Control Potential of Multiple Nucleopolyhedrovirus (SfMNPV) Isolated from Fall Armyworm in Nigeria (West Africa)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. SfMNPV Isolate Collection and Identification
2.2. Experimental Sprouting Maize and Onion
2.3. Laboratory Inoculum Production
2.4. Experiment 1: Virulence of the Newly Isolated SfMNPV-KA1
2.5. Experiment 2: Host Plant Effect on the Newly Isolated SfMNPV-KA1 Virulence
2.6. Experiment 3: Cannibalism-Mediated Horizontal and Vertical Effect of the Newly Isolated SfMNPV-KA1
2.7. Data Analysis
3. Results
3.1. Experiment 1: Virulence of the Newly Isolated SfMNPV-KA1
3.2. Experiment 2: Host Plant Effect on the Newly Isolated SfMNPV-KA1 Virulence
3.3. Experiment 3: Cannibalism-Mediated Horizontal and Vertical Effect of the Newly Isolated SfMNPV-KA1
3.3.1. Cannibal Consumption Speed on Prey Infected with Two Different PIB Concentrations of SfMNPV-KA1
3.3.2. Cannibal Body Part Attack Target on Prey Infected with Two Different PIB Concentrations of SfMNPV-KA1
3.3.3. Cannibal Larval Mortality and Pupal and Adult Emergence Post Consumption of Prey Infected with Two Different PIB Concentrations of SfMNPV-KA1
3.3.4. Female Cannibal Oviposition Rate Post Consumption of Prey Infected with Two Different PIB Concentrations of SfMNPV-KA1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a New Alien Invasive Pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef] [PubMed]
- FAO. Global Action for Fall Armyworm Control. Available online: https://www.fao.org/fall-armyworm/monitoring-tools/faw-map/en/ (accessed on 2 March 2024).
- Prasanna, B.M.; Huesing, J.E.; Eddy, R.; Peschke, V.M. (Eds.) Fall Armyworm in Africa: A Guide for Integrated Pest Management, 1st ed.; CIMMYT: Mexico City, Mexico, 2018. [Google Scholar]
- Cruz, I.; Bruce, A.; Sevgan, S.; Akutse, K.S.; Mohamed, F.S.; Niassy, S.; Rangaswamy, M.; Sidhu, J.; Goergen, G.; Rwomushana, I.; et al. Biological Control and Biorational Pesticides for Fall Armyworm Management. In Fall Armyworm in Africa: A Guide for Integrated Pest Management; Prasanna, B.M., Huesing, J.E., Eddy, R., Peschke, V.M., Eds.; CIMMYT: Mexico City, Mexico, 2018; pp. 63–88. [Google Scholar]
- Sahayaraj, K.; Subash, N.; Allingham, R.W.; Kumar, V.; Avery, P.B.; Mehra, L.K.; McKenzie, C.L.; Osborne, L.S. Lethal and sublethal effects of three microbial biocontrol agents on Spodoptera litura and its natural predator Rhynocoris kumarii. Insects 2018, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.; Souza, D.A.; Sanches, M.M.; Schmidt, F.G.V.; Oliveira, C.M.; Benito, N.P.; Lopes, R.B. Evaluation of key parameters for developing a Metarhizium rileyi-based biopesticide against Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize: Laboratory, greenhouse, and field trials. Pest Manag. Sci. 2022, 78, 1146–1154. [Google Scholar] [CrossRef] [PubMed]
- Rioba, N.B.; Stevenson, P.C. Opportunities and scope for botanical extracts and products for the management of fall armyworm (Spodoptera frugiperda) for smallholders in Africa. Plants 2020, 9, 207. [Google Scholar] [CrossRef] [PubMed]
- Phambala, K.; Tembo, Y.; Kasambala, T.; Kabambe, V.H.; Stevenson, P.C.; Belmain, S.R. Bioactivity of common pesticidal plants on fall armyworm larvae (Spodoptera frugiperda). Plants 2020, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Fakeer, M.; Hammam, G.H.; Joo, J.H.; Hussein, K.A. Applicability of entomopathogenic fungi and essential oils against the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Int. J. Trop. Insect Sci. 2024, 44, 53–61. [Google Scholar] [CrossRef]
- Barrera, G.; Simón, O.; Villamizar, L.; Williams, T.; Caballero, P. Spodoptera frugiperda multiple nucleopolyhedrovirus as a potential biological insecticide: Genetic and phenotypic comparison of field isolates from Colombia. Biol. Control 2011, 58, 113–120. [Google Scholar] [CrossRef]
- Haase, S.; Sciocco-Cap, A.; Romanowski, V. Baculovirus insecticides in Latin America: Historical overview, current status and future perspectives. Viruses 2015, 7, 2230–2267. [Google Scholar] [CrossRef]
- CABI. Spodoptera frugiperda (Fall Armyworm). Invasive Species Compendium. Available online: https://www.cabi.org/isc/datasheet/29810 (accessed on 8 August 2023).
