Potential of Unmanned Aerial Vehicle Red–Green–Blue Images for Detecting Needle Pests: A Case Study with Erannis jacobsoni Djak (Lepidoptera, Geometridae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials Acquisition and Processing
2.2.1. Field Data
2.2.2. UAV Image Data
2.2.3. Feature Extraction
2.3. Methods
2.3.1. Feature Sensitivity Analysis and Extraction
2.3.2. Multispectral and RGB Features for Needle Pest Recognition
3. Results
3.1. Sensitivity Analysis of RGB Features
3.2. Sensitive Feature Extraction
3.3. Analysis of the Pest Damage Level Recognition Potential of RGB Features
3.3.1. Overall Accuracy Evaluation of Pest Damage Recognition
3.3.2. Accuracy Evaluation of Different Damage Levels Recognition
4. Discussion
4.1. Efficiency of SPA-Based Selection of Sensitive Features
4.2. Differences in Recognition Accuracy for Different Damage Levels
4.3. The Damage Level Recognition Potential of RGBVI&TF
4.4. Model Application
4.5. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, L.; Huang, X.; Dashzebeg, G.; Ariunaa, M.; Nanzad, T.; Dorjsuren, A.; Bao, G.; Tong, S.; Bao, Y.; Yin, S.; et al. Estimation of the population density of Erannis jacobsoni (Lepidoptera: Geometridae) based on hyperspectral features. Acta Entomol. Sin. 2021, 64, 711–721. [Google Scholar]
- Huang, X.; Xie, Y.; Bao, Y.; Bao, G.; Qing, S.; Bao, Y. Estimation of leaf loss rate in larch infested with Erannis jacobsoni Djak based on differential spectral continuous wavelet coefficients. Spectrosc. Spectr. Anal. 2019, 39, 2732–2738. [Google Scholar]
- Huang, X.; Xie, Y.; Bao, Y.; Dorjsuren, A. Suitable distribution areas of Jas’s larch inchworm in Mongolia Plateau. J. Northwest A F Univ. Nat. Sci. Ed. 2018, 46, 98–106. [Google Scholar]
- Huang, X.; Xie, Y.; Bao, Y. Spectral detection of damaged level of larch affected by Jas’s larch inchworm. Spectrosc. Spectr. Anal. 2018, 38, 905–911. [Google Scholar]
- Tian, M.; Ban, S.; Yuan, T.; Wang, Y.; Ma, C.; Li, L. Monitoring of rice damage by rice leaf roller using UAV-based remote sensing. Acta Agric. Shanghai 2020, 36, 132–137. [Google Scholar]
- Luo, X.; Liao, J.; Hu, L.; Zang, Y.; Zhou, Z. Improving agricultural mechanization level to promote agricultural sustainable development. Trans. Chin. Soc. Agric. Eng. 2016, 32, 1–11. [Google Scholar]
- Spruce, J.P.; Hicke, J.A.; Hargrove, W.W.; Grulke, N.E.; Meddens, A.J.H. Use of MODIS NDVI Products to Map Tree Mortality Levels in Forests Affected by Mountain Pine Beetle Outbreaks. Forests 2019, 10, 811. [Google Scholar] [CrossRef]
- Zheng, B.; Chen, Y.; Li, K.; Wang, X.; Xu, Z.; Huang, X.; Hu, X. Detection of pest degree of phyllostachys Chinese with hyperspectral data. Spectrosc. Spectr. Anal. 2021, 41, 3200–3207. [Google Scholar]
- Zhang, S.; Tan, J.; Tang, X.; Wang, Y.; Huang, J.; Song, Q.; Min, J. Spectral Characteristics and evolution Model of Pinus massoniana suffering from Bursaphelenchus xylophilus disease. Spectrosc. Spectr. Anal. 2019, 39, 865–872. [Google Scholar]
- Huang, X.Y.; Xu, Z.H.; Wang, X.P.; Yang, X.; Ju, W.M.; Hu, X.Y.; Li, K.; Chen, Y.Z. Spectral Characteristics of Moso Bamboo Leaves Damaged by Pantana Phyllostachysae Chao and Monitoring of Pest Rating. Spectrosc. Spectr. Anal. 2021, 41, 1253–1259. [Google Scholar]
