How Habitat Simplification Shapes the Morphological Characteristics of Ant Assemblages (Hymenoptera: Formicidae) in Different Biogeographical Contexts
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global Effects of Land Use on Local Terrestrial Biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Frishkoff, L.O.; Karp, D.S.; M’Gonigle, L.K.; Mendenhall, C.D.; Zook, J.; Kremen, C.; Hadly, E.A.; Daily, G.C. Loss of Avian Phylogenetic Diversity in Neotropical Agricultural Systems. Science 2014, 345, 1343–1346. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.E.; Richardson, J.P.; Canuel, E.A. Grazer Diversity Effects on Ecosystem Functioning in Seagrass Beds. Ecol. Lett. 2003, 6, 637–645. [Google Scholar] [CrossRef]
- Olden, J.D. Biotic Homogenization: A New Research Agenda for Conservation Biogeography. J. Biogeogr. 2006, 33, 2027–2039. [Google Scholar] [CrossRef]
- Petsch, D.K. Causes and Consequences of Biotic Homogenization in Freshwater Ecosystems. Int. Rev. Hydrobiol. 2016, 101, 113–122. [Google Scholar] [CrossRef]
- Price, E.P.F.; Spyreas, G.; Matthews, J.W. Biotic Homogenization of Regional Wetland Plant Communities within Short Time-Scales in the Presence of an Aggressive Invader. J. Ecol. 2018, 106, 1180–1190. [Google Scholar] [CrossRef]
- Solar, R.R.d.C.; Barlow, J.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Thomson, J.R.; Louzada, J.; Maués, M.; Moura, N.G.; Oliveira, V.H.F.; et al. How Pervasive Is Biotic Homogenization in Human-Modified Tropical Forest Landscapes? Ecol. Lett. 2015, 18, 1108–1118. [Google Scholar] [CrossRef]
- Socolar, J.B.; Gilroy, J.J.; Kunin, W.E.; Edwards, D.P. How Should Beta-Diversity Inform Biodiversity Conservation? Trends Ecol. Evol. 2016, 31, 67–80. [Google Scholar] [CrossRef]
- Villéger, S.; Grenouillet, G.; Brosse, S. Functional Homogenization Exceeds Taxonomic Homogenization Among European Fish Assemblages. Glob. Ecol. Biogeogr. 2014, 23, 1450–1460. [Google Scholar] [CrossRef]
- Hung, K.L.J.; Ascher, J.S.; Davids, J.A.; Holway, D.A. Ecological Filtering in Scrub Fragments Restructures the Taxonomic and Functional Composition of Native Bee Assemblages. Ecology 2019, 100, e02654. [Google Scholar] [CrossRef]
- Violle, C.; Navas, M.-L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the Concept of Trait Be Functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Nock, C.A.; Vogt, R.J.; Beisner, B.E. Functional Traits. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2016; pp. 1–8. [Google Scholar]
- McGill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding Community Ecology from Functional Traits. Trends Ecol. Evol. 2006, 21, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Brousseau, P.; Gravel, D.; Handa, I.T. On the development of a predictive functional trait approach for studying terrestrial arthropods. J. Anim. Ecol. 2018, 87, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Keddy, P.A.; Laughlin, D.C. A Framework for Community Ecology: Species Pools, Filters and Traits; Cambridge University Press: Cambridge, UK, 2022; ISBN 9781009068314. [Google Scholar]
- Petchey, O.L.; Gaston, K.J. Functional Diversity: Back to Basics and Looking Forward. Ecol. Lett. 2006, 9, 741–758. [Google Scholar] [CrossRef] [PubMed]
