Neuromuscular Anatomy and Motor Patterns at the Base of Calling Behaviour in the Female Spongy Moth Lymantria dispar
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Anatomy
2.3. Physiology
2.4. Action Potential Sorting
3. Results and Discussion
3.1. Muscles Operating the Ovipositor Movements and Relative Innervation
3.2. Identification of Motor Units Operating the Ovipositor Movements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marder, E.; Bucher, D.; Schulz, D.J.; Taylor, A.L. Invertebrate central pattern generation moves along. Curr. Biol. 2005, 15, R685–R699. [Google Scholar] [CrossRef] [PubMed]
- Harris-Warrick, R.M. General principles of rhythmogenesis in central pattern networks. Prog. Brain Res. 2010, 187, 213–222. [Google Scholar]
- Katz, P.S. Evolution of central pattern generators and rhythmic behaviours. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150057. [Google Scholar] [CrossRef]
- Golowasch, J. Neuromodulation of central pattern generators and its role in the functional recovery of central pattern generator activity. J. Neurophysiol. 2019, 122, 300–315. [Google Scholar] [CrossRef]
- Ryu, H.X.; Kuo, A.D. An optimality principle for locomotor central pattern generators. Sci. Rep. 2021, 11, 13140. [Google Scholar] [CrossRef]
- Klarner, T.; Zehr, E.P. Sherlock Holmes and the curious case of the human locomotor central pattern generator. J. Neurophysiol. 2018, 120, 53–77. [Google Scholar] [CrossRef]
- Solari, P.; Crnjar, R.; Spiga, S.; Sollai, G.; Loy, F.; Masala, C.; Liscia, A. Release mechanism of sex pheromone in the female gypsy moth Lymantria dispar: A morpho-functional approach. J. Comp. Physiol. A 2007, 193, 775–785. [Google Scholar] [CrossRef]
- Bau, J.; Cardé, R.T. Modeling optimal strategies for finding a resource-linked, windborne odor plume: Theories, robotics, and biomimetic lessons from flying insects. Integr. Comp. Biol. 2015, 55, 461–477. [Google Scholar] [CrossRef]
- Stelinski, L.; Holdcraft, R.; Rodriguez-Saona, C. Female moth calling and flight behavior are altered hours following pheromone autodetection: Possible implications for practical management with Mating disruption. Insects 2014, 5, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Stepien, T.L.; Zmurchok, C.; Hengenius, J.B.; Caja Rivera, R.M.; D’Orsogna, M.R.; Lindsay, A.E. Moth mating: Modeling female pheromone calling and male navigational strategies to optimize reproductive success. Appl. Sci. 2020, 10, 6543. [Google Scholar] [CrossRef]
- Zweerus, N.L.; van Wijk, M.; Schal, C.; Groot, A.T. Experimental evidence for female mate choice in a noctuid moth. Anim. Behav. 2021, 179, 1–13. [Google Scholar] [CrossRef]
- Percy-Cunningham, J.E.; MacDonald, J.A. Biology and ultrastructure of sex pheromone-producing glands. In Pheromone Biochemistry; Prestwich, G.D., Blomquist, G.J., Eds.; Academic Press: Orlando, FL, USA, 1987; pp. 27–75. [Google Scholar]
- Raina, A.K.; Wergin, W.P.; Murphy, C.A.; Erbe, E.F. Structural organization of the sex pheromone gland in Helicoverpa zea in relation to pheromone production and release. Arthropod Struct. Dev. 2000, 29, 343–353. [Google Scholar] [CrossRef]
- Raspotnig, G.; Schicho, R.; Stabentheiner, E.; Magnes, C.; Stelzl, M. Morphology of female sex pheromone gland in the horse chestnut leaf miner Cameraria ohridella (Lepidoptera: Gracillariidae). J. Appl. Ent. 2003, 127, 121–126. [Google Scholar] [CrossRef]
- Ma, M.; Chang, M.M.; Lu, Y.; Lei, C.L.; Yang, F.L. Ultrastructure of sensilla of antennae and ovipositor of Sitotroga cerealella (Lepidoptera: Gelechiidae), and location of female sex pheromone gland. Sci. Rep. 2017, 7, 40637. [Google Scholar] [CrossRef] [PubMed]
- Itagaki, H.; Conner, W.E. Calling behavior of Manduca sexta (L) (Lepidoptera: Sphingidae) with notes on the morphology of the female sex pheromone gland. Ann. Ent. Soc. Am. 1988, 81, 798–807. [Google Scholar] [CrossRef]