- Pasquarella, V.J.; Bradley, B.A.; Woodcock, C.E. Near-Real-Time Monitoring of Insect Defoliation Using Landsat Time Series. Forests 2017, 8, 275. [Google Scholar] [CrossRef]
- Bhattarai, G.P.; Schmid, R.B.; McCornack, B.P. Remote Sensing Data to Detect Hessian Fly Infestation in Commercial Wheat Fields. Sci. Rep. 2019, 9, 6109. [Google Scholar] [CrossRef]
- Prabhakar, M.; Thirupathi, M.; Kumar, G.S.; Sravan, U.S.; Kalpana, M.; Gopinath, K.A.; Kumar, N.R. Damage assessment of chilli thrips using high resolution multispectral satellite data. J. Agrometeorol. 2019, 21, 480–487. [Google Scholar] [CrossRef]
- Wei, P.; Xu, X.; Li, Z.; Yang, G.; Li, Z.; Feng, H.; Chen, G.; Fan, L.; Wang, Y.; Liu, S. Remote sensing estimation of nitrogen content in summer maize leaves based on multispectral images of UAV. Trans. Chin. Soc. Agric. Eng. 2019, 35, 126–133+335. [Google Scholar]
- Wan, L.; Cen, H.Y.; Zhu, J.P.; Zhang, J.F.; Zhu, Y.M.; Sun, D.W.; Du, X.Y.; Zhai, L.; Weng, H.Y.; Li, Y.J.; et al. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer—A case study of small farmlands in the South of China. Agric. For. Meteorol. 2020, 291, 108096. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, L.; Chen, L.; Xie, C.; Chen, M.; Wang, W. Recognition of wilt wood caused by pine wilt nematode based on U-Net network and unmanned aerial vehicle images. Trans. Chin. Soc. Agric. Eng. 2020, 36, 61–68. [Google Scholar]
- León-Bañuelos, L.A.; Endara-Agramont, A.R.; Gómez-Demetrio, W.; Martinez-Garcia, C.G.; Nava-Bernal, E.G. Identification of Arceuthobium globosum using unmanned aerial vehicle images in a high mountain forest of central Mexico. J. For. Res. 2020, 31, 1759–1771. [Google Scholar] [CrossRef]
- Abdollahnejad, A.; Panagiotidis, D. Tree species classification and health status assessment for a mixed broadleaf-conifer forest with UAS multispectral imaging. Remote Sens. 2020, 12, 3722. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Liu, M.; Shi, L.; Zhang, J.; Zhang, Z. Harm monitoring and inversion study on tomicus yunnanensis based on multi-spectral image of unmanned aerial vehicle. Southwest China J. Agric. Sci. 2021, 34, 1878–1884. [Google Scholar]
- Guerra-Hernández, J.; Díaz-Varela, R.A.; Ávarez-González, J.G.; Rodríguez-González, P.M. Assessing a novel modelling approach with high resolution UAV imagery for monitoring health status in priority riparian forests. For. Ecosyst. 2021, 8, 61. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Qi, Y.; Deng, L.; Wang, X.; Yang, S. New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV). Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 215–226. [Google Scholar] [CrossRef]
- Del-Campo-Sanchez, A.; Ballesteros, R.; Hernandez-Lopez, D.; Ortega, J.F.; Moreno, M.A.; on behalf of Agroforestry and Cartography Precision Research Group. Quantifying the effect of Jacobiasca lybica pest on vineyards with UAVs by combining geometric and computer vision techniques. PLoS ONE 2019, 14, e0215521. [Google Scholar] [CrossRef] [PubMed]
