Limited Variation in Bacterial Communities of Scaphoideus titanus (Hemiptera: Cicadellidae) Across European Populations and Different Life Stages
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Identification
2.2. DNA Extraction and Sequencing
2.3. Data Analysis
2.4. Statistical Analyses
3. Results
3.1. Bacterial Communities of S. titanus from Different European Populations
3.2. Bacterial Community of S. titanus Across Different Life Stages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hogenhout, S.A.; Oshima, K.; Ammar, E.-D.; Kakizawa, S.; Kingdom, H.N.; Namba, S. Phytoplasmas: Bacteria That Manipulate Plants and Insects. Mol. Plant Pathol. 2008, 9, 403–423. [Google Scholar] [CrossRef] [PubMed]
- Alma, A.; Lessio, F.; Nickel, H. Insects as Phytoplasma Vectors: Ecological and Epidemiological Aspects. In Phytoplasmas: Plant Pathogenic Bacteria—II: Transmission and Management of Phytoplasma—Associated Diseases; Bertaccini, A., Weintraub, P.G., Rao, G.P., Mori, N., Eds.; Springer: Singapore, 2019; pp. 1–25. ISBN 9789811328329. [Google Scholar]
- Gonella, E.; Benelli, G.; Arricau-Bouvery, N.; Bosco, D.; Duso, C.; Dietrich, C.H.; Galetto, L.; Rizzoli, A.; Jović, J.; Mazzoni, V.; et al. Scaphoideus titanus Up-to-the-Minute: Biology, Ecology, and Role as a Vector. Entomologia 2024, 44, 481–496. [Google Scholar] [CrossRef]
- Bonfils, J.; Schvester, D. The Leafhoppers (Homoptera: Auchenorrhyncha) and Their Relationship with Vineyards in South-Western France. Ann. Epiphyt. 1960, 11, 325–336. [Google Scholar]
- Aguin-Pombo, D.; Aguiar, A.M.F.; Cravo, D. First Report of Scaphoideus titanus for Madeira Island. EPPO Bull. 2020, 50, 564–567. [Google Scholar] [CrossRef]
- McCutcheon, J.P.; McDonald, B.R.; Moran, N.A. Convergent Evolution of Metabolic Roles in Bacterial Co-Symbionts of Insects. Proc. Natl. Acad. Sci. USA 2009, 106, 15394–15399. [Google Scholar] [CrossRef]
- Douglas, A.E. Nutritional Interactions in Insect-Microbial Symbioses: Aphids and Their Symbiotic Bacteria Buchnera. Annu. Rev. Entomol. 1998, 43, 17–37. [Google Scholar] [CrossRef]
- Shigenobu, S.; Watanabe, H.; Hattori, M.; Sakaki, Y.; Ishikawa, H. Genome Sequence of the Endocellular Bacterial Symbiont of Aphids Buchnera sp. APS. Nature 2000, 407, 81–86. [Google Scholar] [CrossRef]
- Dittmer, J.; Corretto, E.; Štarhová Serbina, L.; Michalik, A.; Nováková, E.; Schuler, H. Division of Labor within Psyllids: Metagenomics Reveals an Ancient Dual Endosymbiosis with Metabolic Complementarity in the Genus Cacopsylla. mSystems 2023, 8, e00578-23. [Google Scholar] [CrossRef]
- Sloan, D.B.; Moran, N.A. Endosymbiotic Bacteria as a Source of Carotenoids in Whiteflies. Biol. Lett. 2012, 8, 986–989. [Google Scholar] [CrossRef]
- Baumann, P. Biology of Bacteriocyte-Associated Endosymbionts of Plant Sap-Sucking Insects. Annu. Rev. Microbiol. 2005, 59, 155–189. [Google Scholar] [CrossRef]
- Moran, N.A.; Tran, P.; Gerardo, N.M. Symbiosis and Insect Diversification: An Ancient Symbiont of Sap-Feeding Insects from the Bacterial Phylum Bacteroidetes. Appl. Environ. Microbiol. 2005, 71, 8802–8810. [Google Scholar] [CrossRef] [PubMed]
- Koga, R.; Bennett, G.M.; Cryan, J.R.; Moran, N.A. Evolutionary Replacement of Obligate Symbionts in an Ancient and Diverse Insect Lineage. Environ. Microbiol. 2013, 15, 2073–2081. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, Y.; Moriyama, M.; Łukasik, P.; Vanderpool, D.; Tanahashi, M.; Meng, X.-Y.; McCutcheon, J.P.; Fukatsu, T. Recurrent Symbiont Recruitment from Fungal Parasites in Cicadas. Proc. Natl. Acad. Sci. USA 2018, 115, E5970–E5979. [Google Scholar] [CrossRef]