- Anton, S.; van Loon, J.J.A.; Meijerink, J.; Smid, H.M.; Takken, W.; Rospars, J.P. Central projections of olfactory receptor neurons from single antennal and palpal sensilla in mosquitoes. Arthropod Struct. Dev. 2003, 32, 319–327. [Google Scholar] [CrossRef]
- Galizia, C.G.; Roessler, W. Parallel olfactory systems in insects: Anatomy and function. Ann. Rev. Entomol. 2010, 55, 399–420. [Google Scholar] [CrossRef] [PubMed]
- Haupt, S.S.H.; Sakurai, T.; Namiki, S.; Kazawa, T.; Kanzaki, R. Olfactory information processing in moths. In The Neurobiology of Olfaction; Menini, A., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2010; Chapter 3; pp. 71–112. [Google Scholar]
- Sollai, G.; Solari, P.; Loy, F.; Masala, C.; Crnjar, R.; Liscia, A. Morpho-functional identification of abdominal olfactory receptors in the midge Culicoides imicola. J. Comp. Physiol. A 2010, 196, 817–824. [Google Scholar] [CrossRef]
- Martin, F.; Boto, T.; Gomez-Diaz, C.; Alcorta, E. Elements of olfactory reception in adult Drosophila melanogaster. Anat. Rec. 2013, 296, 1477–1488. [Google Scholar] [CrossRef]
- Sollai, G.; Solari, P.; Crnjar, R. Olfactory sensitivity to major, intermediate and trace components of sex pheromone in Ceratitis capitata is related to mating and circadian rhythm. J. Insect Physiol. 2018, 110, 23–33. [Google Scholar] [CrossRef]
- Strausfeld, N.J.; Hildebrand, J.G. Olfactory systems: Common design, uncommon origins? Curr. Opin. Neurobiol. 1999, 9, 634–639. [Google Scholar] [CrossRef]
- Jarriault, D.D.; Gadenne, C.C.; Lucas, P.P.; Rospars, J.-P.; Anton, S. Transformation of the sex pheromone signal in the noctuid moth Agrotis ipsilon: From peripheral input to antennal lobe output. Chem. Senses 2010, 35, 705–715. [Google Scholar] [CrossRef]
- Deisig, N.; Dupuy, F.; Anton, S.; Renou, M. Responses to pheromones in a complex odor world: Sensory processing and behavior. Insects 2014, 5, 399–422. [Google Scholar] [CrossRef] [PubMed]
- Solari, P.; Corda, V.; Sollai, G.; Kreissl, S.; Galizia, C.G.; Crnjar, R. Morphological characterization of the antennal lobes in the Mediterranean fruit fly Ceratitis capitata. J. Comp. Physiol. A 2016, 202, 131–146. [Google Scholar] [CrossRef]
- Liu, J.; He, K.; Luo, Z.-X.; Cai, X.-M.; Bian, L.; Li, Z.-Q.; Chen, Z.-M. Anatomical comparison of antennal lobes in two sibling Ectropis moths: Emphasis on the macroglomerular complex. Front. Physiol. 2021, 12, 685012. [Google Scholar] [CrossRef] [PubMed]
- Itagaki, H.; Conner, W.E. Neural control of rhythmic pheromone gland exposure in Utethesia ornatrix (Lepidoptera: Arctiidae). J. Insect Physiol. 1987, 33, 177–181. [Google Scholar] [CrossRef]
- Crnjar, R.; Angioy, A.M.; Pietra, P.; Yin, C.-M.; Liscia, A.; Tomassini Barbarossa, I. Control mechanisms of calling behavior in Lymantria dispar: An electrophysiological investigation on the role of the terminal abdominal ganglion. J. Insect Physiol. 1988, 34, 1087–1091. [Google Scholar] [CrossRef]
- Teal, P.E.A.; Tumlinson, J.H.; Oberlander, H. Neural regulation of sex pheromone biosynthesis in Heliotis moths. Proc. Nat. Acad. Sci. USA 1989, 86, 2488–2492. [Google Scholar] [CrossRef]
- Christensen, T.A.; Itagaki, H.; Teal, P.E.A.; Jasensky, R.D.; Tumlinson, J.H.; Hildebrand, J.G. Innervation and neural regulation of the sex pheromone gland in female Heliothis moths. Proc. Natl. Acad. Sci. USA 1991, 88, 4971–4975. [Google Scholar] [CrossRef]
- Christensen, T.A.; Lashbrook, J.M.; Hildebrand, J.G. Neural activation of the sex-pheromone gland in the moth Manduca sexta: Real-time measurement of pheromone release. Physiol. Entomol. 1994, 19, 265–270. [Google Scholar] [CrossRef]
- Thyagaraja, B.S.; Raina, A.K. Regulation of pheromone production in the gypsy moth, Lymantria Dispar, and development of an in vitro bioassay. J. Insect Physiol. 1994, 40, 969–974. [Google Scholar] [CrossRef]
- Christensen, T.A.; Hildebrand, J.G. Neural regulation of sex pheromone glands in Lepidoptera. Invert. Neurosci. 1995, 1, 97–103. [Google Scholar] [CrossRef]
