Breaking the Law: Is It Correct to Use the Converse Bergmann Rule in Ceroglossus chilensis? An Overview Using Geometric Morphometrics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salewski, V.; Watt, C. Bergmann’s rule: A biophysiological rule examined in birds. Oikos 2017, 126. [Google Scholar] [CrossRef]
- Watt, C.; Mitchell, S.; Salewski, V. Bergmann’s rule; A concept cluster? Oikos 2010, 119, 89–100. [Google Scholar] [CrossRef]
- Shelomi, M. Where are we now? Bergmann’s rule sensu lato in insects. Am. Nat. 2012, 180, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Meiri, S. Bergmann’s Rule—What’s in a name? Glob. Ecol. Biogeogr. 2011, 20, 203–207. [Google Scholar] [CrossRef]
- Shelomi, M.; Zeuss, D. Bergmann’s and Allen’s rules in native European and Mediterranean Phasmatodea. Front. Ecol. Evol. 2017, 5, 25. [Google Scholar] [CrossRef]
- Baranovská, E.; Knapp, M. Steep converse Bergmann’s cline in a carrion beetle: Between-and within-population variation in body size along an elevational gradient. J. Zool. 2018, 304, 243–251. [Google Scholar] [CrossRef]
- Mousseau, T.A. Ectotherms follow the converse to Bergmann’s rule. Evolution 1997, 51, 630–632. [Google Scholar] [CrossRef]
- Lövei, G.L.; Magura, T. Body size and the urban heat island effect modulate the temperature–size relationship in ground beetles. J. Biogeogr. 2022, 49, 1618–1628. [Google Scholar] [CrossRef]
- Blanckenhorn, W.U.; Stillwell, R.C.; Young, K.A.; Fox, C.W.; Ashton, K.G. When Rensch meets Bergmann: Does sexual size dimorphism change systematically with latitude? Evolution 2006, 60, 2004–2011. [Google Scholar]
- Gérard, M.; Vanderplanck, M.; Franzen, M.; Kuhlmann, M.; Potts, S.G.; Rasmont, P.; Schweiger, O.; Michez, D. Patterns of size variation in bees at a continental scale: Does Bergmann’s rule apply? Oikos 2018, 127, 1095–1103. [Google Scholar] [CrossRef]
- Blanckenhorn, W.; Demont, M. Bergmann and converse Bergmann latitudinal clines in arthropods: Two ends of a continuum? Integr. Comp. Biol. 2004, 44, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Meiri, S.; Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 2003, 30, 331–351. [Google Scholar] [CrossRef]
- Partridge, L.; Coyne, J.A. Bergmann’s rule in ectotherms: Is it adaptive? Evolution 1997, 51, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Rendoll-Cárcamo, J.; Gañán, M.; Madriz, R.; Convey, P.; Contador, T. Wing reduction and body size variation along a steep elevation gradient: A case study with Magellanic sub-Antarctic mayflies and stoneflies. Front. Ecol. Evol. 2023, 11, 1188889. [Google Scholar] [CrossRef]
- Ashton, K.G.; Feldman, C.R. Bergmann’s rule in nonavian reptiles: Turtles follow it, lizards and snakes reverse it. Evolution 2003, 57, 1151–1163. [Google Scholar] [PubMed]
- Rivas, J.; Quiero, A.; Penna, M.; Velásquez, N.A. Body-size variation across environmental gradients in an ectothermic organism: An intraspecific approach to ecogeographic patterns. Herpetologica 2018, 74, 191–198. [Google Scholar] [CrossRef]