- McCutcheon, J.P.; Moran, N.A. Parallel Genomic Evolution and Metabolic Interdependence in an Ancient Symbiosis. Proc. Natl. Acad. Sci. USA 2007, 104, 19392–19397. [Google Scholar] [CrossRef]
- McCutcheon, J.P.; Moran, N.A. Functional Convergence in Reduced Genomes of Bacterial Symbionts Spanning 200 My of Evolution. Genome Biol. Evol. 2010, 2, 708–718. [Google Scholar] [CrossRef]
- Kobiałka, M.; Michalik, A.; Szwedo, J.; Szklarzewicz, T. Diversity of Symbiotic Microbiota in Deltocephalinae Leafhoppers (Insecta, Hemiptera, Cicadellidae). Arthropod Struct. Dev. 2018, 47, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Michalik, A.; Castillo Franco, D.; Kobiałka, M.; Szklarzewicz, T.; Stroiński, A.; Łukasik, P. Alternative Transmission Patterns in Independently Acquired Nutritional Cosymbionts of Dictyopharidae Planthoppers. mBio 2021, 12, e0122821. [Google Scholar] [CrossRef]
- Kobiałka, M.; Michalik, A.; Walczak, M.; Szklarzewicz, T. Dual “Bacterial-Fungal” Symbiosis in Deltocephalinae Leafhoppers (Insecta, Hemiptera, Cicadomorpha: Cicadellidae). Microb. Ecol. 2017, 75, 771. [Google Scholar] [CrossRef]
- Sandström, J.P.; Russell, J.A.; White, J.P.; Moran, N.A. Independent Origins and Horizontal Transfer of Bacterial Symbionts of Aphids. Mol. Ecol. 2001, 10, 217–228. [Google Scholar] [CrossRef]
- Zhang, Q.; Lan, R.; Ji, D.; Tan, Y.; Zhou, X.; Tan, X.; Wu, Q.; Jin, L. The Detection of Wolbachia in Tea Green Leafhopper (Empoasca onukii Matsuda) and Its Influence on the Host. Agriculture 2022, 12, 36. [Google Scholar] [CrossRef]
- Ishii, Y.; Matsuura, Y.; Kakizawa, S.; Nikoh, N.; Fukatsu, T. Diversity of Bacterial Endosymbionts Associated with Macrosteles Leafhoppers Vectoring Phytopathogenic Phytoplasmas. Appl. Environ. Microbiol. 2013, 79, 5013–5022. [Google Scholar] [CrossRef]
- Zhang, K.-J.; Han, X.; Hong, X.-Y. Various Infection Status and Molecular Evidence for Horizontal Transmission and Recombination of Wolbachia and Cardinium among Rice Planthoppers and Related Species. Insect Sci. 2013, 20, 329–344. [Google Scholar] [CrossRef]
- Negri, I.; Pellecchia, M.; Mazzoglio, P.J.; Patetta, A.; Alma, A. Feminizing Wolbachia in Zyginidia pullula (Insecta, Hemiptera), a Leafhopper with an XX/X0 Sex-Determination System. Proc. R. Soc. B 2006, 273, 2409–2416. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Yukuhiro, F.; Matsumura, M.; Noda, H. Cytoplasmic Incompatibility Involving Cardinium and Wolbachia in the White-Backed Planthopper Sogatella furcifera (Hemiptera: Delphacidae). Appl. Entomol. Zool. 2012, 47, 273–283. [Google Scholar] [CrossRef]
- Fan, Z.-Y.; Liu, Y.; He, Z.-Q.; Wen, Q.; Chen, X.-Y.; Khan, M.M.; Osman, M.; Mandour, N.S.; Qiu, B.-L. Rickettsia Infection Benefits Its Whitefly Hosts by Manipulating Their Nutrition and Defense. Insects 2022, 13, 1161. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.M.; Brownlie, J.C.; O’Neill, S.L.; Johnson, K.N. Wolbachia and Virus Protection in Insects. Science 2008, 322, 702. [Google Scholar] [CrossRef]
- Dale, C.; Moran, N.A. Molecular Interactions between Bacterial Symbionts and Their Hosts. Cell 2006, 126, 453–465. [Google Scholar] [CrossRef]
- Engelstädter, J.; Hurst, G.D.D. The Ecology and Evolution of Microbes That Manipulate Host Reproduction. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 127–149. [Google Scholar] [CrossRef]