- Gerisch, M.; Agostinelli, V.; Henle, K.; Dziock, F. More Species, but All Do the Same: Contrasting Effects of Flood Disturbance on Ground Beetle Functional and Species Diversity. Oikos 2012, 121, 508–515. [Google Scholar] [CrossRef]
- Loreau, M.; Mouquet, N.; Gonzalez, A. Biodiversity as Spatial Insurance in Heterogeneous Landscapes. Proc. Natl. Acad. Sci. USA 2003, 100, 12765–12770. [Google Scholar] [CrossRef]
- Soares, F.C.; De Lima, R.F.; Palmeirim, J.M.; Cardoso, P.; Rodrigues, A.S.L. Combined Effects of Bird Extinctions and Introductions in Oceanic Islands: Decreased Functional Diversity Despite Increased Species Richness. Glob. Econ. Biogeogr. 2022, 31, 1172–1183. [Google Scholar] [CrossRef]
- Ferlian, O.; Eisenhauer, N.; Aguirrebengoa, M.; Camara, M.; Ramirez-Rojas, I.; Santos, F.; Tanalgo, K.; Thakur, M.P. Invasive Earthworms Erode Soil Biodiversity: A Meta-Analysis. J. Anim. Ecol. 2018, 87, 162–172. [Google Scholar] [CrossRef]
- Santana Gualberto, A.V.; da Cunha, J.R.; Vogado, R.F.; Carvalho Leite, L.F.; Leal Nunes, L.A.P.; de Souza, H.A. Epigean Fauna in No-Till Systems, Pasture, Eucalyptus and Native Savanna in Uruçuí, Piauí, Brazil. Rev. Bras. Cienc. Agrar. 2021, 16, 1–8. [Google Scholar] [CrossRef]
- Del Toro, I.; Pelini, S. The Little Things That Run the World Revisited: A Review of Ant-Mediated Ecosystem Services and Disservices (Hymenoptera: Formicidae). Myrmecol. News 2012, 17, 133–146. [Google Scholar]
- Philpott, S.M.; Perfecto, I.; Armbrecht, I.; Parr, C.L. Ant diversity and function in disturbed and changing habitats. In Ant Ecology, 1st ed.; Oxford University Press: Oxford, UK, 2010; pp. 137–156. [Google Scholar]
- Warren, R.J.; Frankson, P.T.; Mohan, J.E. Global Change Drivers Synergize with the Negative Impacts of Non-Native Invasive Ants on Native Seed-Dispersing Ants. Biol. Invasions 2023, 25, 773–786. [Google Scholar] [CrossRef]
- Perfecto, I.; Philpott, S.M. Ants (Hymenoptera: Formicidae) and Ecosystem Functions and Services in Urban Areas: A Reflection on a Diverse Literature. Myrmecol. News 2023, 33, 103–122. [Google Scholar] [CrossRef]
- Boyero, L. Insect Biodiversity in Freshwater Ecosystems: Is There Any Latitudinal Gradient? Mar. Freshw. Res. 2002, 53, 753–755. [Google Scholar] [CrossRef]
- Lindsay, S.W.; Bayoh, M.N. Mapping Members of the Anopheles Gambiae Complex Using Climate Data. Physiol. Entomol. 2004, 29, 204–209. [Google Scholar] [CrossRef]
- Solar, R.R.d.C.; Barlow, J.; Andersen, A.N.; Schoereder, J.H.; Berenguer, E.; Ferreira, J.N.; Gardner, T.A. Biodiversity Consequences of Land-Use Change and Forest Disturbance in the Amazon: A Multi-Scale Assessment Using Ant Communities. Biol. Conserv. 2016, 197, 98–107. [Google Scholar] [CrossRef]
- Bihn, J.H.; Gebauer, G.; Brandl, R. Loss of Functional Diversity of Ant Assemblages in Secondary Tropical Forests. Ecology 2010, 91, 782–792. [Google Scholar] [CrossRef]
- Gibb, H.; Cunningham, S.A. Habitat Contrasts Reveal a Shift in the Trophic Position of Ant Assemblages. J. Anim. Ecol. 2011, 80, 119–127. [Google Scholar] [CrossRef]
- Arnan, X.; Cerdá, X.; Retana, J. Ant Functional Responses along Environmental Gradients. J. Anim. Ecol. 2014, 83, 1398–1408. [Google Scholar] [CrossRef]