- Zakseski, M.R.; da Silva Filho, J.G.; Rakes, M.; Pazini, J.D.B.; da Rosa, A.P.S.; Marçon, P.; Popham, H.J.; Bernardi, O.; Bernardi, D. Pathogenic assessment of SfMNPV-based biopesticide on Spodoptera frugiperda (Lepidoptera: Noctuidae) developing on transgenic soybean expressing Cry1Ac insecticidal protein. J. Econ. Entomol. 2021, 114, 2264–2270. [Google Scholar] [CrossRef]
- Akutse, K.S.; Kimemia, J.W.; Ekesi, S.; Khamis, F.M.; Ombura, O.L.; Subramanian, S. Ovicidal effects of entomopathogenic fungal isolates on the invasive fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Appl. Entomol. 2019, 143, 626–634. [Google Scholar] [CrossRef]
- Ahissou, B.R.; Sawadogo, W.M.; Bonzi, S.; Baimey, H.; Somda, I.; Bokonon-Ganta, A.; Verheggen, F. Natural enemies of the fall armyworm Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in Burkina Faso. Tropicultura 2021, 39, 1881. [Google Scholar] [CrossRef]
- Wennmann, J.T.; Tepa-Yotto, G.T.; Jehle, J.A.; Goergen, G. Genome Sequence of a Spodoptera frugiperda multiple nucleopolyhedrovirus isolated from fall armyworm (Spodoptera frugiperda) in Nigeria, West Africa. Microbiol. Resour. Announc. 2021, 10, 10–128. [Google Scholar] [CrossRef] [PubMed]
- Koffi, D.; Agboka, K.; Adjevi, M.K.; Adom, M.; Tounou, A.K.; Meagher, R.L. The natural control agents of the fall armyworm, Spodoptera frugiperda in Togo: Moderating insecticide applications for natural control of the pest? J. Pest Sci. 2023, 6, 1405–1416. [Google Scholar] [CrossRef]
- Eroglu, G.B.; Gani, M.; Gupta, R.K.; Bali, K.; Hassan, T.; Shafi, I.; Manzoor, S.; Mantoo, M.A. Reflection of Geographic Differences in the Genome: A New Helicoverpa armigera Nucleopolyhedrovirus (HearNPV-IND-K) from Kashmir, India. Biol. Bull. 2023, 50, S598–S609. [Google Scholar] [CrossRef]
- Lei, C.; Yang, J.; Wang, J.; Hu, J.; Sun, X. Molecular and biological characterization of Spodoptera frugiperda multiple nucleopolyhedrovirus field isolate and genotypes from China. Insects 2020, 11, 777. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Zhang, H.; Guo, L.; Siemann, E.; Ji, X.Y.; Chen, Y.J.; Jiang, J.X.; Wan, N.F. Host plants affect the susceptibility of Spodoptera exigua to its homologous nucleopolyhedrovirus: Role of chitin synthase and intestinal mucin in the peritrophic matrix. Biocontrol Sci. Technol. 2022, 32, 1312–1325. [Google Scholar] [CrossRef]
- Shikano, I.; Shumaker, K.L.; Peiffer, M.; Felton, G.W.; Hoover, K. Plant-mediated effects on an insect–pathogen interaction vary with intraspecific genetic variation in plant defences. Oecologia 2017, 183, 1121–1134. [Google Scholar] [CrossRef] [PubMed]
- Cory, J.S. Insect virus transmission: Different routes to persistence. Curr. Opin. Insect Sci. 2015, 8, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Virto, C.; Navarro, D.; Tellez, M.M.; Herrero, S.; Williams, T.; Murillo, R.; Caballero, P. Natural populations of Spodoptera exigua are infected by multiple viruses that are transmitted to their offspring. J. Invertebr. Pathol. 2014, 122, 22–27. [Google Scholar] [CrossRef]
- Redman, E.M.; Wilson, K.; Cory, J.S. Trade-offs and mixed infections in an obligate-killing insect pathogen. J. Anim. Ecol. 2016, 85, 1200–1209. [Google Scholar] [CrossRef]
- Winsou, J.K.; Tepa-Yotto, G.T.; Thunes, K.H.; Meadow, R.; Tamò, M.; Sæthre, M.G. Seasonal variations of Spodoptera frugiperda host plant diversity and parasitoid complex in southern and central Benin. Insects 2022, 13, 491. [Google Scholar] [CrossRef]
- Cherry, A.J.; Parnell, M.; Grzywacz, D.; Brown, M.; Jones, K.A. The optimization of in vivo nuclear polyhedrosis virus production of Spodoptera exempta (Walker) and Spodoptera exigua (Hubner). J. Invertebr. Pathol. 1997, 70, 50–58. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012; ISBN 3-900051-07-0. Available online: http://www.R-project.org/ (accessed on 5 December 2023).