- Schuler, H.; Bertheau, C.; Egan, S.P.; Feder, J.L.; Riegler, M.; Schlick-Steiner, B.C.; Steiner, F.M.; Johannesen, J.; Kern, P.; Tuba, K.; et al. Evidence for a Recent Horizontal Transmission and Spatial Spread of Wolbachia from Endemic Rhagoletis cerasi (Diptera: Tephritidae) to Invasive Rhagoletis cingulata in Europe. Mol. Ecol. 2013, 22, 4101–4111. [Google Scholar] [CrossRef]
- Gonella, E.; Pajoro, M.; Marzorati, M.; Crotti, E.; Mandrioli, M.; Pontini, M.; Bulgari, D.; Negri, I.; Sacchi, L.; Chouaia, B.; et al. Plant-Mediated Interspecific Horizontal Transmission of an Intracellular Symbiont in Insects. Sci. Rep. 2015, 5, 15811. [Google Scholar] [CrossRef]
- Sontowski, R.; van Dam, N.M. Functional Variation in Dipteran Gut Bacterial Communities in Relation to Their Diet, Life Cycle Stage and Habitat. Insects 2020, 11, 543. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, L.; Genchi, M.; Clementi, E.; Bigliardi, E.; Avanzati, A.M.; Pajoro, M.; Negri, I.; Marzorati, M.; Gonella, E.; Alma, A.; et al. Multiple Symbiosis in the Leafhopper Scaphoideus titanus (Hemiptera: Cicadellidae): Details of Transovarial Transmission of Cardinium Sp. and Yeast-like Endosymbionts. Tissue Cell 2008, 40, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Penz, T.; Schmitz-Esser, S.; Kelly, S.E.; Cass, B.N.; Müller, A.; Woyke, T.; Malfatti, S.A.; Hunter, M.S.; Horn, M. Comparative Genomics Suggests an Independent Origin of Cytoplasmic Incompatibility in Cardinium hertigii. PLoS Genet. 2012, 8, e1003012. [Google Scholar] [CrossRef]
- Zchori-Fein, E.; Perlman, S.J. Distribution of the Bacterial Symbiont Cardinium in Arthropods. Mol. Ecol. 2004, 13, 2009–2016. [Google Scholar] [CrossRef]
- Weinert, L.A.; Araujo-Jnr, E.V.; Ahmed, M.Z.; Welch, J.J. The Incidence of Bacterial Endosymbionts in Terrestrial Arthropods. Proc. R. Soc. B 2015, 282, 20150249. [Google Scholar] [CrossRef]
- Tarlachkov, S.V.; Efeykin, B.D.; Castillo, P.; Evtushenko, L.I.; Subbotin, S.A. Distribution of Bacterial Endosymbionts of the Cardinium Clade in Plant-Parasitic Nematodes. Int. J. Mol. Sci. 2023, 24, 2905. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Zhao, D.-X.; Hong, X.-Y. Cardinium—The Leading Factor of Cytoplasmic Incompatibility in the Planthopper Sogatella furcifera Doubly Infected with Wolbachia and Cardinium. Environ. Entomol. 2012, 41, 833–840. [Google Scholar] [CrossRef]
- Gonella, E.; Crotti, E.; Mandrioli, M.; Daffonchio, D.; Alma, A. Asaia Symbionts Interfere with Infection by Flavescence Dorée Phytoplasma in Leafhoppers. J. Pest. Sci. 2018, 91, 1033–1046. [Google Scholar] [CrossRef]
- Lòpez-Fernàndez, S.; Mazzoni, V.; Pedrazzoli, F.; Pertot, I.; Campisano, A. A Phloem-Feeding Insect Transfers Bacterial Endophytic Communities between Grapevine Plants. Front. Microbiol. 2017, 8, 834. [Google Scholar] [CrossRef]
- Abbà, S.; Rossi, M.; Vallino, M.; Galetto, L.; Marzachì, C.; Turina, M. Metatranscriptomic Assessment of the Microbial Community Associated With the Flavescence Dorée Phytoplasma Insect Vector Scaphoideus titanus. Front. Microbiol. 2022, 13, 866523. [Google Scholar] [CrossRef]
- Eveillard, S.; Jollard, C.; Labroussaa, F.; Khalil, D.; Perrin, M.; Desqué, D.; Salar, P.; Razan, F.; Hévin, C.; Bordenave, L.; et al. Contrasting Susceptibilities to Flavescence Dorée in Vitis vinifera, Rootstocks and Wild Vitis Species. Front. Plant Sci. 2016, 7, 1762. [Google Scholar] [CrossRef] [PubMed]
