Complete Mitochondrial Genome of the Eggplant Fruit and Shoot Borer, Leucinodes orbonalis Guenée (Lepidoptera: Crambidae), and Comparison with Other Pyraloid Moths
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Genomic DNA Extraction
2.2. Library Preparation and Sequencing
2.3. Pre-Processing, Read Filtering, Mitogenome Assembly, and Annotation
2.4. Nucleotide Sequence Composition Analysis
2.5. Multiple Sequence Alignment and Phylogenetic Analysis
3. Results and Discussion
3.1. EFSB Mitogenome Structure and Organization
Organism | RefSeq ID | Taxonomy | AT% | AT-Skew | GC% | GC-Skew | References |
---|---|---|---|---|---|---|---|
Leucinodes orbonalis | THIS STUDY | Crambidae, Spilomelinae | 80.9 | −0.013 | 19.1 | −0.172 | THIS STUDY |
Acrobasis inouei | NC_061244.1 | Pyralidae, Phycitinae | 80.3 | −0.021 | 19.7 | −0.219 | [54] |
Aedes albopictus | NC_006817.1 | Diptera | 79.6 | 0.008 | 20.5 | −0.181 | Direct submission |
Aglossa dimidiata | NC_058009.1 | Pyralidae, Pyralinae | 79.1 | −0.043 | 20.9 | −0.226 | Direct submission |
Amyelois transitella | NC_028443.1 | Pyralidae, Phycitinae | 79.6 | −0.048 | 20.4 | −0.237 | Direct submission |
Botyodes diniasalis | NC_073002.1 | Crambidae, Spilomelinae | 80.8 | −0.021 | 19.1 | −0.182 | Direct submission |
Botyodes principalis | NC_061248.1 | Crambidae, Spilomelinae | 80.7 | −0.014 | 19.3 | −0.189 | [54] |
Cataclysta lemnata | NC_050323.1 | Crambidae, Acentropinae | 79.5 | 0.004 | 20.6 | −0.214 | Direct submission |
Cathayia obliquella | NC_053657.1 | Pyralidae, Gallerinae | 80.6 | −0.037 | 19.4 | −0.225 | [55] |
Chilo sacchariphagus | NC_029716.1 | Crambidae, Crambinae | 81 | −0.012 | 19.1 | −0.246 | Direct submission |
Chilo suppressalis | NC_015612.1 | Crambidae, Crambinae | 80.6 | 0.008 | 19.3 | −0.235 | [56] |
Cnaphalocrocis medinalis | NC_015985.1 | Crambidae, Pyraustinae | 82 | −0.015 | 18 | −0.175 | [56] |
Cnaphalocrocis patnalis | NC_060868.1 | Crambidae, Pyraustinae | 81.8 | −0.022 | 18.2 | −0.165 | Direct submission |
Conogethes punctiferalis | NC_021389.1 | Crambidae, Spilomelinae | 80.6 | −0.025 | 19.4 | −0.207 | [57] |
Organism | RefSeq ID | Taxonomy | AT% | AT-Skew | GC% | GC-Skew | References |
Crambus perlellus | NC_061606.1 | Crambidae, Crambinae | 81.3 | −0.008 | 18.7 | −0.197 | Direct submission |
Culex quinquefasciatus | NC_014574.1 | Diptera | 78 | 0.007 | 22 | −0.173 | [58] |
Cydalima perspectalis | NC_042150.1 | Crambidae, Spilomelinae | 80.9 | −0.016 | 19.1 | −0.193 | [59] |
Dausara latiterminalis | NC_056799.1 | Crambidae, Odontinae | 80.5 | −0.003 | 19.5 | −0.201 | [60] |
Diatraea saccharalis | NC_013274.1 | Crambidae, Crambinae | 80.1 | 0.021 | 20 | −0.258 | [61] |
Dioryctria rubella | NC_061242.1 | Pyralidae, Phycitinae | 79.8 | −0.023 | 20.1 | −0.233 | [54] |
Drosophila melanogaster | NC_024511.2 | Diptera | 82.2 | 0.016 | 17.8 | −0.147 | Direct submission |
Dusungwua basinigra | NC_061240.1 | Pyralidae, Phycitinae | 80 | −0.014 | 20 | −0.213 | [54] |
Elophila interruptalis | NC_021756.1 | Crambidae, Acentropinae | 80.3 | −0.011 | 19.7 | −0.229 | [50] |
Elophila turbata | NC_068592.1 | Crambidae, Acentropinae | 81.2 | −0.005 | 18.9 | −0.225 | Direct submission |
Endotricha consocia | NC_037501.1 | Pyralidae, Pyralinae | 79.7 | −0.039 | 20.2 | −0.226 | [62] |
Endotricha kuznetzovi | NC_061642.1 | Pyralidae, Pyralinae | 80.7 | −0.033 | 19.2 | −0.206 | Direct submission |
Ephestia elutella | NC_039716.1 | Pyralidae, Phycitinae | 80.7 | −0.043 | 19.4 | −0.217 | [63] |
Ephestia kuehniella | NC_022476.1 | Pyralidae, Phycitinae | 79.7 | −0.049 | 20.2 | −0.234 | [64] |