- Ray, C. The application of Bergmann’s and Allen’s rules to the poikilotherms. J. Morphol. 1960, 106, 85–108. [Google Scholar] [CrossRef] [PubMed]
- Van Voorhies, W.A. Bergmann size clines: A simple explanation for their occurrence in ectotherms. Evolution 1996, 50, 1259–1264. [Google Scholar] [CrossRef]
- Karl, I.; Fischer, K. Why get big in the cold? Towards a solution to a life-history puzzle. Oecologia 2008, 155, 215–225. [Google Scholar] [CrossRef]
- Sanzana, M.-J.; Parra, L.E.; Sepulveda-Zuniga, E.; Benitez, H.A. Latitudinal gradient effect on the wing geometry of Auca coctei (Guerin) (Lepidoptera, Nymphalidae). Rev. Bras. Entomol. 2013, 57, 411–416. [Google Scholar] [CrossRef]
- Benítez, H.A.; Sukhodolskaya, R.A.; Avtaeva, T.A.; Escobar-Suárez, S.; Órdenes-Claveria, R.; Laroze, D.; Hernández-P, R.; Vavilov, D.N. Quantifying elevational effect on the geometric body shape of Russian beetle Carabus exaratus (Coleoptera: Carabidae). Zool. Anz. 2023, 302, 30–36. [Google Scholar] [CrossRef]
- Vamosi, J.C.; Vamosi, S.M. Body size, rarity, and phylogenetic community structure: Insights from diving beetle assemblages of Alberta. Divers. Distrib. 2007, 13, 1–10. [Google Scholar] [CrossRef]
- Pallarés, S.; Lai, M.; Abellán, P.; Ribera, I.; Sánchez-Fernández, D. An interspecific test of Bergmann’s rule reveals inconsistent body size patterns across several lineages of water beetles (Coleoptera: Dytiscidae). Ecol. Entomol. 2019, 44, 249–254. [Google Scholar] [CrossRef]
- Ramírez-Delgado, V.H.; Sanabria-Urbán, S.; Serrano-Meneses, M.A.; Cueva del Castillo, R. The converse to Bergmann’s rule in bumblebees, a phylogenetic approach. Ecol. Evol. 2016, 6, 6160–6169. [Google Scholar] [CrossRef]
- Benítez, H.A.; Avaria-Llautureo, J.; Canales-Aguirre, C.B.; Jerez, V.; Parra, L.E.; Hernandez, C.E. Evolution of sexual size dimorphism and its relationship with sex ratio in carabid beetles of Genus Ceroglossus Solier. Curr. Zool. 2013, 59, 769–777. [Google Scholar] [CrossRef]
- Muñoz-Ramírez, C. The phylogenetic position of Ceroglossus ochsenii GERMAIN and Ceroglossus guerini GERMAIN (Coleoptera: Carabidae), two endemic ground beetles from the Valdivian forest of Chile. Rev. Chil. Entomol. 2015, 40, 14–21. [Google Scholar]
- López-López, A.; Acosta, V.; Rataj, L.; Galián, J. Evolution and diversification of the Southern Chilean genus Ceroglossus (Coleoptera, Carabidae) during the Pleistocene glaciations. Syst. Entomol. 2021, 46, 856–869. [Google Scholar] [CrossRef]
- Muñoz-Ramírez, C.P.; Bitton, P.-P.; Doucet, S.M.; Knowles, L.L. Mimics here and there, but not everywhere: Müllerian mimicry in Ceroglossus ground beetles? Biol. Lett. 2016, 12, 20160429. [Google Scholar] [CrossRef]
- Jiroux, E. Le Genre Ceroglossus; Collection Systematique; Magellanes: Nice, France, 2006; Volume 14. [Google Scholar]
- Benítez, H.; Briones, R.; Jerez, V. Fluctuating asymmetry in two populations of Ceroglossus chilensis (Eschscholtz, 1829) (Coleoptera: Carabidae) in agroecosystem of Pinus radiata d. Don, Bio-Bio region, Chile. Gayana 2008, 72, 131–139. [Google Scholar]