- De Castro, A.I.; Ehsani, R.; Ploetz, R.C.; Crane, J.H.; Buchanon, S. Detection of laurel wilt disease in avocado using low altitude aerial imaging. PLoS ONE 2015, 10, e0124642. [Google Scholar] [CrossRef] [PubMed]
- García-Martínez, H.; Flores-Magdaleno, H.; Ascencio-Hernández, R.; Khalil-Gardezi, A.; Tijerina-Chávez, L.; Mancilla-Villa, O.R.; Vázquez-Peña, M.A. Corn Grain Yield Estimation from Vegetation Indices, Canopy Cover, Plant Density, and a Neural Network Using Multispectral and RGB Images Acquired with Unmanned Aerial Vehicles. Agriculture 2020, 10, 277. [Google Scholar] [CrossRef]
- Niu, Q.; Feng, H.; Zhou, X.; Zhu, J.; Yong, B.; Li, H. Combining UAV Visible Light and Multispectral Vegetation Indices for Estimating SPAD Value of Winter Wheat. Trans. Chin. Soc. Agric. Mach. 2021, 52, 183–194. [Google Scholar]
- Chen, P.; Feng, H.; Li, C.; Yang, G.; Yang, J.; Yang, W.; Liu, S. Estimation of chlorophyll content in potato using fusion of texture and spectral features derived from UAV multispectral image. Trans. Chin. Soc. Agric. Eng. 2019, 35, 63–74. [Google Scholar]
- Cen, H.; Wan, L.; Zhu, J.; Li, Y.; Li, X.; Zhu, Y.; Weng, H.; Wu, W.; Yin, W.; Xu, C.; et al. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshotcameras. Plant Methods 2019, 15, 32. [Google Scholar] [CrossRef] [PubMed]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Maimaitiyiming, M.; Hartling, S.; Peterson, K.T.; Maw, M.J.W.; Shakoor, N.; Mockler, T.; Fritschi, F.B. Vegetation index weighted canopy volume model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 27–41. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X. Segmentation and classification of coffee leopard moth attacked area in sandalwood trunk. J. Northeast For. Univ. 2017, 45, 94–98+103. [Google Scholar]
- Xie, C.; He, Y. Spectrum and Image Texture Features Analysis for Early Blight Disease Detection on Eggplant Leaves. Sensors 2016, 16, 676. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Jin, X.; Li, Z.; Yang, G. Estimation of potato above ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height. Front. Plant Sci. 2022, 13, 938216. [Google Scholar] [CrossRef] [PubMed]
- Syifa, M.; Park, S.J.; Lee, C.W. Detection of the Pine Wilt Disease Tree Candidates for Drone Remote Sensing Using Artificial Intelligence Techniques. Engineering 2020, 6, 919–926. [Google Scholar] [CrossRef]
- Duarte, A.; Acevedo-Muñoz, L.; Gonçalves, C.I.; Mota, L.; Sarmento, A.; Silva, M.; Fabres, S.; Borralho, N.; Valente, C. Detection of Longhorned Borer Attack and Assessment in Eucalyptus Plantations Using UAV Imagery. Remote Sens. 2020, 12, 3153. [Google Scholar] [CrossRef]
- Liu, B.; Liu, L.; Zhuo, R.; Chen, W.; Duan, R.; Wang, G. A Dataset for Forestry Pest Identification. Front. Plant Sci. 2022, 13, 857104. [Google Scholar] [CrossRef] [PubMed]
- Richmond, D.L.; Kainmueller, D.; Yang, M.Y.; Myers, E.W.; Rother, C. Relating cascaded random forests to deep convolutional neural networks for semantic segmentation. arXiv 2015, arXiv:1507.07583. [Google Scholar]
- Yates, D.; Islam, M.Z. FastForest: Increasing random forest processing speed while maintaining accuracy. Inf. Sci. 2021, 557, 130–152. [Google Scholar] [CrossRef]