- Parr, C.L.; Bishop, T.R. The Response of Ants to Climate Change. Glob. Change Biol. 2022, 28, 3188–3205. [Google Scholar] [CrossRef]
- Andrade-Silva, J.; Baccaro, F.B.; Prado, L.P.; Guénard, B.; Kass, J.M.; Warren, D.L.; Economo, E.P.; Silva, R.R. Common Ant Species Dominate Morphospace: Unraveling the Morphological Diversity in the Brazilian Amazon Basin. Ecography 2024, 2024, e07121. [Google Scholar] [CrossRef]
- Weiser, M.D.; Kaspari, M. Ecological Morphospace of New World Ants. Ecol. Entomol. 2006, 31, 131–142. [Google Scholar] [CrossRef]
- Gibb, H.; Sanders, N.J.; Dunn, R.R.; Watson, S.; Photakis, M.; Abril, S.; Andersen, A.N.; Angulo, E.; Armbrecht, I.; Arnan, X.; et al. Climate Mediates the Effects of Disturbance on Ant Assemblage Structure. Proc. R. Soc. B Biol. Sci. 2015, 282, 20150418. [Google Scholar] [CrossRef] [PubMed]
- Kaspari, M.; Weiser, M.D. The Size Grain Hypothesis and Interspecific Scaling in Ants. Funct. Ecol. 1999, 13, 530–538. [Google Scholar] [CrossRef]
- Sarty, M.; Abbott, K.L.; Lester, P.J. Habitat Complexity Facilitates Coexistence in a Tropical Ant Community. Oecologia 2006, 149, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Gibb, H.; Parr, C.L. How Does Habitat Complexity Affect Ant Foraging Success? A Test Using Functional Measures on Three Continents. Oecologia 2010, 164, 1061–1073. [Google Scholar] [CrossRef] [PubMed]
- Gibb, H.; Parr, C.L. Does Structural Complexity Determine the Morphology of Assemblages? An Experimental Test on Three Continents. PLoS ONE 2013, 8, e64005. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.; Spagna, J.C. Jump Performance in Trap-Jaw Ants: Beyond Trigger Hairs. Bull. NJ Acad. Sci. 2015, 60, 1–4. [Google Scholar]
- Kaspari, M.; Weiser, M.D. Ant Activity Along Moisture Gradients in a Neotropical Forest. Biotropica 2000, 32, 703–711. [Google Scholar] [CrossRef]
- Silva, R.R.; Brandão, C.R.F. Ecosystem-Wide Morphological Structure of Leaf-Litter Ant Communities Along a Tropical Latitudinal Gradient. PLoS ONE 2014, 9, e93049. [Google Scholar] [CrossRef]
- Drager, K.I.; Rivera, M.D.; Gibson, J.C.; Ruzi, S.A.; Hanisch, P.E.; Achury, R.; Suarez, A.V. Testing the Predictive Value of Functional Traits in Diverse Ant Communities. Ecol. Evol. 2023, 13, e10000. [Google Scholar] [CrossRef]
- Gibb, H.; Bishop, T.R.; Leahy, L.; Parr, C.L.; Lessard, J.P.; Sanders, N.J.; Shik, J.Z.; Ibarra-Isassi, J.; Narendra, A.; Dunn, R.R.; et al. Ecological Strategies of (Pl)Ants: Towards a World-Wide Worker Economic Spectrum for Ants. Funct. Ecol. 2023, 37, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Della Rocca, F.; Stefanelli, S.; Pasquaretta, C.; Campanaro, A.; Bogliani, G. Effect of Deadwood Management on Saproxylic Beetle Richness in the Floodplain Forests of Northern Italy: Some Measures for Deadwood Sustainable Use. J. Insect Conserv. 2014, 18, 121–136. [Google Scholar] [CrossRef]
- Radchenko, A.G.; Elmes, G.W. Myrmica Ants of the Old World; Warszawska Drukarnia Naukowa: Warsaw, Poland, 2010. [Google Scholar]
- Kari, V. The Book in Review: The Ants of Central and North Europe. Entomol. Fenn. 2019, 30, 202–205. [Google Scholar] [CrossRef]