- Benítez, H.A.; Briones, R.; Jerez, V. Intra and Inter-population morphological variation of shape and size of the Chilean magnificent beetle, Ceroglossus chilensis in the Baker River Basin, Chilean Patagonia. J. Insect Sci. 2011, 11, 94. [Google Scholar] [CrossRef]
- Juache, A.; Ordenes, R.; Benítez, H.A. Quantifying the shape variation of the elytra in Patagonian populations of the ground beetle Ceroglossus chilensis (Coleoptera: Carabidae). Zool. Anz. 2018, 274, 123–126. [Google Scholar] [CrossRef]
- Benítez, H.A.; Sanzana, M.-J.; Jerez, V.; Parra, L.E.; Hernandez, C.E.; Canales-Aguirre, C.B. Sexual Shape and Size Dimorphism in Carabid Beetles of the Genus Ceroglossus: Is Geometric Body Size Similar between Sexes due to Sex Ratio? Zool. Sci. 2013, 30, 289–295. [Google Scholar] [CrossRef]
- Benítez, H.A.; Vidal, M.; Briones, R.; Jerez, V. Sexual Dimorphism and Morphological Variation in Populations of Ceroglossus chilensis (Eschscholtz, 1829) (Coleoptera: Carabidae). J. Entomol. Res. Soc. 2010, 12, 87–95. [Google Scholar]
- Briones, R.; Jerez, V.; Benítez, H.A. Vertical Diversity of Beetles (Insecta: Coleoptera) Associated with Lithraea caustica (Anacardiaceae) in Patches of Sclerophyllous Forest in Central Chile. J. Entomol. Res. Soc. 2013, 15, 41–52. [Google Scholar]
- Briones, R.; Flores, F.G.; Jerez, V. Insectos de Chile: Nativos, Introducidos y con Problemas de Conservación; Corporación Chilena de la Madera (CORMA): Concepción, Chile, 2012. [Google Scholar]
- Rohlf, F.J. TPSdig, v. 2.17; State University at Stony Brook: New York, NY, USA, 2013. [Google Scholar]
- Rohlf, F.J.; Slice, D. Extensions of the Procustes methods for the optimal superimposition of landmarks. Syst. Zool. 1990, 39, 40–59. [Google Scholar] [CrossRef]
- Dryden, I.L.; Mardia, K.V. Statistical Shape Analysis; Wiley: Chichester, UK, 1998; Volume 4. [Google Scholar]
- Fruciano, C. Measurement error in geometric morphometrics. Dev. Genes Evol. 2016, 226, 139–158. [Google Scholar] [CrossRef]
- Arnqvist, G.; Martensson, T. Measurement error in geometric morphometrics: Empirical strategies to assess and reduce its impact on measures of shape. Acta Zool. Acad. Sci. Hung. 1998, 44, 73–96. [Google Scholar]
- Rohlf, F.J.; Marcus, L.F. A revolution in morphometrics. Trends Ecol. Evol. 1993, 8, 129–132. [Google Scholar] [CrossRef]
- Bates, D. Mixed Models in R Using the lme4 Package Part 5: Generalized Linear Mixed Models; University of Wisconsin: Madison, WI, USA, 2011. [Google Scholar]
- Lo, S.; Andrews, S. To transform or not to transform: Using generalized linear mixed models to analyse reaction time data. Front. Psychol. 2015, 6, 1171. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- Klingenberg, C.P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357. [Google Scholar] [CrossRef]
- Vinarski, M. On the applicability of Bergmann’s rule to ectotherms: The state of the art. Biol. Bull. Rev. 2014, 4, 232–242. [Google Scholar] [CrossRef]