- Duarte, A.; Borralho, N.; Cabral, P.; Caetano, M. Recent Advances in Forest Insect Pests and Diseases Monitoring Using UAV-Based Data: A Systematic Review. Forests 2022, 13, 911. [Google Scholar] [CrossRef]
- Ma, L.; Huang, X.; Hai, Q.; Bao, G.; Tong, S.; Bao, Y.; Dashzebeg, G.; Nanzad, T.; Dorjsuren, A.; Davaadorj, E.; et al. Model-Based Identification of Larix sibirica Ledeb. Damage Caused by Erannis jacobsoni Djak. Based on UAV Multispectral Features and Machine Learning. Forests 2022, 13, 2104. [Google Scholar] [CrossRef]
- Runesson, U.T. Considerations for Early Remote Detection of Mountain Pine Beetle in Green-Foliaged Lodgepole Pine. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1991. [Google Scholar]
- Zhang, L.; Chen, Y.; Li, Y.; Ma, J.; Du, K.; Zheng, F.; Sun, Z. Estimation Above Ground biomass of Winter Wheat at early Growth Stage based on visual spectral. Spectrosc. Spectr. Anal. 2019, 39, 2501–2506. [Google Scholar]
- Cui, R.; Liu, Y.; Fu, J. Estimation of Winter Wheat Biomass Using Visible Spectral and BP Based Artificial Neural Network. Spectrosc. Spectr. Anal. 2015, 35, 2596–2601. [Google Scholar]
- Wang, J.; Wu, H.; Wang, D.; Xuan, J.; Guo, T.; Li, Y. Research on Wheat Yield Estimation Model Based on UAV Visible Light Image and Physiological Index. J. Triticeae Crops 2021, 41, 1307–1315. [Google Scholar]
- Guo, Y.; Fu, Y.H.; Chen, S.; Bryant, C.R.; Li, X.; Senthilnath, J.; Sun, H.; Wang, S.; Wu, Z. Integrating spectral and textural information for identifying the tasseling date of summer maize using UAV based RGB images. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102435. [Google Scholar] [CrossRef]
- Zhang, J.; Han, H.; Hu, C.; Luo, Y. Identification Method of Pinus yunnanensis Pest Area Based on UAV Multispectral Images. Trans. Chin. Soc. Agric. Mach. 2018, 49, 249–255. [Google Scholar]
- Hang, Y.; Su, H.; Yu, Z.; Liu, H.; Guan, H.; Kong, F. Estimation of rice leaf area index combining UAV spectrum, texture features and vegetation coverage. Trans. Chin. Soc. Agric. Eng. 2021, 37, 64–71. [Google Scholar]
- Horning, N. Random Forests: An algorithm for image classification and generation of continuous fields data sets. In Proceedings of the International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences 1–6, Hanoi, Vietnam, 9–11 December 2010. [Google Scholar]
- Zhang, X.; Han, L.; Dong, Y.; Shi, Y.; Huang, W.; Han, L.; González-Moreno, P.; Ma, H.; Ye, H.; Sobeih, T. A Deep Learning-Based Approach for Automated Yellow Rust Disease Detection from High-Resolution Hyperspectral UAV Images. Remote Sens. 2019, 11, 1554. [Google Scholar] [CrossRef]
- Gao, B.; Yu, L.; Ren, L.; Zhan, Z.; Luo, Y. Early Detection of Dendroctonus valens Infestation at Tree Level with a Hyperspectral UAV Image. Remote Sens. 2023, 15, 407. [Google Scholar] [CrossRef]
- Xi, G.; Huang, X.; Bao, Y.; Bao, G.; Tong, S.; Dashzebegd, G.; Nanzadd, T.; Dorjsurene, A.; Davaadorj, E.; Ariunaad, M. Hyperspectral Discrimination of Different Canopy Colors in Erannis jacobsoni Djak-Infested Larch. Spectrosc. Spectr. Anal. 2020, 40, 2925–2931. [Google Scholar]