Evergestis extimalis | NC_071781.1 | Crambidae, Glaphyriinae | 80.7 | −0.018 | 19.3 | −0.168 | Direct submission |
Evergestis junctalis | NC_030509.1 | Crambidae, Glaphyriinae | 81 | −0.015 | 19 | −0.168 | Direct submission |
Galleria mellonella | NC_028532.1 | Pyralidae, Gallerinae | 80.4 | −0.039 | 19.6 | −0.237 | Direct submission |
Glyphodes pyloalis | NC_025933.1 | Crambidae, Spilomelinae | 80.7 | −0.016 | 19.3 | −0.194 | Direct submission |
Glyphodes quadrimaculalis | NC_022699.1 | Crambidae, Spilomelinae | 80.8 | −0.007 | 19.2 | −0.192 | [28] |
Heortia vitessoides | NC_056800.1 | Crambidae, Odontinae | 80.6 | −0.012 | 19.4 | −0.172 | [60] |
Hypsopygia regina | NC_030508.1 | Pyralidae, Pyralinae | 78.7 | −0.037 | 21.3 | −0.228 | Direct submission |
Lamoria adaptella | NC_062173.1 | Pyralidae, Gallerinae | 80.1 | −0.012 | 19.9 | −0.24 | Direct submission |
Lista haraldusalis | NC_024535.1 | Pyralidae, Epipaschiinae | 81.5 | −0.007 | 18.5 | −0.171 | [65] |
Loxostege sticticalis | NC_027174.1 | Crambidae, Pyraustinae | 80.8 | 0.002 | 19.2 | −0.191 | Direct submission |
Maruca testulalis | NC_024283.1 | Crambidae, Spilomelinae | 80.8 | −0.005 | 19.2 | −0.171 | [29] |
Maruca vitrata | NC_024099.1 | Crambidae, Spilomelinae | 80.7 | −0.002 | 19.3 | −0.172 | Direct submission |
Meroptera pravella | NC_035242.1 | Pyralidae, Phycitinae | 80.5 | −0.019 | 19.3 | −0.199 | [66] |
Nagiella inferior | NC_040973.1 | Crambidae, Spilomelinae | 81.5 | 0.009 | 18.5 | −0.22 | Direct submission |
Nomophila noctuella | NC_025764.1 | Crambidae, Spilomelinae | 81.4 | 0.002 | 18.6 | −0.176 | [67] |
Omiodes indicata | NC_039177.1 | Crambidae, Spilomelinae | 81.6 | −0.012 | 18.4 | −0.162 | [30] |
Omphisa fuscidentalis | NC_066444.1 | Crambidae, Spilomelinae | 79 | 0.013 | 21 | −0.274 | Direct submission |
Orthaga euadrusalis | NC_061246.1 | Pyralidae, Epipaschiinae | 80.2 | −0.02 | 19.8 | −0.199 | [54] |
Organism | RefSeq ID | Taxonomy | AT% | AT-Skew | GC% | GC-Skew | References |
Orthaga olivacea | NC_046504.1 | Pyralidae, Epipaschiinae | 79 | −0.043 | 21 | −0.215 | Direct submission |
Orthopygia glaucinalis | NC_047304.1 | Pyralidae, Pyralinae | 79.2 | −0.044 | 20.8 | −0.223 | [68] |
Orybina regalis | NC_061247.1 | Pyralidae, Pyralinae | 81 | −0.016 | 19 | −0.205 | [54] |
Ostrinia furnacalis | NC_056248.1 | Crambidae, Pyraustinae | 80.9 | 0.031 | 19.1 | −0.196 | [69] |
Ostrinia kasmirica | NC_059846.1 | Crambidae, Pyraustinae | 81 | 0.031 | 19 | −0.192 | Direct submission |
Ostrinia nubilalis | NC_054270.1 | Crambidae, Pyraustinae | 80.5 | 0.033 | 19.4 | −0.195 | [70] |
Ostrinia scapulalis | NC_048887.1 | Crambidae, Pyraustinae | 81 | 0.03 | 19.1 | −0.196 | [51] |
Ostrinia zealis | NC_048888.1 | Crambidae, Pyraustinae | 80.9 | 0.031 | 19.1 | −0.193 | [51] |
Palpita hypohomalia | NC_039632.1 | Crambidae, Spilomelinae | 81 | −0.001 | 18.9 | −0.196 | Direct submission |
Paracymoriza distinctalis | NC_023471.1 | Crambidae, Acentropinae | 82.2 | −0.002 | 17.7 | −0.155 | [71] |
Paracymoriza prodigalis | NC_020094.1 | Crambidae, Acentropinae | 81.5 | 0.002 | 18.4 | −0.183 | [72] |
Paralipsa gularis | NC_054356.1 | Pyralidae, Gallerinae | 79.5 | −0.014 | 20.5 | −0.239 | Direct submission |
Parapediasia teterrellus | NC_068594.1 | Crambidae, Crambinae | 80.5 | −0.003 | 19.5 | −0.231 | Direct submission |
Parapoynx crisonalis | NC_031151.1 | Crambinade, Acentropinae | 82 | 0.017 | 18 | −0.153 | Direct submission |
Perula sp. | NC_066226.1 | Pyralidae, Pyralinae | 81 | −0.037 | 19 | −0.213 | Direct submission |
Plodia interpunctella | NC_027961.1 | Pyralidae, Phycitinae | 80.1 | −0.05 | 19.9 | −0.233 | Direct submission |