- Csősz, S.; Schifani, E.; Seifert, B.; Alicata, A.; Prebus, M.M. A New Species of Yellow Acorn Ant Discovered in Italy via Integrative Taxonomy (Temnothorax Luteus-Complex, Formicidae). Evol. Syst. 2024, 8, 183–197. [Google Scholar] [CrossRef]
- Csősz, S.; Alicata, A.; Báthori, F.; Galkowski, C.; Schifani, E.; Yusupov, Z.; Herczeg, G.; Prebus, M. Integrative taxonomy reveals inflated biodiversity in the European Temnothorax unifasciatus complex (Hymenoptera: Formicidae). Zool. Scr. 2024. [Google Scholar] [CrossRef]
- Silva, R.R.; Brandão, C.R. Morphological Patterns and Community Organization in Leaf-Litter Ant Assemblages. Ecol. Monogr. 2010, 80, 107–124. [Google Scholar] [CrossRef]
- Parr, C.L.; Dunn, R.R.; Sanders, N.J.; Weiser, M.D.; Photakis, M.; Bishop, T.R.; Fitzpatrick, M.C.; Arnan, X.; Baccaro, F.; Brandão, C.R.F.; et al. GlobalAnts: A New Database on the Geography of Ant Traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 2017, 10, 5–20. [Google Scholar] [CrossRef]
- Mason, N.W.H.; Mouillot, D. Functional Diversity Measures. In Encyclopedia of Biodiversity, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 597–608. ISBN 9780123847195. [Google Scholar]
- Chao, A.; Jost, L. Coverage-Based Rarefaction and Extrapolation: Standardizing Samples by Completeness Rather than Size. Ecology 2012, 93, 2533–2547. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.; Chiu, C.H.; Hsieh, T.C.; Davis, T.; Nipperess, D.A.; Faith, D.P. Rarefaction and Extrapolation of Phylogenetic Diversity. Methods Ecol. Evol. 2015, 6, 380–388. [Google Scholar] [CrossRef]
- Hedges, L.V. Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Helms, J.A., IV; Ijelu, S.E.; Wills, B.D.; Landis, D.A.; Haddad, N.M. Ant Biodiversity and Ecosystem Services in Bioenergy Landscapes. Agric. Ecosyst. Environ. 2019, 290, 106780. [Google Scholar] [CrossRef]
- Ben-Shachar, M.S.; Lüdecke, D.; Makowski, D. Effectsize: Estimation of Effect Size Indices and Standardized Parameters. J. Open Source Softw. 2020, 5, 2815. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Schwilk, D.W.; Ackerly, D.D. A Trait-Based Test for Habitat Filtering: Convex Hull Volume. Ecology 2006, 87, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Laliberte, E.; Legendre, P. A Distance-Based Framework for Measuring Functional Diversity from Multiple Traits. Ecology 2010, 91, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Olden, J.D.; Rooney, T.P. On Defining and Quantifying Biotic Homogenization. Glob. Ecol. Biogeogr. 2006, 15, 113–120. [Google Scholar] [CrossRef]
- Silva, R.R.; Del Toro, I.; Roberto, C.; Brandão, F.; Ellison, A.M. Morphological Structure of Ant Assemblages in Tropical and Temperate Forests. bioRxiv 2016, 065417. [Google Scholar] [CrossRef]
- Schofield, S.F.; Bishop, T.R.; Parr, C.L. Morphological Characteristics of Ant Assemblages (Hymenoptera: Formicidae) Differ among Contrasting Biomes. Myrmecol. News 2016, 23, 129–137. [Google Scholar]