- Ding, Y.; Zhang, J.; Li, X.; Li, M. Estimation of chlorophyll content of tomato leaf using spectrum red edge position extraction algorithm. Trans. Chin. Soc. Agric. Mach. 2016, 47, 292–297+318. [Google Scholar]
- Macfarlane, C.; Ogden, G.N. Automated estimation of foliage cover in forest understorey from digital nadir images. Methods Ecol. Evol. 2012, 3, 405–415. [Google Scholar] [CrossRef]
- Wan, L.; Li, Y.; Cen, H.; Zhu, J.; Yin, W.; Wu, W.; Zhu, H.; Sun, D.; Zhou, W.; He, Y. Combining UAV-Based Vegetation Indices and Image Classification to Estimate Flower Number in Oilseed Rape. Remote Sens. 2018, 10, 1484. [Google Scholar] [CrossRef]
- Kazmi, W.; Garcia-Ruiz, F.J.; Nielsen, J.; Rasmussen, J.; Andersen, H.J. Detecting creeping thistle in sugar beet fields using vegetation indices. Comput. Electron. Agric. 2015, 112, 10–19. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, W.; Rezaei, E.E.; Li, J.; Sun, Z.; Zhang, J. The Optimal Phenological Phase of Maize for Yield Prediction with High-Frequency UAV Remote Sensing. Remote Sens. 2022, 14, 1559. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, Y.; Ye, H.; Huang, W.; Dong, Y.; Fan, L.; Ma, H.; Jiang, J. Remote sensing monitoring of areca yellow leaf disease based on UAV multi-spectral images. Trans. Chin. Soc. Agric. Eng. 2020, 36, 54–61. [Google Scholar]
- Furukawa, F.; Laneng, L.A.; Ando, H.; Yoshimura, N.; Kaneko, M.; Morimoto, J. Comparison of RGB and Multispectral Unmanned Aerial Vehicle for Monitoring Vegetation Coverage Changes on a Landslide Area. Drones 2021, 5, 97. [Google Scholar] [CrossRef]
- Zhang, J.; Cong, S.; Zhang, G.; Ma, Y.; Zhang, Y.; Huang, J. Detecting Pest-Infested Forest Damage through Multispectral Satellite Imagery and Improved UNet++. Sensors 2022, 22, 7440. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Huang, W.; Jing, Y.; Yang, C.; Han, L.; Dong, Y.; Ye, H.; Shi, Y.; Zheng, Q.; Liu, L.; et al. Integrating Growth and Environmental Parameters to Discriminate Powdery Mildew and Aphid of Winter Wheat Using Bi-Temporal Landsat-8 Imagery. Remote Sens. 2019, 11, 846. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, X.; Zhu, R. Feature selection based on mutual information with correlation coefficient. Appl. Intell. 2022, 52, 5457–5474. [Google Scholar] [CrossRef]
- Megat Mohamed Nazir, M.N.; Terhem, R.; Norhisham, A.R.; Mohd Razali, S.; Meder, R. Early Monitoring of Health Status of Plantation-Grown Eucalyptus pellita at Large Spatial Scale via Visible Spectrum Imaging of Canopy Foliage Using Unmanned Aerial Vehicles. Forests 2021, 12, 1393. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, J.; Zhang, D.; Zhou, X.; Liu, X.; Xie, J. Comparison between the Effect of Visible Light and Multispectral Sensor based on Low-Altitude Remote Sensing Platform in the Evaluation of Rice Sheath blight. Spectrosc. Spectr. Anal. 2019, 39, 1192–1198. [Google Scholar]