Polythlipta liquidalis | NC_073109.1 | Crambidae, Spilomelinae | 81 | −0.005 | 19 | −0.21 | Direct submission |
Prophantis adusta | NC_067853.1 | Crambidae, Spilomelinae | 81.5 | 0.001 | 18.5 | −0.196 | Direct submission |
Pseudargyria interruptella | NC_029751.1 | Crambidae, Crambinae | 79.4 | −0.011 | 20.6 | −0.216 | Direct submission |
Pseudonoorda nigropunctalis | NC_056801.1 | Crambidae, Odontinae | 81 | −0.003 | 19 | −0.201 | [60] |
Pycnarmon lactiferalis | NC_033540.1 | Crambidae Spilomelinae | 81.7 | −0.004 | 18.3 | −0.173 | [73] |
Pygospila tyres | NC_066087.1 | Crambidae, Spilomelinae | 81.3 | −0.008 | 18.7 | −0.158 | Direct submission |
Pyrausta despicata | NC_046050.1 | Crambidae, Pyraustinae | 80.9 | 0.009 | 19 | −0.204 | Direct submission |
Scirpophaga incertulas | NC_031329.1 | Crambidae, Schoenobiinae | 77.2 | 0.029 | 22.9 | −0.32 | Direct submission |
Sinomphisa plagialis | NC_061243.1 | Crambidae, Spilomelinae | 80.6 | −0.008 | 19.4 | −0.216 | [54] |
Sitochroa verticalis | NC_062118.1 | Crambidae, Pyraustinae | 80.6 | 0.005 | 19.5 | −0.203 | Direct submission |
Syllepte taiwanalis | NC_061245.1 | Crambidae, Pyraustinae | 81.7 | −0.009 | 18.3 | −0.182 | [54] |
Tyspanodes hypsalis | NC_025569.1 | Crambidae, Spilomelinae | 81.4 | −0.017 | 18.6 | −0.175 | [74] |
Tyspanodes striata | NC_030510.1 | Crambidae, Spilomelinae | 81.3 | −0.018 | 18.7 | −0.177 | Direct submission |
3.2. Protein-Coding Genes
3.3. Ribosomal and Transfer RNA Genes
3.4. Phylogenetic Relationships
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Martin Embley, T. Multiple Secondary Origins of the Anaerobic Lifestyle in Eukaryotes. Phil. Trans. R. Soc. B 2006, 361, 1055–1067. [Google Scholar] [CrossRef]
- Muñoz-Gómez, S.A.; Slamovits, C.H.; Dacks, J.B.; Baier, K.A.; Spencer, K.D.; Wideman, J.G. Ancient Homology of the Mitochondrial Contact Site and Cristae Organizing System Points to an Endosymbiotic Origin of Mitochondrial Cristae. Curr. Biol. 2015, 25, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- Emelyanov, V.V. Mitochondrial Connection to the Origin of the Eukaryotic Cell. Eur. J. Biochem. 2003, 270, 1599–1618. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.W. Mitochondrial Evolution. Cold Spring Harb. Perspect. Biol. 2012, 4, a011403. [Google Scholar] [CrossRef]
- Karnkowska, A.; Vacek, V.; Zubáčová, Z.; Treitli, S.C.; Petrželková, R.; Eme, L.; Novák, L.; Žárský, V.; Barlow, L.D.; Herman, E.K.; et al. A Eukaryote without a Mitochondrial Organelle. Curr. Biol. 2016, 26, 1274–1284. [Google Scholar] [CrossRef]
- Chan, D.C. Mitochondria: Dynamic Organelles in Disease, Aging, and Development. Cell 2006, 125, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Ratnasingham, S.; De Waard, J.R. Barcoding Animal Life: Cytochrome c Oxidase Subunit 1 Divergences among Closely Related Species. Proc. R. Soc. Lond. B 2003, 270, S96–S99. [Google Scholar] [CrossRef]
- Ma, C.; Yang, P.; Jiang, F.; Chapuis, M.; Shali, Y.; Sword, G.A.; Kang, L. Mitochondrial Genomes Reveal the Global Phylogeography and Dispersal Routes of the Migratory Locust. Mol. Ecol. 2012, 21, 4344–4358. [Google Scholar] [CrossRef]
- Nelson, L.A.; Lambkin, C.L.; Batterham, P.; Wallman, J.F.; Dowton, M.; Whiting, M.F.; Yeates, D.K.; Cameron, S.L. Beyond Barcoding: A Mitochondrial Genomics Approach to Molecular Phylogenetics and Diagnostics of Blowflies (Diptera: Calliphoridae). Gene 2012, 511, 131–142. [Google Scholar] [CrossRef]
- Castro, L.R.; Austin, A.D.; Dowton, M. Contrasting Rates of Mitochondrial Molecular Evolution in Parasitic Diptera and Hymenoptera. Mol. Biol. Evol. 2002, 19, 1100–1113. [Google Scholar] [CrossRef]
