Upward and Poleward (but Not Phenological) Shifts in a Forest Tenebrionid Beetle in Response to Global Change in a Mediterranean Area
Abstract
:Simple Summary
Abstract
1. Introduction
- 1.
- Prediction 1: Based on H1, the average elevation records of A. velikensis should be higher in the second period.
- 2.
- Prediction 2: Based on H2, the average latitude records of A. velikensis should be higher in the second period.
- 3.
- Prediction 3: If changes predicted by Predictions 1 and 2 are really due to climate change and not to increased sampling at higher elevations or latitudes in the second period, the localities in the second period should have current temperatures similar those that characterized the localities in the first period (isotherm tracking hypothesis [11]). If we assume that the species did not change its thermal optimum between the two periods, in the second period, it should have been recorded more frequently in localities that, based on their position (elevation and latitude), have, on average, temperatures similar to those that the species experienced in the localities from which it was found in the first period, and which are now less suitable because of temperature increases. If, on the contrary, the records from the second period were characterized by substantially lower temperatures than those of the first period, this would indicate that the changes in the species’ average elevation and latitude were biased by increased sampling at higher elevations and latitudes. In this case, the results in accordance with Prediction 1 and 2 would not necessarily support H1 and H2.
- 4.
- Prediction 4: If the changes predicted by Prediction 1 are really due to climate change and not to increased sampling at higher elevations, no longitudinal effect should be deduced. As the mountain areas prevail eastward, a significant increase in records eastwards would indicate that a higher frequency of records from higher elevations might have been biased by increased sampling in more mountainous sectors of the study area.
- 5.
- Prediction 5: Based on H1 and H2, in the second period, A. velikensis should have been more frequently found in localities with phytoclimatic conditions indicating lower temperature and lower aridity. Phytoclimatic approaches classify areas integrating climatic and vegetational characteristics [190]. Using a phytoclimatic classification based on data for the first period, and assuming that conditions have now changed, in the second period, A. velikensis should have been recorded more frequently in phytoclimatic units that were originally classified as expressing colder and more humid conditions.
- 6.
- Prediction 6: Based on H3, the frequency of records in the second period should exhibit an advanced average value for the month or day of collection.
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dennis, R.L. Butterflies and Climate Change; Manchester University Press: Manchester, UK, 1993; pp. 1–302. [Google Scholar]
- Hodkinson, T.R.; Jones, M.B.; Waldren, S.; Parnell, J.A.N. (Eds.) Climate Change, Ecology and Systematics; Cambridge University Press: Cambridge, UK, 2011; pp. 1–528. [Google Scholar]
- Cowie, J. Climate Change: Biological and Human Aspects, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012; pp. 1–528. [Google Scholar]
- Letcher, T.M. (Ed.) Climate Change: Observed Impacts on Planet Earth, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–848. [Google Scholar]
- Archaux, F. Breeding upwards when climate is becoming warmer: No bird response in the French Alps. Ibis 2004, 146, 138–144. [Google Scholar] [CrossRef]