- Cisneros, J.; Pérez, J.A.; Penagos, D.I.; Ruiz, J.; Goulson, D.; Caballero, P.; Cave, R.D.; Williams, T. Formulation of a nucleopolyhedrovirus with boric acid for control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. Biol. Control 2002, 23, 87–95. [Google Scholar] [CrossRef]
- Popham, H.J.; Rowley, D.L.; Harrison, R.L. Differential insecticidal properties of Spodoptera frugiperda multiple nucleopolyhedrovirus isolates against corn-strain and rice-strain fall armyworm, and genomic analysis of three isolates. J. Invertebr. Pathol. 2021, 183, 107561. [Google Scholar] [CrossRef] [PubMed]
- Yasin, M.; Qazi, M.S.; Wakil, W.; Qayyum, M.A. Evaluation of nuclear polyhedrosis Virus (NPV) and emamectin benzoate against Spodoptera litura (F.) (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Control 2020, 30, 88. [Google Scholar] [CrossRef]
- Sarwar, G.; Maan, N.A.; Ayub, M.A.; Shahid, M.R.; Malik, M.A.; Farooq, M. Evaluation of indigenous the nucleopolyhedrovirus (NPV) of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in combination with chlorantraniliprole against Spodoptera species. Egypt. J. Biol. Pest Control 2021, 31, 58. [Google Scholar] [CrossRef]
- Vivan, L.M.; Torres, J.B.; Fernandes, P.L.S. Activity of selected formulated biorational and synthetic insecticides against larvae of Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 2017, 110, 118–126. [Google Scholar] [PubMed]
- Dáder, B.; Aguirre, E.; Caballero, P.; Medina, P. Synergy of lepidopteran nucleopolyhedroviruses AcMNPV and SpliNPV with insecticides. Insects 2020, 11, 316. [Google Scholar] [CrossRef] [PubMed]
- Ferrelli, M.L.; Salvador, R. Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis. Viruses 2023, 15, 1838. [Google Scholar] [CrossRef]
- Gómez-Valderrama, J.; Cuartas-Otálora, P.; Espinel-Correal, C.; Barrera-Cubillos, G.; Villamizar-Rivero, L. Fungal and viral entomopathogens as a combined strategy for the biological control of fall armyworm larvae in maize. CABI Agric. Biosci. 2022, 3, 24. [Google Scholar] [CrossRef]
- Lopes, R.B.; Sosa-Gómez, D.R.; Oliveira, C.M.; Sanches, M.M.; de Souza, D.A.; Benito, N.P.; Schmidt, F.G.V.; Faria, M. Efficacy of an oil-based formulation combining Metarhizium rileyi and nucleopolyhedroviruses against lepidopteran pests of soybean. J. Appl. Entomol. 2020, 144, 678–689. [Google Scholar] [CrossRef]
- Souza, M.L.; Sanches, M.M.; de Souza, D.A.; Faria, M.; Espinel-Correal, C.; Sihler, W.; Lopes, R.B. Within-host interactions of Metarhizium rileyi strains and nucleopolyhedroviruses in Spodoptera frugiperda and Anticarsia gemmatalis (Lepidoptera: Noctuidae). J. Invertebr. Pathol. 2019, 162, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Deschodt, P.S.; Cory, J.S. Compatibility of the fungus Beauveria bassiana and Trichoplusia ni SNPV against the cabbage looper Trichoplusia ni: Crop plant matters. Pest Manag. Sci. 2024. early view. [Google Scholar] [CrossRef] [PubMed]
- Akhanaev, Y.; Pavlushin, S.; Polenogova, O.; Klementeva, T.; Lebedeva, D.; Okhlopkova, O.; Kolosov, A.; Martemyanov, V. The effect of mixtures of Bacillus thuringiensis-based insecticide and multiple nucleopolyhedrovirus of Lymantria dispar L. in combination with an optical brightener on L. Dispar larvae. BioControl 2022, 67, 331–343. [Google Scholar] [CrossRef]