- Papura, D.; Burban, C.; van Helden, M.; Giresse, X.; Nusillard, B.; Guillemaud, T.; Kerdelhué, C. Microsatellite and Mitochondrial Data Provide Evidence for a Single Major Introduction for the Neartic Leafhopper Scaphoideus titanus in Europe. PLoS ONE 2012, 7, e36882. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-High-Throughput Microbial Community Analysis on the Illumina HiSeq and MiSeq Platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package; Springer: New York, NY, USA, 2015. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Kolde, R. Pheatmap: Pretty Heatmaps; Springer: New York, NY, USA, 2018. [Google Scholar]
- Chuche, J.; Thiéry, D. Biology and Ecology of the Flavescence Dorée Vector Scaphoideus titanus: A Review. Agron. Sustain. Dev. 2014, 34, 381–403. [Google Scholar] [CrossRef]
- Wang, G.-H.; Du, J.; Chu, C.Y.; Madhav, M.; Hughes, G.L.; Champer, J. Symbionts and Gene Drive: Two Strategies to Combat Vector-Borne Disease. Trends Genet. 2022, 38, 708–723. [Google Scholar] [CrossRef]
- Arora, A.K.; Douglas, A.E. Hype or Opportunity? Using Microbial Symbionts in Novel Strategies for Insect Pest Control. J. Insect Physiol. 2017, 103, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Bigliardi, E.; Sacchi, L.; Genchi, M.; Alma, A.; Pajoro, M.; Daffonchio, D.; Marzorati, M.; Avanzati, A.M. Ultrastructure of a Novel Cardinium Sp. Symbiont in Scaphoideus titanus (Hemiptera: Cicadellidae). Tissue Cell 2006, 38, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Himler, A.G.; Adachi-Hagimori, T.; Bergen, J.E.; Kozuch, A.; Kelly, S.E.; Tabashnik, B.E.; Chiel, E.; Duckworth, V.E.; Dennehy, T.J.; Zchori-Fein, E.; et al. Rapid Spread of a Bacterial Symbiont in an Invasive Whitefly Is Driven by Fitness Benefits and Female Bias. Science 2011, 332, 254–256. [Google Scholar] [CrossRef]
- Welch, E.W.; Macias, J.; Bextine, B. Geographic Patterns in the Bacterial Microbiome of the Glassy-Winged Sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae). Symbiosis 2015, 66, 1–12. [Google Scholar] [CrossRef]
- Shalev, O.; Karasov, T.L.; Lundberg, D.S.; Ashkenazy, H.; Pramoj Na Ayutthaya, P.; Weigel, D. Commensal Pseudomonas Strains Facilitate Protective Response against Pathogens in the Host Plant. Nat. Ecol. Evol. 2022, 6, 383–396. [Google Scholar] [CrossRef]
- Peral-Aranega, E.; Saati-Santamaría, Z.; Kolařik, M.; Rivas, R.; García-Fraile, P. Bacteria Belonging to Pseudomonas typographi Sp. Nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology. Insects 2020, 11, 593. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Sinha, D.K.; Nair, S. Shifts in Pseudomonas Species Diversity Influence Adaptation of Brown Planthopper to Changing Climates and Geographical Locations. iScience 2022, 25, 104550. [Google Scholar] [CrossRef]
- Zeiller, M.; Rothballer, M.; Iwobi, A.N.; Böhnel, H.; Gessler, F.; Hartmann, A.; Schmid, M. Systemic Colonization of Clover (Trifolium repens) by Clostridium botulinum Strain 2301. Front. Microbiol. 2015, 6, 1207. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, L.; Niu, Z.; Song, S.; Zhao, Y. Water Stress Affects the Frequency of Firmicutes, Clostridiales and Lysobacter in Rhizosphere Soils of Greenhouse Grape. Agric. Water Manag. 2019, 226, 105776. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, C.; Long, M. Variation of Soil Nutrients and Bacterial Community Diversity of Different Land Utilization Types in Yangtze River Basin, Chongqing Municipality. PeerJ 2020, 8, e9386. [Google Scholar] [CrossRef]