- Lenoir, J.; Gégout, J.; Guisan, A.; Vittoz, P.; Wohlgemuth, T.; Zimmermann, N.; Dullinger, S.; Pauli, H.; Willner, W.; Svenning, J. Going against the flow: Potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 2010, 33, 295–303. [Google Scholar] [CrossRef]
- La Sorte, F.A.; Jetz, W. Tracking of climatic niche boundaries under recent climate change. J. Anim. Ecol. 2012, 81, 914–925. [Google Scholar] [CrossRef] [PubMed]
- Fei, S.; Desprez, J.M.; Potter, K.M.; Jo, I.; Knott, J.A.; Oswalt, C.M. Divergence of species responses to climate change. Sci. Adv. 2017, 3, e1603055. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, J.; Bertrand, R.; Comte, L.; Bourgeaud, L.; Hattab, T.; Murienne, J.; Grenouillet, G. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 2020, 4, 1044–1059. [Google Scholar] [CrossRef] [PubMed]
- Vitasse, Y.; Ursenbacher, S.; Klein, G.; Bohnenstengel, T.; Chittaro, Y.; Delestrade, A.; Monnerat, C.; Rebetez, M.; Rixen, C.; Strebel, N.; et al. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol. Rev. 2021, 41, 1816–1835. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, M.A.; Weiskopf, S.R.; Bertrand, R.; Carter, S.L.; Comte, L.; Eaton, M.J.; Johnson, C.G.; Lenoir, J.; Lynch, A.J.; Miller, B.W.; et al. Climate change and the global redistribution of biodiversity: Substantial variation in empirical support for expected range shifts. Environ. Evid. 2023, 12, 7. [Google Scholar] [CrossRef]
- Thomas, C.D.; Lennon, J.J. Birds extend their ranges northwards. Nature 1999, 399, 213. [Google Scholar] [CrossRef]
- Hughes, L. Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals and plants. Nature 2003, 421, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Hickling, R.; Roy, D.B.; Hill, J.K.; Fox, R.; Thomas, C.D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol. 2006, 12, 450–455. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Wilson, R.J.; Davies, Z.G.; Thomas, C.D. Insects and climate change: Processes, patterns and implications for conservation. In Insect Conservation Biology: Proceedings of the Royal Entomological Society’s 22nd Symposium; Stewart, A.J.A., New, T.R., Lewis, O.T., Eds.; CABI International Publishing: Wallingford, UK, 2007; pp. 245–279. [Google Scholar]
- Lenoir, J.; Gégout, J.; Marquet, P.; de Ruffray, P.; Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 2008, 320, 1768–1771. [Google Scholar] [CrossRef] [PubMed]
- Tingley, M.W.; Monahan, W.B.; Beissinger, S.R.; Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 19637. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C. Climate, climate change and range boundaries. Divers. Distrib. 2010, 16, 488–495. [Google Scholar] [CrossRef]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Le Galliard, J.F.; Massot, M.; Baron, J.P.; Clobert, J. Ecological effects of climate change on European reptiles. In Wildlife Conservation in a Changing Climate; Brodie, J.F., Post, E.S., Doak, D.F., Eds.; University of Chicago Press: Chicago, IL, USA, 2012; pp. 179–203. [Google Scholar]
- Monahan, W.B.; Tingley, M.W. Niche tracking and rapid establishment of distributional equilibrium in the house sparrow show potential responsiveness of species to climate change. PLoS ONE 2012, 7, e42097. [Google Scholar] [CrossRef]
- Lenoir, J.; Svenning, J.C. Climate-related range shifts—A global multidimensional synthesis and new research directions. Ecography 2015, 38, 15–28. [Google Scholar] [CrossRef]
- Rowe, K.C.; Rowe, K.M.C.; Tingley, M.W.; Koo, M.S.; Patton, J.L.; Conroy, C.J.; Perrine, J.D.; Beissinger, S.R.; Moritz, C. Spatially heterogeneous impact of climate change on small mammals of montane California. Proc. R. Soc. B Biol. Sci. 2015, 282, 20141857. [Google Scholar] [CrossRef] [PubMed]
- McCain, C.M.; Garfinkel, C.F. Climate change and elevational range shifts in insects. Curr. Opin. Insect Sci. 2021, 47, 111–118. [Google Scholar] [CrossRef] [PubMed]