- Solari, P.; Sollai, G.; Masala, C.; Maccioni, R.; Crnjar, R.; Liscia, A. Octopamine modulates the activity of motoneurons related to calling behavior in the gypsy moth Lymantria dispar. Insect Sci. 2018, 25, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Hollander, A.L.; Yin, C.-M. Neurological influences on pheromone release and calling behaviour in the gypsy moth Lymantria dispar. Physiol. Entomol. 1982, 7, 163–166. [Google Scholar] [CrossRef]
- Tang, J.D.; Charlton, R.E.; Cardé, R.T.; Yin, C.-M. Effect of allatectomy and ventral nerve cord transection on calling, pheromone emission and pheromone production in Lymantria dispar. J. Insect Physiol. 1987, 33, 469–476. [Google Scholar] [CrossRef]
- Giebultowicz, J.M.; Webb, R.E.; Raina, A.K.; Ridgway, R.L. Effects of temperature and age on daily changes in pheromone titer in laboratory reared and wild gypsy moth (Lepidoptera: Lymantriidae). Environ. Entomol. 1992, 21, 821–826. [Google Scholar] [CrossRef]
- Tang, J.D.; Charlton, R.E.; Cardè, R.T.; Yin, C.-M. Diel periodicity and influence of age and mating on sex pheromone titer in gypsy moth Lymantria dispar (L.). J. Chem. Ecol. 1992, 18, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Groot, A.T. Circadian rhythms of sexual activities in moths: A review. Front. Ecol. Evol. 2014, 2, 43. [Google Scholar] [CrossRef]
- Solari, P.; Sollai, G.; Palmas, F.; Sabatini, A.; Crnjar, R. A method for selective stimulation of leg chemoreceptors in whole crustaceans. J. Exp. Biol. 2021, 224, jeb243636. [Google Scholar] [CrossRef]
- Dolzer, J.; Krannich, S.; Fischer, K.; Stengl, M. Oscillations of the transepithelial potential of moth olfactory sensilla are influenced by octopamine and serotonin. J. Exp. Biol. 2001, 204, 2781–2794. [Google Scholar] [CrossRef]
- Sollai, G.; Solari, P.; Corda, V.; Masala, C.; Crnjar, R. The spike generator in the labellar taste receptors of the blowfly is differently affected by 4-aminopyridine and 5-hydroxytryptamine. J. Insect Physiol. 2012, 58, 1686–1693. [Google Scholar] [CrossRef]
- Solari, P.; Melis, M.; Sollai, G.; Masala, C.; Palmas, F.; Sabatini, A.; Crnjar, R. Sensing with the legs: Contribution of pereiopods in the detection of food related compounds in the red swamp crayfish Procambarus clarkii. J. Crust. Biol. 2015, 35, 81–87. [Google Scholar] [CrossRef]
- Lange, A.B. Neural mechanisms coordinating the female reproductive system in the locust. Front. Biosci. 2009, 14, 4401–4415. [Google Scholar] [CrossRef]
- Ogawa, H.; Kagaya, K.; Saito, M.; Yamaguchi, T. Neural mechanism for generating and switching motor patterns of rhythmic movements of ovipositor valves in the cricket. J. Insect Physiol. 2011, 57, 326–338. [Google Scholar] [CrossRef]
- Thompson, K.J. Oviposition-like central pattern generators in pregenital segments of male and female grasshoppers. J. Comp. Physiol. A 2018, 204, 419–433. [Google Scholar] [CrossRef]
- Das, R.; Gershon, S.; Bar-On, B.; Tadayon, M.; Ayali, A.; Pinchasik, B.-E. The biomechanics of the locust ovipositor valves: A unique digging apparatus. J. R. Soc. Interface 2022, 19, 20210955. [Google Scholar] [CrossRef] [PubMed]
- Eggs, B.; Birkhold, A.I.; Röhrle, O.; Betz, O. Structure and function of the musculoskeletal ovipositor system of an ichneumonid wasp. BMC Zool. 2018, 3, 12. [Google Scholar] [CrossRef]
- Elias, L.G.; Kjellberg, F.; Farache, F.H.A.; Almeida, E.A.; Rasplus, J.-Y.; Cruaud, A.; Peng, Y.Q.; Yang, D.R.; Pereira, R.A. Ovipositor morphology correlates with life history evolution in agaonid fig wasps. Acta Oecol. 2018, 90, 109–116. [Google Scholar] [CrossRef]
- Konopka, J.K.; Poinapen, D.; Gariepy, T.; McNeil, J.N. Understanding the mismatch between behaviour and development in a novel host-parasitoid association. Sci. Rep. 2018, 8, 15677. [Google Scholar] [CrossRef]
- Crava, C.M.; Zanini, D.; Amati, S.; Sollai, G.; Crnjar, R.; Paoli, M.; Rossi-Stacconi, M.V.; Rota-Stabelli, O.; Tait, G.; Haase, A.; et al. Structural and transcriptional evidence of mechanotransduction in the Drosophila suzukii ovipositor. J. Insect Physiol. 2020, 125, 104088. [Google Scholar] [CrossRef] [PubMed]