- Shao, R. Rates of Gene Rearrangement and Nucleotide Substitution Are Correlated in the Mitochondrial Genomes of Insects. Mol. Biol. Evol. 2003, 20, 1612–1619. [Google Scholar] [CrossRef]
- Som, A. Causes, Consequences and Solutions of Phylogenetic Incongruence. Brief. Bioinform. 2015, 16, 536–548. [Google Scholar] [CrossRef]
- Philippe, H.; Brinkmann, H.; Lavrov, D.V.; Littlewood, D.T.J.; Manuel, M.; Wörheide, G.; Baurain, D. Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough. PLoS Biol. 2011, 9, e1000602. [Google Scholar] [CrossRef] [PubMed]
- Navasero, M.V.; Candano, R.N.; Hautea, D.M.; Hautea, R.A.; Shotkoski, F.A.; Shelton, A.M. Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines. PLoS ONE 2016, 11, e0165190. [Google Scholar] [CrossRef] [PubMed]
- van Nieukerken, E.J.; Kaila, L.; Kitching, I.; Kristensen, N.P.; Lees, D.C.; Minet, J.; Zwick, A. Order Lepidoptera Linnaeus, 1758. In Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness; Zootaxa: Auckland, New Zealand, 2011; Volume 3148. [Google Scholar]
- Regier, J.C.; Mitter, C.; Solis, M.A.; Hayden, J.E.; Landry, B.; Nuss, M.; Simonsen, T.J.; Yen, S.; Zwick, A.; Cummings, M.P. A Molecular Phylogeny for the Pyraloid Moths (Lepidoptera: Pyraloidea) and Its Implications for Higher-level Classification. Syst. Entomol. 2012, 37, 635–656. [Google Scholar] [CrossRef]
- Léger, T.; Mally, R.; Neinhuis, C.; Nuss, M. Refining the Phylogeny of Crambidae with Complete Sampling of Subfamilies (Lepidoptera, Pyraloidea). Zool. Scr. 2021, 50, 84–99. [Google Scholar] [CrossRef]
- Sagarbarria, M.G.S.; Marasigan, J.C.M.; Taylo, L.D.; Hautea, D.M. Identity and Genetic Structure of Eggplant Fruit and Shoot Borer, Leucinodes Orbonalis Guenée (Lepidoptera:Crambidae) Populations in the Philippines Inferred from Morphological Traits and COI Sequence Data. J. Asia-Pac. Entomol. 2018, 21, 1009–1019. [Google Scholar] [CrossRef]
- Dowling, D.K.; Tompkins, D.M.; Gemmell, N.J. The T Rojan F Emale T Echnique for Pest Control: A Candidate Mitochondrial Mutation Confers Low Male Fertility across Diverse Nuclear Backgrounds in Drosophila melanogaster. Evol. Appl. 2015, 8, 871–880. [Google Scholar] [CrossRef]
- Mally, R.; Hayden, J.E.; Neinhuis, C.; Jordal, B.H.; Nuss, M. The Phylogenetic Systematics of Spilomelinae and Pyraustinae (Lepidoptera: Pyraloidea: Crambidae) Inferred from DNA and Morphology. Arthropod Syst. Phylogeny 2019, 77, 141–204. [Google Scholar] [CrossRef]
- Yi, M.-R.; Hsu, K.-C.; Gu, S.; He, X.-B.; Luo, Z.-S.; Lin, H.-D.; Yan, Y.-R. Complete Mitogenomes of Four Trichiurus Species: A Taxonomic Review of the T. Lepturus Species Complex. ZK 2022, 1084, 1–26. [Google Scholar] [CrossRef]
- Gong, J.; Chen, B.; Li, B.; Zhou, Z.; Shi, Y.; Ke, Q.; Zhang, D.; Xu, P. Genetic Analysis of Whole Mitochondrial Genome of Lateolabrax Maculatus (Perciformes: Moronidae) Indicates the Presence of Two Populations along the Chinese Coast. Zoologia 2020, 37, e49046. [Google Scholar] [CrossRef]
- Alonso, D.P.; Alvarez, M.V.N.; Amorim, J.A.; De Sá, I.L.R.; De Carvalho, D.P.; Ribeiro, K.A.N.; Ribolla, P.E.M.; Sallum, M.A.M. Mansonia Spp. Population Genetics Based on Mitochondrion Whole-Genome Sequencing alongside the Madeira River near Porto Velho, Rondonia, Brazil. Infect. Genet. Evol. 2022, 103, 105341. [Google Scholar] [CrossRef] [PubMed]
- Kingan, S.; Heaton, H.; Cudini, J.; Lambert, C.; Baybayan, P.; Galvin, B.; Durbin, R.; Korlach, J.; Lawniczak, M. A High-Quality De Novo Genome Assembly from a Single Mosquito Using PacBio Sequencing. Genes 2019, 10, 62. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Andrews, S. FastQC A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 8 May 2022).
