmid-Hempel, P. Immune response inhibits associative learning in insects. Proc. R. Soc. Lond. B. 2003, 270, 2471–2473. [Google Scholar] [CrossRef]
- Kurze, C.; Dosselli, R.; Grassl, J.; Le Conte, Y.; Kryger, P.; Baer, B.; Moritz, R.F.A. Differential proteomics reveals novel insights into Nosema-honey bee interactions. Insect Biochem. Mol. Biol. 2016, 79, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Moracho, T.; Durand, T.; Lihoreau, M. The gut parasite Nosema ceranae impairs olfactory learning in bumblebees. J. Exp. Biol. 2022, 225, jeb244340. [Google Scholar] [CrossRef]
- Aufauvre, J.; Misme-Aucouturier, B.; Vigues, B.; Texier, C.; Delbac, F.; Blot, N. Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS ONE 2014, 9, e91686. [Google Scholar] [CrossRef] [PubMed]
- Sitaraman, D.; Zars, M.; LaFerriere, H.; Chen, Y.; Sable-Smith, A.; Kitamoto, T.; Rottinghaus, G.E.; Zars, T. Serotonin is necessary for place memory in Drosophila. Proc. Natl. Acad. Sci. USA 2008, 105, 5579–5584. [Google Scholar] [CrossRef]
- Shih, M.M.; Davis, F.P.; Henry, G.L.; Dubnau, J. Nuclear transcriptomes of the seven neuronal cell types that constitute the Drosophila mushroom bodies. G3 Genes Genomes Genet. 2019, 9, 81–94. [Google Scholar] [CrossRef]
- Babin, A.; Kolly, S.; Schneider, F.; Dolivo, V.; Zini, M.; Kawecki, T.J. Fruit flies learn to avoid odours associated with virulent infection. Biol. Lett. 2014, 10, 20140048. [Google Scholar] [CrossRef]
- Saverschek, N.; Roces, F. Foraging leafcutter ants: Olfactory memory underlies delayed avoidance of plants unsuitable for the symbiotic fungus. Anim. Behav. 2011, 82, 453–458. [Google Scholar] [CrossRef]
- Strunov, A.; Schneider, D.I.; Albertson, R.; Miller, W.J. Restricted distribution and lateralization of mutualistic Wolbachia in the Drosophila brain. Cell. Microbiol. 2017, 19, e12639. [Google Scholar] [CrossRef]
- Shi, W.; Guo, Y.; Xu, C.; Tan, S.; Miao, J.; Feng, Y.; Zhao, H.; Leger, R.J.S.; Fang, W. Unveiling the mechanism by which microsporidian parasites prevent locust swarm behavior. Proc. Natl. Acad. Sci. USA 2014, 111, 1343–1348. [Google Scholar] [CrossRef]
- Feng, Y.; Ge, Y.; Tan, S.; Zhang, K.; Ji, R.; Shi, W. Effect of Paranosema locustae (Microsporidia) on the behavioural phases of Locusta migratoria (Orthoptera: Acrididae) in the laboratory. Biocontrol Sci. Technol. 2015, 25, 48–55. [Google Scholar] [CrossRef]
- Roy, H.E.; Pell, J.K.; Alderson, P.G. Effects of fungal infection on the alarm response of pea aphids. J. Invertebr. Pathol. 1999, 74, 69–75. [Google Scholar] [CrossRef]
- Lee, J.; Kim, C.; Jang, H.A.; Kim, J.K.; Kotaki, T.; Shinoda, T.; Shinada, T.; Yoo, J.; Lee, B.L. Burkholderia gut symbiont modulates titer of specific juvenile hormone in the bean bug Riptortus pedestris. Dev. Comp. Immunol. 2019, 99, 103399. [Google Scholar] [CrossRef] [PubMed]
- Dyer, L.A.; Philbin, C.S.; Ochsenrider, K.M.; Richards, L.A.; Massad, T.J.; Smilanich, A.M.; Forister, M.L.; Parchman, T.L.; Calland, L.M.; Hurtado, P.J.; et al. Modern approaches to study plant-insect interactions in chemical ecology. Nat. Rev. Chem. 2018, 2, 50–64. [Google Scholar] [CrossRef]
- Mori, N.; Noge, K. Recent advances in chemical ecology: Complex interactions mediated by molecules. Biosci. Biotechnol. Biochem. 2021, 85, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Verschut, T.A.; Billeter, J.; Maan, M.E. Seven questions on the chemical ecology and neurogenetics of resource-mediated speciation. Front. Ecol. Evol. 2021, 9, 640486. [Google Scholar] [CrossRef]
- Wang, Y.; Han, L.; Xia, Y.; Xie, J. The entomopathogenic fungus Metarhizium anisopliae affects feeding preference of Sogatella furcifera and its potential targets’ identification. J. Fungi 2022, 8, 506. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Chang, Z.; Liu, Z.; Zhang, S. Influences of Microbial Symbionts on Chemoreception of Their Insect Hosts. Insects 2023, 14, 638. https://doi.org/10.3390/insects14070638
Wang Z, Chang Z, Liu Z, Zhang S. Influences of Microbial Symbionts on Chemoreception of Their Insect Hosts. Insects. 2023; 14(7):638. https://doi.org/10.3390/insects14070638
Chicago/Turabian StyleWang, Zhengyan, Zhenzhen Chang, Zhiyuan Liu, and Shan Zhang. 2023. "Influences of Microbial Symbionts on Chemoreception of Their Insect Hosts" Insects 14, no. 7: 638. https://doi.org/10.3390/insects14070638
APA StyleWang, Z., Chang, Z., Liu, Z., & Zhang, S. (2023). Influences of Microbial Symbionts on Chemoreception of Their Insect Hosts. Insects, 14(7), 638. https://doi.org/10.3390/insects14070638