- Meiri, S.; Thomas, G.H. The geography of body size–challenges of the interspecific approach. Glob. Ecol. Biogeogr. 2007, 16, 689–693. [Google Scholar] [CrossRef]
- Sota, T.; Takami, Y.; Kubota, K.; Ujiie, M.; Ishikawa, R. Interspecific body size differentiation in species assemblages of the carabid subgenus Ohomopterus in Japan. Popul. Ecol. 2000, 42, 279–291. [Google Scholar] [CrossRef]
- Sota, T.; Ishikawa, R. Phylogeny and life-history evolution in Carabus (subtribe Carabina: Coleoptera, Carabidae) based on sequences of two nuclear genes. Biol. J. Linn. Soc. 2004, 81, 135–149. [Google Scholar] [CrossRef]
- Bjørnstad, O.N.; Nelson, W.A.; Tobin, P.C. Developmental synchrony in multivoltine insects: Generation separation versus smearing. Popul. Ecol. 2016, 58, 479–491. [Google Scholar] [CrossRef]
- Nijhout, H. The control of body size in insects. Dev. Biol. 2003, 261, 1–9. [Google Scholar] [CrossRef]
- Koyama, T.; Mirth, C.K. Unravelling the diversity of mechanisms through which nutrition regulates body size in insects. Curr. Opin. Insect Sci. 2018, 25, 1–8. [Google Scholar] [CrossRef]
- Koyama, T.; Mendes, C.C.; Mirth, C.K. Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. Front. Physiol. 2013, 4, 263. [Google Scholar] [CrossRef]
- Nijhout, H.F.; Riddiford, L.M.; Mirth, C.; Shingleton, A.W.; Suzuki, Y.; Callier, V. The developmental control of size in insects. Wiley Interdiscip. Rev.: Dev. Biol. 2014, 3, 113–134. [Google Scholar] [CrossRef]
- Makarieva, A.M.; Gorshkov, V.G.; Li, B.-L. Body size, energy consumption and allometric scaling: A new dimension in the diversity–stability debate. Ecol. Complex. 2004, 1, 139–175. [Google Scholar] [CrossRef]
- Gallé, R.; Geppert, C.; Földesi, R.; Tscharntke, T.; Batáry, P. Arthropod functional traits shaped by landscape-scale field size, local agri-environment schemes and edge effects. Basic Appl. Ecol. 2020, 48, 102–111. [Google Scholar] [CrossRef]
- Davidowitz, G.; D’Amico, L.J.; Nijhout, H.F. The effects of environmental variation on a mechanism that controls insect body size. Evol. Ecol. Res. 2004, 6, 49–62. [Google Scholar]
- Lira, A.F.; Andrade, A.R.; Foerster, S.I. Latitudinal Trends in Scorpion Assemblages of Brazilian Atlantic Forest: Do the Rapoport’s and Bergmann’s Rules Apply? In Neotropical Gradients and Their Analysis; Springer: Berlin/Heidelberg, Germany, 2023; pp. 179–203. [Google Scholar]
- Romero, G.Q.; Gonçalves-Souza, T.; Roslin, T.; Marquis, R.J.; Marino, N.A.C.; Novotny, V.; Cornelissen, T.; Orivel, J.; Sui, S.; Aires, G.; et al. Climate variability and aridity modulate the role of leaf shelters for arthropods: A global experiment. Glob. Chang. Biol. 2022, 28, 3694–3710. [Google Scholar] [CrossRef]
- Lee, C.Y.; Kim, M.K.; Kim, D.-G. Ecological Responses of Nannophya koreana (Odonata: Libellulidae) to Temperature: Following Converse Bergmann’s Rule. Biology 2022, 11, 830. [Google Scholar]
Trait | Factor | b | SE | t | p |
---|---|---|---|---|---|
All | Intercept | −7.516 | 0.140 | −53.54 | <0.0001 |
Sex (female–male) | 0.098 | 0.111 | 0.87 | 0.3804 | |