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, M.J.; Ahn, S.-J.; Kim, I. Complete Mitochondrial Genome of the Grass Moth Glyphodes quadrimaculalis (Lepidoptera: Crambidae). Mitochondrial DNA 2015, 26, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Ma, W.; Zhang, L.; He, S.; Zhang, X.; Tao, Z. The Complete Mitochondrial Genome of the Bean Pod Borer, Maruca Testulalis (Lepidoptera: Crambidae: Spilomelinae). Mitochondrial DNA 2016, 27, 740–741. [Google Scholar] [CrossRef]
- Yang, M.; Song, L.; Mao, J.; Shi, Y.; Wu, C.; Zhang, Y.; Huang, L.; Peng, W.; Liu, X. Complete Mitochondrial Genome of the Soybean Leaffolder, Omiodes Indicata (Lepidoptera: Pyraloidea: Crambidae), and Phylogenetic Analysis for Pyraloidea. Int. J. Biol. Macromol. 2018, 115, 53–60. [Google Scholar] [CrossRef]
- Nurk, S.; Meleshko, D.; Korobeynikov, A.; Pevzner, P.A. metaSPAdes: A New Versatile Metagenomic Assembler. Genome Res. 2017, 27, 824–834. [Google Scholar] [CrossRef]
- Meng, G.; Li, Y.; Yang, C.; Liu, S. MitoZ: A Toolkit for Animal Mitochondrial Genome Assembly, Annotation and Visualization. Nucleic Acids Res. 2019, 47, e63. [Google Scholar] [CrossRef]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de Novo Metazoan Mitochondrial Genome Annotation. Mol. Phylogenetics Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved Detection and Functional Classification of Transfer RNA Genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Reuter, J.S.; Mathews, D.H. RNAstructure: Software for RNA Secondary Structure Prediction and Analysis. BMC Bioinform. 2010, 11, 129. [Google Scholar] [CrossRef]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Pedersen, B.S.; Quinlan, A.R. Mosdepth: Quick Coverage Calculation for Genomes and Exomes. Bioinformatics 2018, 34, 867–868. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An Integrated and Scalable Desktop Platform for Streamlined Molecular Sequence Data Management and Evolutionary Phylogenetics Studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Salzberg, S.L. SkewIT: The Skew Index Test for Large-Scale GC Skew Analysis of Bacterial Genomes. PLoS Comput. Biol. 2020, 16, e1008439. [Google Scholar] [CrossRef]
- Krzywinski, M.; Schein, J.; Birol, İ.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An Information Aesthetic for Comparative Genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Castresana, J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef]
- Chernomor, O.; Von Haeseler, A.; Minh, B.Q. Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices. Syst. Biol. 2016, 65, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Ayres, D.L.; Darling, A.; Zwickl, D.J.; Beerli, P.; Holder, M.T.; Lewis, P.O.; Huelsenbeck, J.P.; Ronquist, F.; Swofford, D.L.; Cummings, M.P.; et al. BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics. Syst. Biol. 2012, 61, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Smith, D.K.; Zhu, H.; Guan, Y.; Lam, T.T. GGTREE: An R Package for Visualization and Annotation of Phylogenetic Trees with Their Covariates and Other Associated Data. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, M.J.; Kim, S.-S.; Kim, I. Complete Mitochondrial Genome of an Aquatic Moth, Elophila interruptalis (Lepidoptera: Crambidae). Mitochondrial DNA 2014, 25, 275–277. [Google Scholar] [CrossRef]
- Zhou, N.; Dong, Y.; Qiao, P.; Yang, Z. Complete Mitogenomic Structure and Phylogenetic Implications of the Genus Ostrinia (Lepidoptera: Crambidae). Insects 2020, 11, 232. [Google Scholar] [CrossRef]
- Liu, D.; Basso, A.; Babbucci, M.; Patarnello, T.; Negrisolo, E. Macrostructural Evolution of the Mitogenome of Butterflies (Lepidoptera, Papilionoidea). Insects 2022, 13, 358. [Google Scholar] [CrossRef]
- Kim, M.J.; Wang, A.R.; Park, J.S.; Kim, I. Complete Mitochondrial Genomes of Five Skippers (Lepidoptera: Hesperiidae) and Phylogenetic Reconstruction of Lepidoptera. Gene 2014, 549, 97–112. [Google Scholar] [CrossRef]