- Philpott, S.M.; Perfecto, I.; Vandermeer, J. Effects of Management Intensity and Season on Arboreal Ant Diversity and Abundance in Coffee Agroecosystems. Biodivers. Conserv. 2006, 15, 139–155. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More Important for Ecosystem Services than You Might Think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Newbold, T.; Oppenheimer, P.; Etard, A.; Williams, J.J. Tropical and Mediterranean Biodiversity Is Disproportionately Sensitive to Land-Use and Climate Change. Nat. Ecol. Evol. 2020, 4, 1630–1638. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical Forests Were the Primary Sources of New Agricultural Land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef]
- Loreau, M.; Jarne, P.; Martiny, J.B.H. Opportunities to Advance the Synthesis of Ecology and Evolution. Ecol. Lett. 2023, 26, S11–S15. [Google Scholar] [CrossRef] [PubMed]
- Vieira, I.C.G.; Gardner, T.; Ferreira, J.; Lees, A.C.; Barlow, J. Challenges of Governing Second-Growth Forests: A Case Study from the Brazilian Amazonian State of Pará. Forests 2014, 5, 1737–1752. [Google Scholar] [CrossRef]
- Smith, K.E.; Moore, P.J.; King, N.G.; Smale, D.A. Examining the Influence of Regional-Scale Variability in Temperature and Light Availability on the Depth Distribution of Subtidal Kelp Forests. Limnol. Oceanogr. 2022, 67, 314–328. [Google Scholar] [CrossRef]
- Simons, N.K.; Weisser, W.W.; Gossner, M.M. Multi-Taxa Approach Shows Consistent Shifts in Arthropod Functional Traits along Grassland Land-Use Intensity Gradient. Ecology 2016, 97, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Bishop, T.R.; Robertson, M.P.; van Rensburg, B.J.; Parr, C.L. Contrasting Species and Functional Beta Diversity in Montane Ant Assemblages. J. Biogeogr. 2015, 42, 1776–1786. [Google Scholar] [CrossRef]
- Bazzato, E.; Lallai, E.; Caria, M.; Schifani, E.; Cillo, D.; Ancona, C.; Alamanni, F.; Pantini, P.; Maccherini, S.; Bacaro, G.; et al. Land-Use Intensification Reduces Multi-Taxa Diversity Patterns of Small Woodlots Outside Forests in a Mediterranean Area. Agric. Ecosyst. Environ. 2022, 340, 108149. [Google Scholar] [CrossRef]
- Assio, C.; Nunes, A.; Berenguer, E.; França, F.; Ferreira, J.; Lees, A.C.; Louzada, J.; Sayer, E.J.; Solar, R.; Smith, C.C.; et al. Linking Land-Use and Land-Cover Transitions to Their Ecological Impact in the Amazon. Proc. Natl. Acad. Sci. USA 2022, 119, e2202310119. [Google Scholar] [CrossRef]
- Flynn, D.F.B.; Gogol-Prokurat, M.; Nogeire, T.; Molinari, N.; Richers, B.T.; Lin, B.B.; Simpson, N.; Mayfield, M.M.; DeClerck, F. Loss of Functional Diversity under Land Use Intensification across Multiple Taxa. Ecol. Lett. 2009, 12, 22–33. [Google Scholar] [CrossRef]
- Mori, A.S.; Lertzman, K.P.; Gustafsson, L. Biodiversity and Ecosystem Services in Forest Ecosystems: A Research Agenda for Applied Forest Ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
Morphological Traits | Functional Meaning |
---|---|
Head Length Head Width | Head length is an important measurement for understanding the shape and size of a species’ head. It may be related to prey capture, defense, or other ecological functions (Kaspari, 1993). |
Interocular Distance | The distance between the eyes is also related to vision and spatial perception. It may reflect the importance of stereoscopic vision in a species (Fowler et al., 1991). |