- Li, R.-T.; Huang, L.-Q.; Dong, J.-F.; Wang, C.-Z. A moth odorant receptor highly expressed in the ovipositor is involved in detecting host-plant volatiles. eLife 2020, 9, e53706. [Google Scholar] [CrossRef]
- Eaton, J.L. Morphology of the abdominal nervous system of the adult tobacco hornworm, Manduca sexta (Lepidoptera: Sphingidae). Ann. Entomol. Soc. Am. 1985, 78, 845–851. [Google Scholar] [CrossRef]
- Eaton, J.L. Morphology of abdominal segments eight and nine of the female tobacco hornworm, Manduca sexta (Lepidoptera: Sphingidae). Ann. Entomol. Soc. Am. 1986, 79, 629–635. [Google Scholar] [CrossRef]
- Snodgrass, R.E. The abdominal mechanisms of a grasshopper. Smithson. misc. Collns 1935, 94, 1–87. [Google Scholar]
- Thompson, K.J. Oviposition digging in the grasshopper. I. functional anatomy and the motor programme. J. Exp. Biol. 1986, 122, 387–411. [Google Scholar] [CrossRef] [PubMed]
- Belanger, J.H.; Orchard, I. The locust ovipositor opener muscle: Properties of the neuromuscular system. J. Exp. Biol. 1993, 174, 321–342. [Google Scholar] [CrossRef]
- Kalogianni, E.; Theophilidis, G. The motor innervation of the oviducts and central generation of the oviductal contractions in two orthopteran species (Calliptamus sp. and Decticus albifrons). J. Exp. Biol. 1995, 198, 507–520. [Google Scholar] [CrossRef]
- White, M.A.; Chen, D.S.; Wolfner, M.F. She’s got nerve: Roles of octopamine in insect female reproduction. J. Neurogenet. 2021, 35, 132–153. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, S.A.; Rohrbach, E.W.; Asuncion, J.D.; Harrigan, J.; Eamani, A.; Schlingmann, E.H.; Suto, D.J.; Lee, P.-T.; Schweizer, F.E.; Bellen, H.J.; et al. Regulation of Drosophila oviduct muscle contractility by octopamine. iScience 2022, 25, 104697. [Google Scholar] [CrossRef] [PubMed]
- Hollander, A.L.; Yin, C.-M.; Schwalbe, C.P. Location, morphology and histology of sex pheromone glands of the female gypsy moth, Lymantria dispar (L.). J. Insect Physiol. 1982, 28, 513–518. [Google Scholar] [CrossRef]
- Foster, S.P.; Anderson, K.G. The effect of pheromone synthesis and gland retraction on translocation and dynamics of pheromone release in the moth Chloridea virescens. J. Chem. Ecol. 2020, 46, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Foster, S.P.; Anderson, K.G. Some factors influencing calling behavior and mass emission rate of sex pheromone from the gland of the moth Chloridea virescens. J. Chem. Ecol. 2022, 48, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Rose, U.; Seebohm, G.; Hustert, R. The role of internal pressure and muscle activation during locust oviposition. J. Insect Physiol. 2000, 46, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Cury, K.M.; Prud’homme, B.; Gompel, N. A short guide to insect oviposition: When, where and how to lay an egg. J. Neurogenet. 2019, 33, 75–89. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solari, P.; Sollai, G.; Crnjar, R. Neuromuscular Anatomy and Motor Patterns at the Base of Calling Behaviour in the Female Spongy Moth Lymantria dispar. Insects 2024, 15, 169. https://doi.org/10.3390/insects15030169
Solari P, Sollai G, Crnjar R. Neuromuscular Anatomy and Motor Patterns at the Base of Calling Behaviour in the Female Spongy Moth Lymantria dispar. Insects. 2024; 15(3):169. https://doi.org/10.3390/insects15030169
Chicago/Turabian StyleSolari, Paolo, Giorgia Sollai, and Roberto Crnjar. 2024. "Neuromuscular Anatomy and Motor Patterns at the Base of Calling Behaviour in the Female Spongy Moth Lymantria dispar" Insects 15, no. 3: 169. https://doi.org/10.3390/insects15030169
APA StyleSolari, P., Sollai, G., & Crnjar, R. (2024). Neuromuscular Anatomy and Motor Patterns at the Base of Calling Behaviour in the Female Spongy Moth Lymantria dispar. Insects, 15(3), 169. https://doi.org/10.3390/insects15030169