- Zhou, H.; Fu, L.; Sharma, R.P.; Lei, Y.; Guo, J. A Hybrid Approach of Combining Random Forest with Texture Analysis and VDVI for Desert Vegetation Mapping based on UAV RGB Data. Remote Sens. 2021, 13, 1891. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Li, Z.; Yang, G.; Song, X.; Yang, X.; Zhao, Y. Remote-Sensing Estimation of Potato Above-Ground Biomass based on Spectral and Spatial Features Extracted from High-Definition Digital Camera Images. Comput. Electron. Agric. 2022, 198, 107089. [Google Scholar] [CrossRef]
- Zhou, R.; Yang, C.; Li, E.; Cai, X.; Yang, J.; Xia, Y. Object-Based Wetland Vegetation Classification Using Multi-Feature Selection of Unoccupied Aerial Vehicle RGB Imagery. Remote Sens. 2021, 13, 4910. [Google Scholar] [CrossRef]
- Kumar, A.; Patel, V.K. Classification and Identification of Disease in Potato Leaf Using Hierarchical based Deep Learning Convolutional Neural Network. Multimed. Tools Appl. 2023, 82, 31101–31127. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Sicre, C.M.; Dedieu, G. Effect of Training Class Label Noise on Classification Performances for Land Cover Mapping with Satellite Image Time Series. Remote Sens. 2017, 9, 173. [Google Scholar] [CrossRef]
- Drory, A.; Avidan, S.; Giryes, R. On the resistance of neural nets to label noise. arXiv 2018, arXiv:1803.11410. [Google Scholar]
- Kim, Y.; Geunho, K.; Lee, K.D.; Na, S.; Park, C.W.; Park, N.W. Performance Evaluation of Machine Learning and Deep Learning Algorithms in Crop Classification: Impact of Hyper-parameters and Training Sample Size. Korean J. Remote Sens. 2018, 34, 811–827. [Google Scholar]
- Nezami, S.; Khoramshahi, E.; Nevalainen, O.; Pölönen, I.; Honkavaara, E. Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks. Remote Sens. 2020, 12, 1070. [Google Scholar] [CrossRef]
- Ye, M.; Stankovic, V.; Stankovic, L.; Cheung, G. Robust Deep Graph Based Learning for Binary Classification. IEEE Trans. Signal Inf. Process. Over Netw. 2021, 7, 322–335. [Google Scholar] [CrossRef]
- Stone, C.; Mohammed, C. Application of Remote Sensing Technologies for Assessing Planted Forests Damaged by Insect Pests and Fungal Pathogens: A Review. Curr. For. Rep. 2017, 3, 75–92. [Google Scholar] [CrossRef]
- Wulder, M.A.; Dymond, C.C.; White, J.C.; Leckie, D.G.; Carroll, A.L. Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities. Forest Ecol. Manag. 2006, 221, 27–41. [Google Scholar] [CrossRef]
- Bárta, V.; Hanuš, J.; Dobrovolný, L.; Homolová, L. Comparison of field survey and remote sensing techniques for detection of bark beetle-infested trees. For. Ecol. Manag. 2022, 506, 119984. [Google Scholar] [CrossRef]
Mark | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Damage level | Healthy | Mild | Moderate | Severe |
Leaf loss rate | 0–5% | 6–30% | 31–70% | 71–100% |
Feature Sets | Sensitive Features | Formula |
---|---|---|
MSVI-SPA440 | 2NLI | (NIR2 − g)/(NIR2 + g) |
GDVI | NIR − g | |
GMNLI | 1.5(NIR0.5 − g)/(NIR0.5 + g + 0.5) | |
NDVIreg | (NIR − RE)/(NIR + RE) | |
SI1reg | (g*RE)0.5 | |
SI1reg* | (r*RE)0.5 | |
TCARI | 3[(RE − r) − 0.2(RE − g)(RE/r)] | |
RGBVI-SPA440 | ExG | 2 g − r − b |
RGBVI-SPA440/RGBVI&TF-SPA440 | B | B |
ExR | 1.4R − G | |
GBRI | G/B | |
GCC | G/(R + G + B) | |
R | R | |
RBRI | R/B | |
RGRI | R/G | |
VDVI | (G − B − R)/(G + B + R) | |