Zone (C–N) | 0.137 | 0.175 | 0.78 | 0.4320 | |
Zone (C–S) | −0.322 | 0.155 | −2.07 | 0.0378 | |
Zone (N–S) | −0.460 | 0.140 | −3.28 | 0.0010 | |
North | Intercept | −7.414 | 0.065 | −113.61 | <0.0001 |
Sex (female–male) | 0.077 | 0.085 | 0.90 | 0.3660 | |
Population (PC–CC) | −0.055 | 0.081 | −0.68 | 0.4960 | |
Center | Intercept | −7.592 | 0.068 | −110.53 | <0.0001 |
Sex (female–male) | 0.270 | 0.085 | 3.17 | 0.0015 | |
Population (PM–MZ) | −0.081 | 0.085 | −0.96 | 0.3290 | |
South | Intercept | −7.575 | 0.051 | −145.80 | <0.0001 |
Sex (female–male) | 0.094 | 0.048 | 1.96 | 0.049 | |
Population (B2–B1) | −0.384 | 0.059 | −6.42 | <0.0001 | |
Population (B3–B1) | −0.529 | 0.064 | −8.14 | <0.0001 | |
Population (B3–B2) | 0.140 | 0.056 | 2.48 | 0.0131 |
Zone | Population | Mean Female | Mean Male | Mean Diff | CI-Low | CI-High | t | d.f. | p |
---|---|---|---|---|---|---|---|---|---|
North | CC | 0.000616 | 0.000701 | −8.55 × 10−5 | −2.3 × 10−4 | 6.1 × 10−5 | −1.199 | 25.62 | 0.2411 |
PC | 0.000612 | 0.000725 | −1.13 × 10−4 | −4.7 × 10−4 | 2.5 × 10−4 | −0.727 | 7.12 | 0.4904 | |
Center | MZ | 0.000531 | 0.000688 | −1.56 × 10−4 | −2.6 × 10−4 | −4.6 × 10−5 | −2.922 | 24.91 | 0.0072 |
PM | 0.000512 | 0.000605 | −9.25 × 10−5 | −2.2 × 10−4 | 3.8 × 10−5 | −1.444 | 32.15 | 0.1581 | |
South | B3 | 0.000291 | 0.000375 | −8.34 × 10−5 | −1.3 × 10−4 | −3.0 × 10−5 | −3.137 | 53.72 | 0.0027 |
B2 | 0.000395 | 0.000382 | 1.34 × 10−5 | −4.3 × 10−5 | 7.0 × 10−5 | 0.471 | 77.81 | 0.6389 | |
B1 | 0.000527 | 0.000579 | −5.18 × 10−5 | −1.1 × 10−4 | 1.4 × 10−5 | −1.587 | 32.95 | 0.1219 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benítez, H.A.; Muñoz-Ramírez, C.; Correa, M.; Acuña-Rodríguez, I.S.; Villalobos-Leiva, A.; Contador, T.; Velásquez, N.A.; Suazo, M.J. Breaking the Law: Is It Correct to Use the Converse Bergmann Rule in Ceroglossus chilensis? An Overview Using Geometric Morphometrics. Insects 2024, 15, 97. https://doi.org/10.3390/insects15020097
Benítez HA, Muñoz-Ramírez C, Correa M, Acuña-Rodríguez IS, Villalobos-Leiva A, Contador T, Velásquez NA, Suazo MJ. Breaking the Law: Is It Correct to Use the Converse Bergmann Rule in Ceroglossus chilensis? An Overview Using Geometric Morphometrics. Insects. 2024; 15(2):97. https://doi.org/10.3390/insects15020097
Chicago/Turabian StyleBenítez, Hugo A., Carlos Muñoz-Ramírez, Margarita Correa, Ian S. Acuña-Rodríguez, Amado Villalobos-Leiva, Tamara Contador, Nelson A. Velásquez, and Manuel J. Suazo. 2024. "Breaking the Law: Is It Correct to Use the Converse Bergmann Rule in Ceroglossus chilensis? An Overview Using Geometric Morphometrics" Insects 15, no. 2: 97. https://doi.org/10.3390/insects15020097
APA StyleBenítez, H. A., Muñoz-Ramírez, C., Correa, M., Acuña-Rodríguez, I. S., Villalobos-Leiva, A., Contador, T., Velásquez, N. A., & Suazo, M. J. (2024). Breaking the Law: Is It Correct to Use the Converse Bergmann Rule in Ceroglossus chilensis? An Overview Using Geometric Morphometrics. Insects, 15(2), 97. https://doi.org/10.3390/insects15020097