- Liu, X.; Qi, M.; Xu, H.; Wu, Z.; Hu, L.; Yang, M.; Li, H. Nine Mitochondrial Genomes of the Pyraloidea and Their Phylogenetic Implications (Lepidoptera). Insects 2021, 12, 1039. [Google Scholar] [CrossRef]
- Roh, S.J.; Jeon, J.H.; Kim, D.-S.; Byun, B.-K. The Complete Mitochondrial Genome of Unique Snout Moth, Cathayia Obliquella (Pyralidae: Galleriinae) with Its Phylogenetic Implications and a Redescription of External Morphology. J. Asia-Pac. Biodivers. 2020, 13, 613–624. [Google Scholar] [CrossRef]
- Chai, H.-N.; Du, Y.-Z.; Zhai, B.-P. Characterization of the Complete Mitochondrial Genomes of Cnaphalocrocis medinalis and Chilo suppressalis (Lepidoptera: Pyralidae). Int. J. Biol. Sci. 2012, 8, 561–579. [Google Scholar] [CrossRef]
- Wu, Q.-L.; Gong, Y.-J.; Shi, B.; Gu, Y.; Wei, S.-J. The Complete Mitochondrial Genome of the Yellow Peach Moth Dichocrocis punctiferalis (Lepidoptera: Pyralidae). Mitochondrial DNA 2013, 24, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Behura, S.K.; Lobo, N.F.; Haas, B.; deBruyn, B.; Lovin, D.D.; Shumway, M.F.; Puiu, D.; Romero-Severson, J.; Nene, V.; Severson, D.W. Complete Sequences of Mitochondria Genomes of Aedes Aegypti and Culex Quinquefasciatus and Comparative Analysis of Mitochondrial DNA Fragments Inserted in the Nuclear Genomes. Insect Biochem. Mol. Biol. 2011, 41, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Que, S.; Yu, A.; Tu, Y.; Xiong, C.; Liu, X. Complete Mitochondrial Genome and Phylogenetic Analysis of Diaphania perspectalis. Mitochondrial DNA Part. B 2019, 4, 933–934. [Google Scholar] [CrossRef]
- Qi, M.; Zhao, H.; Yu, F.; Zhang, A.; Li, H. The First Mitogenomes of the Subfamily Odontiinae (Lepidoptera, Crambidae) and Phylogenetic Analysis of Pyraloidea. Insects 2021, 12, 486. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, X.; Fan, Z.; Yue, B.; Huang, F.; King, E.; Ran, J. Structural Characteristics and Phylogenetic Analysis of the Mitochondrial Genome of the Sugarcane Borer, Diatraea saccharalis (Lepidoptera: Crambidae). DNA Cell Biol. 2011, 30, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Yan, J.; Song, J.; You, P. The First Mitochondrial Genomes for Pyralinae (Pyralidae) and Glaphyriinae (Crambidae), with Phylogenetic Implications of Pyraloidea. PLoS ONE 2018, 13, e0194672. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Jiang, X.; Hou, X.; Yang, H.; Chen, W. The Mitochondrial Genome of Ephestia elutella (Insecta: Lepidoptera: Pyralidae). Mitochondrial DNA Part. B 2018, 3, 189–190. [Google Scholar] [CrossRef] [PubMed]
- Traut, W.; Vogel, H.; Glöckner, G.; Hartmann, E.; Heckel, D.G. High-Throughput Sequencing of a Single Chromosome: A Moth W Chromosome. Chromosome Res. 2013, 21, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Yu, H.-L.; Li, P.-F.; You, P. The Complete Mitochondrial Genome of Lista haraldusalis (Lepidoptera: Pyralidae). Mitochondrial DNA 2015, 26, 853–854. [Google Scholar] [CrossRef] [PubMed]
- Living Prairie Mitogenomics Consortium the Complete Mitochondrial Genome of the Lesser Aspen Webworm Moth Meroptera pravella (Insecta: Lepidoptera: Pyralidae). Mitochondrial DNA Part. B 2017, 2, 344–346. [CrossRef] [PubMed]
- Tang, M.; Tan, M.; Meng, G.; Yang, S.; Su, X.; Liu, S.; Song, W.; Li, Y.; Wu, Q.; Zhang, A.; et al. Multiplex Sequencing of Pooled Mitochondrial Genomes—a Crucial Step toward Biodiversity Analysis Using Mito-Metagenomics. Nucleic Acids Res. 2014, 42, e166. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Li, H.-X.; Yang, M.-F. The Complete Mitochondrial Genome Sequences of Two Insect-Tea Producers in Pyralidae (Lepidoptera) from South China: Pyralis farinalis and Orthopygia glaucinalis. Mitochondrial DNA Part. B 2019, 4, 3850–3851. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Ren, Y.; Lu, Z.; Song, Y.; Liu, L.; Lv, S.; Yu, Y.; Men, X. Characterization of the Complete Mitochondrial Genome of Asia Corn Borer, Ostrinia furnacalis (Lepidoptera: Crambidae). Mitochondrial DNA Part. B 2020, 5, 936–937. [Google Scholar] [CrossRef]