- McCain, C.M.; King, S.R.B.; Szewczyk, T.M. Unusually large upward shifts in cold-adapted, montane mammals as temperature warms. Ecology 2021, 102, e03300. [Google Scholar] [CrossRef] [PubMed]
- Sistri, G.; Menchetti, M.; Santini, L.; Pasquali, L.; Sapienti, S.; Cini, A.; Platania, L.; Balletto, E.; Barbero, F.; Casacci, L.P.; et al. The isolated Erebia pandrose Apennine population is genetically unique and endangered by climate change. Insect Conserv. Divers. 2022, 15, 136–148. [Google Scholar] [CrossRef]
- Parmesan, C. Climate and species’ range. Nature 1996, 382, 765–766. [Google Scholar] [CrossRef]
- Dirnböck, T.; Essl, F.; Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Chang. Biol. 2011, 17, 990–996. [Google Scholar] [CrossRef]
- Shah, A.A.; Dillon, M.E.; Hotaling, S.; Woods, H.A. High elevation insect communities face shifting ecological and evolutionary landscapes. Curr. Opin. Insect Sci. 2020, 41, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Halsch, C.A.; Shapiro, A.M.; Fordyce, J.A.; Nice, C.C.; Thorne, J.H.; Waetjen, D.P.; Forister, M.L. Insects and recent climate change. Proc. Natl. Acad. Sci. USA 2021, 118, e2002543117. [Google Scholar] [CrossRef] [PubMed]
- Bonifacino, M.; Pasquali, L.; Sistri, G.; Menchetti, M.; Santini, L.; Corbella, C.; Bonelli, S.; Balletto, E.; Vila, R.; Dincă, V.; et al. Climate change may cause the extinction of the butterfly Lasiommata petropolitana in the Apennines. J. Insect Conserv. 2022, 26, 959–972. [Google Scholar] [CrossRef]
- Poloni, R.; Iannella, M.; Fusco, G.; Fattorini, S. Conservation biogeography of high-altitude longhorn beetles under climate change. Insect Conserv. Diver. 2022, 15, 429–444. [Google Scholar] [CrossRef]
- Visser, M.E.; Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. B Biol. Sci. 2005, 272, 2561–2569. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, A.; Caffarra, A.; Diskin, E.; Kelleher, C.T.; Pletsers, A.; Proctor, H.; Stirnemann, R.; Jones, M.B.; O’Halloran, J.; O’Neill, B.F.; et al. Climate warming results in phenotypic and evolutionary changes in spring events: A mini-review. In Climate Change, Ecology and Systematics; Hodkinson, T.R., Jones, M.B., Waldren, S., Parnell, J.A.N., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 176–200. [Google Scholar]
- Menzel, A.; Fabian, P. Growing season extended in Europe. Nature 1999, 397, 659. [Google Scholar] [CrossRef]
- Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Chang. Biol. 2007, 13, 1860–1872. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef]
- Crick, H.Q.P.; Dudley, C.; Glue, D.E.; Thomson, D.L. UK birds are laying eggs earlier. Nature 1997, 388, 526. [Google Scholar] [CrossRef]
- Pearce-Higgins, J.W.; Yalden, D.W.; Whittingham, M.J. Warmer springs advance the breeding phenology of golden plovers Pluvialis apricaria and their prey (Tipulidae). Oecologia 2005, 143, 470–476. [Google Scholar] [CrossRef]
- Both, C.; Van Asch, M.; Bijlsma, R.G.; Burg, A.B.V.D.; Visser, M.E. Climate change and unequal phenological changes across four trophic levels: Constraints or adaptations? J. Anim. Ecol. 2009, 78, 73–83. [Google Scholar] [CrossRef]
- Lehikoinen, A.; Lindén, A.; Karlsson, M.; Andersson, A.; Crewe, T.L.; Dunn, E.H.; Gregory, G.; Karlsson, L.; Kristiansen, V.; Mackenzie, S.; et al. Phenology of the avian spring migratory passage in Europe and North America: Asymmetric advancement in time and increase in duration. Ecol. Indic. 2019, 101, 985–991. [Google Scholar] [CrossRef]
- Blaustein, A.R.; Walls, S.C.; Bancroft, B.A.; Lawler, J.J.; Searle, C.L.; Gervasi, S.S. Direct and indirect effects of climate change on amphibian populations. Diversity 2010, 2, 281–313. [Google Scholar] [CrossRef]