Mandible Length | Mandible length is associated with feeding and capturing prey. Species with long jaws may specialize in capturing larger prey (Weiser and Kaspari, 2006). |
Eye Width | Eye width is relevant to vision and perception of the environment. It may indicate the adaptation of a species to different light conditions or the detection of prey or predators (Weiser and Kaspari, 2006). |
Weber’s length | Measurement that may be related to body size or the relationship between different parts of the body and associated with resources (Kaspari and Weiser, 1999) |
Tibia Length | Tibia length may be related to ants’ functional adaptations, such as feeding behavior, mobility, habitat preferences, and foraging strategies (Gibb and Parr, 2010). |
Location | Paragominas | Subfamily/Taxon | Italy | ||
---|---|---|---|---|---|
Subfamily/Taxon | Agriculture | Secondary Forest | Agriculture | Secondary Forest | |
Atta cephalotes | 1 | Camponotus lateralis | 1 | ||
Atta sexdens | 1 | Cardiocondyla elegans | 1 | ||
Azteca sp. 3 | 1 | Crematogaster scutellaris | 1 | ||
Brachymyrmex sp. 1 | 1 | Dolichoderus quadripunctatus | 1 | ||
Brachymyrmex sp. 2 | 1 | 1 | Formica cinerea | 1 | |
Brachymyrmex sp. 4 | 1 | Formica cunicularia | 1 | 1 | |
Camponotus atriceps | 1 | Lasius niger | 1 | 1 | |
Camponotus blandus | 1 | Lasius myops | 1 | 1 | |
Camponotus leydigi | 1 | Monomorium monomorium | 1 | 1 | |
Camponotus novogranadensis | 1 | Myrmecina graminicola | 1 | 1 | |
Camponotus renggeri | 1 | Myrmica rubra | 1 | ||
Camponotus senex | 1 | Myrmica sabuleti | 1 | 1 | |
Camponotus sp. 15 | 1 | Myrmica hellenica | 1 | ||
Camponotus sp. 3 | 1 | Plagiolepis pygmaea | 1 | ||
Camponotus sp. 4 | 1 | Ponera testacea | 1 | ||
Camponotus sp. 8 | 1 | Ponera coarctata | 1 | ||
Carebara brevipilosa | 1 | Solenopsis cf. fugax | 1 | 1 | |
Carebara escherichi | 1 | Tapinoma subboreale | 1 | 1 | |
Carebara lignata | 1 | Temnothorax flavicornis | 1 | 1 | |
Carebara urichi | 1 | Temnothorax unifasciatus | 1 | ||
Ceplalotes cordatus | 1 | Temnothorax parvulus | 1 | ||
Crematogaster brasiliensis | 1 | Temnothorax apenninicus | 1 | ||
Crematogaster erecta | 1 | Tetramorium caespitum-complex | 1 | 1 | |
Crematogaster flavosensitiva | 1 | ||||
Crematogaster limata | 1 | ||||
Crematogaster sotobosque | 1 | ||||
Crematogaster sp. 3 | 1 | ||||
Crematogaster sp. 5 | 1 | 1 | |||
Cyphomyrmex laevigatus | 1 | ||||
Cyphomyrmex rimosus | 1 | ||||
Dinoponera gigantea | 1 | ||||
Dolichoderus bispinosus | 1 | ||||
Dorymyrmex goeldii | 1 | ||||
Dorymyrmex sp. 1 | 1 | ||||
Dorymyrmex sp. 2 | 1 | ||||
Dorymyrmex spurius | 1 | 1 | |||
Ectatomma tuberculatum | 1 | 1 | |||
Gigantiops destructor | 1 | ||||
Gnamptogenys acuminata | 1 | ||||
Gnamptogenys moelleri | 1 | ||||
Gnamptogenys striatula | 1 | ||||
Gnamptogenys tortuolosa | 1 | ||||
Gracillidris pombero | 1 | 1 | |||
Hypoponera sp. 1 | 1 | ||||
Labidus mars | 1 | ||||
Labidus praedator | 1 | ||||
Labidus spininodis | 1 | ||||
Linepithema neotropicum | 1 | ||||
Mayaponera constricta | 1 | ||||
Mycocepurus smithii | 1 | 1 | |||
Neivamyrmex sp. 2 | 1 | ||||
Nylanderia sp. 2 | 1 | ||||
Nylanderia sp. 3 | 1 | ||||
Nylanderia sp. 4 | 1 | ||||
Nylanderia sp. 5 | 1 | ||||
Nylanderia sp. 7 | 1 | ||||
Nylanderia sp. 8 | 1 | ||||