- García-Gómez, G.; Real-Santillán, R.O.; Larsen, J.; Pérez, L.L.; de la Rosa, J.I.F.; Pineda, S.; Martínez-Castillo, A.M. Maize mycorrhizas decrease the susceptibility of the foliar insect herbivore Spodoptera frugiperda to its homologous nucleopolyhedrovirus. Pest Manag. Sci. 2021, 77, 4701–4708. [Google Scholar] [CrossRef] [PubMed]
- Shikano, I.; McCarthy, E.M.; Elderd, B.D.; Hoover, K. Plant genotype and induced defenses affect the productivity of an insect-killing obligate viral pathogen. J. Invertebr. Pathol. 2017, 148, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Zhang, H.; Siemann, E.; Ji, X.Y.; Chen, Y.J.; Wang, Y.; Jiang, J.X.; Wan, N.F. Immunity of an insect herbivore to an entomovirus is affected by different host plants. Pest Manag. Sci. 2020, 76, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Fan, N.N.; Siemann, E.; Jiang, J.X.; Wan, N.F. Plant-mediated effects on life history traits of entomovirus infected caterpillars of Spodoptera exigua. J. Appl. Entomol. 2021, 145, 567–574. [Google Scholar] [CrossRef]
- Gómez, J.; Guevara, J.; Cuartas, P.; Espinel, C.; Villamizar, L. Microencapsulated Spodoptera frugiperda nucleopolyhedrovirus: Insecticidal activity and effect on arthropod populations in maize. Biocontrol Sci. Technol. 2013, 23, 829–846. [Google Scholar] [CrossRef]
- Maciel-Vergara, G.; Jensen, A.B.; Eilenberg, J. Cannibalism as a possible entry route for opportunistic pathogenic bacteria to insect hosts, exemplified by Pseudomonas aeruginosa, a pathogen of the giant mealworm Zophobas morio. Insects 2018, 9, 88. [Google Scholar] [CrossRef]
- Greeney, H.F.; Dyer, L.A.; Smilanich, A.M. Feeding by lepidopteran larvae is dangerous: A review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. Invertebr. Surviv. J. 2012, 9, 7–34. [Google Scholar]
- Stinguel, P.; Paiva, C.E.C.; Zuim, V.; Azevedo, A.C.T.; Valicente, F.H.; dos Santos Júnior, H.J.G. Optimization of In Vivo Production of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV). Neotrop. Entomol. 2022, 51, 122–132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tepa-Yotto, G.T.; Douro-Kpindou, O.K.; Koussihouédé, P.S.B.; Adjaoké, A.M.; Winsou, J.K.; Tognigban, G.; Tamò, M. Control Potential of Multiple Nucleopolyhedrovirus (SfMNPV) Isolated from Fall Armyworm in Nigeria (West Africa). Insects 2024, 15, 225. https://doi.org/10.3390/insects15040225
Tepa-Yotto GT, Douro-Kpindou OK, Koussihouédé PSB, Adjaoké AM, Winsou JK, Tognigban G, Tamò M. Control Potential of Multiple Nucleopolyhedrovirus (SfMNPV) Isolated from Fall Armyworm in Nigeria (West Africa). Insects. 2024; 15(4):225. https://doi.org/10.3390/insects15040225
Chicago/Turabian StyleTepa-Yotto, Ghislain T., Ouorou Kobi Douro-Kpindou, Précieux Sèna Bonaventure Koussihouédé, Abissi Marc Adjaoké, Jeannette K. Winsou, Ghislain Tognigban, and Manuele Tamò. 2024. "Control Potential of Multiple Nucleopolyhedrovirus (SfMNPV) Isolated from Fall Armyworm in Nigeria (West Africa)" Insects 15, no. 4: 225. https://doi.org/10.3390/insects15040225
APA StyleTepa-Yotto, G. T., Douro-Kpindou, O. K., Koussihouédé, P. S. B., Adjaoké, A. M., Winsou, J. K., Tognigban, G., & Tamò, M. (2024). Control Potential of Multiple Nucleopolyhedrovirus (SfMNPV) Isolated from Fall Armyworm in Nigeria (West Africa). Insects, 15(4), 225. https://doi.org/10.3390/insects15040225