- Crotti, E.; Damiani, C.; Pajoro, M.; Gonella, E.; Rizzi, A.; Ricci, I.; Negri, I.; Scuppa, P.; Rossi, P.; Ballarini, P.; et al. Asaia, a Versatile Acetic Acid Bacterial Symbiont, Capable of Cross-Colonizing Insects of Phylogenetically Distant Genera and Orders. Environ. Microbiol. 2009, 11, 3252–3264. [Google Scholar] [CrossRef] [PubMed]
- Shan, H.-W.; Xia, X.-J.; Feng, Y.-L.; Wu, W.; Li, H.-J.; Sun, Z.-T.; Li, J.-M.; Chen, J.-P. The Plant-Sucking Insect Selects Assembly of the Gut Microbiota from Environment to Enhance Host Reproduction. NPJ Biofilms Microbiomes 2024, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.-H.; Roh, S.W.; Whon, T.W.; Jung, M.-J.; Kim, M.-S.; Park, D.-S.; Yoon, C.; Nam, Y.-D.; Kim, Y.-J.; Choi, J.-H.; et al. Insect Gut Bacterial Diversity Determined by Environmental Habitat, Diet, Developmental Stage, and Phylogeny of Host. Appl. Environ. Microbiol. 2014, 80, 5254–5264. [Google Scholar] [CrossRef] [PubMed]
- Andongma, A.A.; Wan, L.; Dong, Y.-C.; Li, P.; Desneux, N.; White, J.A.; Niu, C.-Y. Pyrosequencing Reveals a Shift in Symbiotic Bacteria Populations across Life Stages of Bactrocera dorsalis. Sci. Rep. 2015, 5, 9470. [Google Scholar] [CrossRef]
- Briones-Roblero, C.I.; Hernández-García, J.A.; Gonzalez-Escobedo, R.; Soto-Robles, L.V.; Rivera-Orduña, F.N.; Zúñiga, G. Structure and Dynamics of the Gut Bacterial Microbiota of the Bark Beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across Their Life Stages. PLoS ONE 2017, 12, e0175470. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Wang, T.-Z.; Zhu, H.-F.; Pan, H.-B.; Yu, X.-P. Diversity and Dynamics of Microbial Communities in Brown Planthopper at Different Developmental Stages Revealed by High-Throughput Amplicon Sequencing. Insect Sci. 2020, 27, 883–894. [Google Scholar] [CrossRef]
Country | Locality | Population Code | Coordinates | Date of Collection | Life Stage | Samples | Number of Individuals |
---|---|---|---|---|---|---|---|
France | Burgundy * | Fr | - | May 2023 | Adult | Fr (1–8) | 8 |
Nymph | Fr (9–13) | 5 | |||||
Italy | Breganze, Veneto | It | 45°42′37.44″ N 11°32′50.57″ E | August 2021 | Adult | It (1–10) | 10 |
Czech Republic | Brno, Moravia | Cz | 48°44′24″ N 16°44′28″ E | August 2020 | Adult | Cz (1–8) | 8 |
Serbia | Nis, Malca | Sr1 | 43°20′46.31″ N 22°2′19.35″ E | August 2020 | Adult | Sr1 (1–7) | 7 |
Belgrade | Sr2 | 44°51′19.3″ N 20°22′39.1″ E | August 2020 | Adult | Sr2 (1–7) | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enciso, J.S.; Corretto, E.; Borruso, L.; Schuler, H. Limited Variation in Bacterial Communities of Scaphoideus titanus (Hemiptera: Cicadellidae) Across European Populations and Different Life Stages. Insects 2024, 15, 830. https://doi.org/10.3390/insects15110830
Enciso JS, Corretto E, Borruso L, Schuler H. Limited Variation in Bacterial Communities of Scaphoideus titanus (Hemiptera: Cicadellidae) Across European Populations and Different Life Stages. Insects. 2024; 15(11):830. https://doi.org/10.3390/insects15110830
Chicago/Turabian StyleEnciso, Juan Sebastian, Erika Corretto, Luigimaria Borruso, and Hannes Schuler. 2024. "Limited Variation in Bacterial Communities of Scaphoideus titanus (Hemiptera: Cicadellidae) Across European Populations and Different Life Stages" Insects 15, no. 11: 830. https://doi.org/10.3390/insects15110830