RGBVI&TF-SPA440 | GLA | (2G − R − B)/(2G + R + B) |
CIVE | 0.441r − 0.881 g + 0.3856b + 18.78745 | |
Mean | ||
Dis | ||
Ent | ||
SM |
Feature Sets | Sensitive Features | Formula |
---|---|---|
MSVI-SPA740 | 2NLI | (NIR2 − g)/(NIR2 + g) |
GMNLI | 1.5(NIR0.5 − g)/(NIR0.5 + g + 0.5) | |
MTVI2 | 1.5[1.2(NIR − g) − 2.5(r − g)]/[(2NIR + 1)2 − (6NIR − 5r0.5) − 0.5]0.5 | |
Int2reg* | (g + r + RE)/2 | |
NDSIreg | (RE − NIR)/(RE + NIR) | |
RECI | (NIR/RE) − 1 | |
SCCI | 100(lnNIR − lnr)/[(NIR − r)/(NIR + r)] | |
SI1reg | (g*RE)0.5 | |
SI1reg* | (r*RE)0.5 | |
SI2reg | (g2 + RE2 + NIR2)0.5 | |
RGBVI-SPA740 | GLA | 2 g − r − b |
RGBVI-SPA740/RGBVI&TF-SPA740 | GB | g − b |
GBRI | G/B | |
RBRI | R/B | |
RGBVI&TF-SPA740 | RGRI | 0.441r − 0.881 g + 0.3856b + 18.78745 |
Mean | ||
Dis |
OA | Kappa | |||||
---|---|---|---|---|---|---|
Features Set | ||||||
Size of Simple Trees | MSVI-SPA | RGBVI-SPA | RGBVI&TF-SPA | MSVI-SPA | RGBVI-SPA | RGBVI&TF-SPA |
140 | 0.7429 | 0.6286 | 0.7714 | 0.6927 | 0.5663 | 0.7276 |
240 | 0.7000 | 0.6333 | 0.7333 | 0.6487 | 0.5788 | 0.6836 |
340 | 0.8706 | 0.8353 | 0.8353 | 0.8372 | 0.7964 | 0.7964 |
440 | 0.9091 | 0.8455 | 0.8636 | 0.8843 | 0.8092 | 0.8295 |
540 | 0.8889 | 0.837 | 0.8593 | 0.8589 | 0.7987 | 0.8241 |
640 | 0.8812 | 0.825 | 0.825 | 0.8515 | 0.7864 | 0.7864 |
740 | 0.8432 | 0.8324 | 0.8270 | 0.8050 | 0.7935 | 0.7887 |
840 | 0.8 | 0.8286 | 0.8143 | 0.7568 | 0.7911 | 0.7708 |
OA | KAPPA | |||||
---|---|---|---|---|---|---|
Features Set | ||||||
Size of Simple Trees | MSVI-SPA | RGBVI-SPA | RGBVI&TF-SPA | MSVI-SPA | RGBVI-SPA | RGBVI&TF-SPA |
140 | 0.7714 | 0.6286 | 0.7714 | 0.7255 | 0.5604 | 0.7282 |
240 | 0.8 | 0.6833 | 0.7833 | 0.7581 | 0.6329 | 0.7376 |
340 | 0.8235 | 0.7412 | 0.8353 | 0.7825 | 0.6923 | 0.7969 |
440 | 0.8273 | 0.7636 | 0.8455 | 0.7860 | 0.7149 | 0.8080 |
540 | 0.8519 | 0.8148 | 0.8519 | 0.8157 | 0.7703 | 0.8153 |
640 | 0.8875 | 0.825 | 0.8688 | 0.8591 | 0.7859 | 0.8370 |
740 | 0.9135 | 0.8649 | 0.8865 | 0.8892 | 0.8306 | 0.8565 |
840 | 0.8857 | 0.8381 | 0.8286 | 0.856 | 0.7996 | 0.7889 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Huang, X.; Dashzebeg, G.; Ariunaa, M.; Yin, S.; Bao, Y.; Bao, G.; Tong, S.; Dorjsuren, A.; Davaadorj, E. Potential of Unmanned Aerial Vehicle Red–Green–Blue Images for Detecting Needle Pests: A Case Study with Erannis jacobsoni Djak (Lepidoptera, Geometridae). Insects 2024, 15, 172. https://doi.org/10.3390/insects15030172
Bai L, Huang X, Dashzebeg G, Ariunaa M, Yin S, Bao Y, Bao G, Tong S, Dorjsuren A, Davaadorj E. Potential of Unmanned Aerial Vehicle Red–Green–Blue Images for Detecting Needle Pests: A Case Study with Erannis jacobsoni Djak (Lepidoptera, Geometridae). Insects. 2024; 15(3):172. https://doi.org/10.3390/insects15030172
Chicago/Turabian StyleBai, Liga, Xiaojun Huang, Ganbat Dashzebeg, Mungunkhuyag Ariunaa, Shan Yin, Yuhai Bao, Gang Bao, Siqin Tong, Altanchimeg Dorjsuren, and Enkhnasan Davaadorj. 2024. "Potential of Unmanned Aerial Vehicle Red–Green–Blue Images for Detecting Needle Pests: A Case Study with Erannis jacobsoni Djak (Lepidoptera, Geometridae)" Insects 15, no. 3: 172. https://doi.org/10.3390/insects15030172