- Fisher, K.E.; Bradbury, S.P.; Coates, B.S. Prediction of Mitochondrial Genome-Wide Variation through Sequencing of Mitochondrion-Enriched Extracts. Sci. Rep. 2020, 10, 19123. [Google Scholar] [CrossRef]
- Ye, F.; You, P. The Complete Mitochondrial Genome of Paracymoriza distinctalis (Lepidoptera: Crambidae). Mitochondrial DNA 2016, 27, 28–29. [Google Scholar] [CrossRef]
- Ye, F.; Shi, Y.; Xing, L.; Yu, H.; You, P. The Complete Mitochondrial Genome of Paracymoriza prodigalis (Leech, 1889) (Lepidoptera), with a Preliminary Phylogenetic Analysis of Pyraloidea. Aquat. Insects 2013, 35, 71–88. [Google Scholar] [CrossRef]
- Chen, S.; Li, F.-H.; Lan, X.-E.; You, P. The Complete Mitochondrial Genome of Pycnarmon lactiferalis (Lepidoptera: Crambidae). Mitochondrial DNA Part. B 2016, 1, 638–639. [Google Scholar] [CrossRef]
- Wang, J.; Li, P.; You, P. The Complete Mitochondrial Genome of Tyspanodes hypsalis (Lepidoptera: Crambidae). Mitochondrial DNA 2014, 27, 1821–1822. [Google Scholar] [CrossRef]
- Wu, Y.-P.; Zhao, J.-L.; Su, T.-J.; Li, J.; Yu, F.; Chesters, D.; Fan, R.-J.; Chen, M.-C.; Wu, C.-S.; Zhu, C.-D. The Complete Mitochondrial Genome of Leucoptera malifoliella Costa (Lepidoptera: Lyonetiidae). DNA Cell Biol. 2012, 31, 1508–1522. [Google Scholar] [CrossRef]
- Kim, M.I.; Baek, J.Y.; Kim, M.J.; Jeong, H.C.; Kim, K.-G.; Bae, C.H.; Han, Y.S.; Jin, B.R.; Kim, I. Complete Nucleotide Sequence and Organization of the Mitogenome of the Red-Spotted Apollo Butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and Comparison with Other Lepidopteran Insects. Mol. Cells 2009, 28, 347–364. [Google Scholar] [CrossRef]
- Ramírez-Ríos, V.; Alvarez, J.C.; Villanueva-Mejia, D. Mitochondrial Genomes of Lepidopteran Insects Considered Crop Pests. In Lepidoptera; Perveen, F.K., Ed.; InTech: London, UK, 2017; ISBN 978-953-51-3659-0. [Google Scholar]
- Yang, Y.; Wu, Z.; Xu, H.; Zheng, X.; Tian, J.; Lu, Z. Sequence and Analysis of mtDNA Control Region in Cnaphalacrocis medinalis Guenée and Marasmia patnalis Bradley (Lepidoptera: Pyralidae). Mitochondrial DNA Part. A 2016, 27, 3991–3994. [Google Scholar] [CrossRef] [PubMed]
- He, S.-L.; Zou, Y.; Zhang, L.-F.; Ma, W.-Q.; Zhang, X.-Y.; Yue, B.-S. The Complete Mitochondrial Genome of the Beet Webworm, Spoladea Recurvalis (Lepidoptera: Crambidae) and Its Phylogenetic Implications. PLoS ONE 2015, 10, e0129355. [Google Scholar] [CrossRef] [PubMed]
- Quek, Z.B.R.; Chang, J.J.M.; Ip, Y.C.A.; Chan, Y.K.S.; Huang, D. Mitogenomes Reveal Alternative Initiation Codons and Lineage-Specific Gene Order Conservation in Echinoderms. Mol. Biol. Evol. 2021, 38, 981–985. [Google Scholar] [CrossRef] [PubMed]
- Donath, A.; Jühling, F.; Al-Arab, M.; Bernhart, S.H.; Reinhardt, F.; Stadler, P.F.; Middendorf, M.; Bernt, M. Improved Annotation of Protein-Coding Genes Boundaries in Metazoan Mitochondrial Genomes. Nucleic Acids Res. 2019, 47, 10543–10552. [Google Scholar] [CrossRef] [PubMed]
- Ojala, D.; Montoya, J.; Attardi, G. tRNA Punctuation Model of RNA Processing in Human Mitochondria. Nature 1981, 290, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.B.; Beckenbach, A.T. Characterization of Mature Mitochondrial Transcripts in Drosophila, and the Implications for the tRNA Punctuation Model in Arthropods. Gene 2009, 445, 49–57. [Google Scholar] [CrossRef]
- Taanman, J.-W. The Mitochondrial Genome: Structure, Transcription, Translation and Replication. Biochim. Et. Biophys. Acta (BBA) - Bioenerg. 1999, 1410, 103–123. [Google Scholar] [CrossRef]
- Johnston, I.G.; Williams, B.P. Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention. Cell Syst. 2016, 2, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.-N.; Chai, X.-Y.; Bian, D.-D.; Zhou, C.-L.; Tang, B.-P. The Complete Mitochondrial Genome of Plodia interpunctella (Lepidoptera: Pyralidae) and Comparison with Other Pyraloidea Insects. Genome 2016, 59, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Shi, Y.; Zhang, H.; Wang, Z.; Liu, X.; Yang, M. Complete Mitochondrial Genome of the Hemp Borer, Grapholita Delineana (Lepidoptera: Tortricidae): Gene Variability and Phylogeny among Grapholita. J. Asia-Pac. Entomol. 2021, 24, 250–258. [Google Scholar] [CrossRef]