Odontomachus brunneus | 1 | ||||
Pachycondyla crassinoda | 1 | ||||
Pachycondyla harpax | 1 | ||||
Pheidole sp. 01 | 1 | 1 | |||
Pheidole sp. 02 | 1 | ||||
Pheidole sp. 04 | 1 | ||||
Pheidole sp. 06 | 1 | ||||
Pheidole sp. 08 | 1 | 1 | |||
Pheidole sp. 11 | 1 | ||||
Pheidole sp. 13 | 1 | ||||
Pheidole sp. 16 | 1 | ||||
Pheidole sp. 17 | 1 | ||||
Pheidole sp. 20 | 1 | ||||
Pheidole sp. 24 | 1 | ||||
Pheidole sp. 27 | 1 | ||||
Pheidole sp. 29 | 1 | ||||
Pheidole sp. 30 | 1 | ||||
Pheidole sp. 31 | 1 | ||||
Pheidole sp. 32 | 1 | ||||
Pheidole sp. 33 | 1 | 1 | |||
Pheidole sp. 34 | 1 | ||||
Pheidole sp. 35 | 1 | ||||
Pheidole sp. 40 | 1 | 1 | |||
Pheidole sp. 43 | 1 | ||||
Pheidole sp. 45 | 1 | ||||
Pheidole sp. 49 | 1 | ||||
Pheidole sp. 50 | 1 | 1 | |||
Pheidole sp. 52 | 1 | ||||
Pheidole sp. 54 | 1 | ||||
Pheidole sp. 57 | 1 | ||||
Pheidole sp. 58 | 1 | ||||
Pheidole sp. 63 | 1 | ||||
Pseudomyrmex sp. 1 | 1 | ||||
Pseudomyrmex sp. 3 | 1 | ||||
Pseudomyrmex termitarius | 1 | 1 | |||
Sericomyrmex parvulus | 1 | ||||
Sericomyrmex sp. 1 | 1 | ||||
Solenopsis geminata | 1 | ||||
Solenopsis sp. 1 | 1 | ||||
Solenopsis sp. 11 | 1 | ||||
Solenopsis sp. 13 | 1 | ||||
Solenopsis sp. 16 | 1 | 1 | |||
Solenopsis sp. 19 | 1 | ||||
Solenopsis sp. 2 | 1 | ||||
Solenopsis sp. 20 | 1 | ||||
Solenopsis sp. 4 | 1 | ||||
Solenopsis sp. 6 | 1 | ||||
Solenopsis sp. 7 | 1 | ||||
Solenopsis sp. 8 | 1 | ||||
Solenopsis sp. 9 | 1 | ||||
Strumygenys denticulata | 1 | ||||
Strumygenys eggersi | 1 | ||||
Strumygenys elongata | 1 | ||||
Strumygenys grytava | 1 | ||||
Strumygenys urrhobia | 1 | ||||
Tapinoma melanocephalum | 1 | ||||
Trachymyrmex bugnioni | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Utta, A.C.; Chiatante, G.; Schifani, E.; Meriggi, A.; Fernandes, I.O.; Borges, P.A.V.; Solar, R.R.C.; Baccaro, F.B.; Grasso, D.A. How Habitat Simplification Shapes the Morphological Characteristics of Ant Assemblages (Hymenoptera: Formicidae) in Different Biogeographical Contexts. Insects 2024, 15, 961. https://doi.org/10.3390/insects15120961
da Silva Utta AC, Chiatante G, Schifani E, Meriggi A, Fernandes IO, Borges PAV, Solar RRC, Baccaro FB, Grasso DA. How Habitat Simplification Shapes the Morphological Characteristics of Ant Assemblages (Hymenoptera: Formicidae) in Different Biogeographical Contexts. Insects. 2024; 15(12):961. https://doi.org/10.3390/insects15120961
Chicago/Turabian Styleda Silva Utta, Ana Cristina, Gianpasquale Chiatante, Enrico Schifani, Alberto Meriggi, Itanna Oliveira Fernandes, Paulo A. V. Borges, Ricardo R. C. Solar, Fabricio Beggiato Baccaro, and Donato Antonio Grasso. 2024. "How Habitat Simplification Shapes the Morphological Characteristics of Ant Assemblages (Hymenoptera: Formicidae) in Different Biogeographical Contexts" Insects 15, no. 12: 961. https://doi.org/10.3390/insects15120961
APA Styleda Silva Utta, A. C., Chiatante, G., Schifani, E., Meriggi, A., Fernandes, I. O., Borges, P. A. V., Solar, R. R. C., Baccaro, F. B., & Grasso, D. A. (2024). How Habitat Simplification Shapes the Morphological Characteristics of Ant Assemblages (Hymenoptera: Formicidae) in Different Biogeographical Contexts. Insects, 15(12), 961. https://doi.org/10.3390/insects15120961