- Watanabe, Y.; Suematsu, T.; Ohtsuki, T. Losing the Stem-Loop Structure from Metazoan Mitochondrial tRNAs and Co-Evolution of Interacting Factors. Front. Genet. 2014, 5, 109. [Google Scholar] [CrossRef]
- Salinas-Giegé, T.; Giegé, R.; Giegé, P. tRNA Biology in Mitochondria. IJMS 2015, 16, 4518–4559. [Google Scholar] [CrossRef]
- Tang, C.; Du, X. Complete Mitochondrial Genomes of Two Moths in the Tribe Trichaeini (Lepidoptera: Crambidae) and Their Phylogenetic Implications. Ecol. Evol. 2023, 13, e10188. [Google Scholar] [CrossRef]
Gene | Location | Strand | Start Codon | Stop Codon | Length (bp) | Anticodon |
---|---|---|---|---|---|---|
trnM | 1–69 | Majority | - | - | 69 | CAU |
trnI | 70–134 | Majority | - | - | 65 | GAU |
trnQ | 132–200 | Minority | - | - | 69 | UUG |
ND2 | 269–1270 | Majority | TTG | TAA | 1002 | - |
trnW | 1285–1351 | Majority | - | - | 67 | UCA |
trnC | 1344–1409 | Minority | - | - | 66 | GCA |
trnY | 1413–1479 | Minority | - | - | 67 | GUA |
COX1 | 1493–3026 | Majority | TTG | T | 1534 | - |
trnL2 | 3027–3093 | Majority | - | - | 67 | UAA |
COX2 | 3094–3774 | Majority | ATG | TAA | 681 | - |
trnK | 3779–3849 | Majority | - | - | 71 | CUU |
trnD | 3850–3918 | Majority | - | - | 69 | GUC |
ATP8 | 3919–4086 | Majority | ATT | TAA | 168 | - |
ATP6 | 4080–4759 | Majority | ATG | TA | 680 | - |
COX3 | 4760–5548 | Majority | ATG | TAA | 789 | - |
trnG | 5551–5616 | Majority | - | - | 66 | UCC |
ND3 | 5617–5970 | Majority | ATT | TAA | 354 | - |
trnA | 5975–6038 | Majority | - | - | 64 | UGC |
trnR | 6039–6102 | Majority | - | - | 64 | UCG |
trnN | 6102–6168 | Majority | - | - | 67 | GUU |
trnS1 | 6171–6236 | Majority | - | - | 66 | GCU |
trnE | 6240–6306 | Majority | - | - | 67 | UUC |
trnF | 6326–6392 | Minority | - | - | 67 | GAA |
ND5 | 6393–8124 | Minority | ATT | T | 1732 | - |
trnH | 8125–8194 | Minority | - | - | 70 | GUG |
ND4 | 8195–9534 | Minority | ATG | TA | 1340 | - |
ND4L | 9544–9834 | Minority | ATG | TAA | 291 | - |
trnT | 9840–9905 | Majority | - | - | 66 | UGU |
trnP | 9906–9971 | Minority | - | - | 66 | UGG |
ND6 | 9974–10507 | Majority | ATT | TAA | 534 | - |
CYTB | 10511–11657 | Majority | ATG | T | 1147 | - |
trnS2 | 11658–11726 | Majority | - | - | 69 | UGA |
ND1 | 11743–12681 | Minority | ATG | TAA | 939 | - |
trnL1 | 12683–12754 | Minority | - | - | 72 | UAG |
l-rna | 12764–14121 | Minority | - | - | 1358 | - |
trnV | 14110–14174 | Minority | - | - | 65 | UAC |
s-rna | 14175–14983 | Minority | - | - | 809 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Despabiladeras, J.B.; Bautista, M.A.M. Complete Mitochondrial Genome of the Eggplant Fruit and Shoot Borer, Leucinodes orbonalis Guenée (Lepidoptera: Crambidae), and Comparison with Other Pyraloid Moths. Insects 2024, 15, 220. https://doi.org/10.3390/insects15040220
Despabiladeras JB, Bautista MAM. Complete Mitochondrial Genome of the Eggplant Fruit and Shoot Borer, Leucinodes orbonalis Guenée (Lepidoptera: Crambidae), and Comparison with Other Pyraloid Moths. Insects. 2024; 15(4):220. https://doi.org/10.3390/insects15040220
Chicago/Turabian StyleDespabiladeras, Joshua B., and Ma. Anita M. Bautista. 2024. "Complete Mitochondrial Genome of the Eggplant Fruit and Shoot Borer, Leucinodes orbonalis Guenée (Lepidoptera: Crambidae), and Comparison with Other Pyraloid Moths" Insects 15, no. 4: 220. https://doi.org/10.3390/insects15040220
APA StyleDespabiladeras, J. B., & Bautista, M. A. M. (2024). Complete Mitochondrial Genome of the Eggplant Fruit and Shoot Borer, Leucinodes orbonalis Guenée (Lepidoptera: Crambidae), and Comparison with Other Pyraloid Moths. Insects, 15(4), 220. https://doi.org/10.3390/insects15040220