- Hetem, R.S.; Fuller, A.; Maloney, S.K.; Mitchell, D. Responses of large mammals to climate change. Temperature 2014, 1, 115–127. [Google Scholar] [CrossRef]
- Thackeray, S.J.; Sparks, T.H.; Frederiksen, M.; Burthe, S.; Bacon, P.J.; Bell, J.R.; Botham, M.S.; Brereton, T.M.; Bright, P.W.; Carvalho, L.; et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Chang. Biol. 2010, 16, 3304–3313. [Google Scholar] [CrossRef]
- Forrest, J.R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 2016, 17, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.K.; Thomas, C.D.; Fox, R.; Telfer, M.G.; Willis, S.G.; Asher, J.; Huntley, B. Responses of butterflies to twentieth century climate warming: Implications for future ranges. Proc. R. Soc. B Biol. Sci. 2002, 269, 2163–2171. [Google Scholar] [CrossRef] [PubMed]
- Konvicka, M.; Maradova, M.; Benes, J.; Fric, Z.; Kepka, P. Uphill shifts in distribution of butterflies in the Czech Republic: Effects of changing climate detected on a regional scale. Glob. Ecol. Biogeogr. 2003, 12, 403–410. [Google Scholar] [CrossRef]
- Wilson, R.; Gutiérrez, D.; Gutiérrez, J.; Martínez, D.; Agudo, R.; Monserrat, V. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 2005, 8, 1138–1146. [Google Scholar] [CrossRef]
- Franco, A.M.A.; Hill, J.K.; Kitschke, C.; Collingham, Y.C.; Roy, D.B.; Fox, R.; Huntley, B.; Thomas, C.D. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Chang. Biol. 2006, 12, 1545–1553. [Google Scholar] [CrossRef]
- Chen, I.C.; Shiu, H.-J.; Benedick, S.; Holloway, J.D.; Chey, V.K.; Barlow, H.S.; Hill, J.K.; Thomas, C.D. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc. Natl. Acad. Sci. USA 2009, 106, 1479–1483. [Google Scholar] [CrossRef]
- Forister, M.L.; McCall, A.C.; Sanders, N.J.; Fordyce, J.A.; Thorne, J.H.; O’Brien, J.; Waetjen, D.P.; Shapiro, A.M. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc. Natl. Acad. Sci. USA 2010, 107, 2088–2092. [Google Scholar] [CrossRef] [PubMed]
- Molina-Martínez, A.; León-Cortés, J.L.; Regan, H.M.; Lewis, O.T.; Navarrete, D.; Caballero, U.; Luis-Martínez, A. Changes in butterfly distributions and species assemblages on a neotropical mountain range in response to global warming and anthropogenic land use. Divers. Distrib. 2016, 22, 1085–1098. [Google Scholar] [CrossRef]
- Keret, N.M.; Mutanen, M.J.; Orell, M.I.; Itämies, J.H.; Välimäki, P.M. Climate change-driven elevational changes among boreal nocturnal moths. Oecologia 2020, 192, 1085–1098. [Google Scholar] [CrossRef]
- Habel, J.C.; Segerer, A.; Ulrich, W.; Torchyk, O.; Weisser, W.W.; Schmitt, T. Butterfly community shifts over two centuries. Conserv. Biol. 2016, 30, 754–762. [Google Scholar] [CrossRef]
- Rödder, D.; Schmitt, T.; Gros, P.; Ulrich, W.; Habel, J.C. Climate change drives mountain butterflies towards the summits. Sci. Rep. 2021, 11, 14382. [Google Scholar] [CrossRef]
- Habel, J.C.; Ulrich, W.; Gros, P.; Teucher, M.; Schmitt, T. Butterfly species respond differently to climate warming and land use change in the northern Alps. Sci. Total Environ. 2023, 890, 164268. [Google Scholar] [CrossRef]
- Parmesan, C.; Ryrholm, N.; Stefanescu, C.; Hill, J.K.; Thomas, C.D.; Descimon, H.; Huntley, B.; Kaila, L.; Kullberg, J.; Tammaru, T.; et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 1999, 399, 579–583. [Google Scholar] [CrossRef]
- Crozier, L. Winter warming facilitates range expansion: Cold tolerance of the butterfly Atalopedes campestris. Oecologia 2003, 135, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Karban, R.; Strauss, S.Y. Physiological tolerance, climate change, and a northward range shift in the spittlebug, Philaenus spumarius. Ecol. Entomol. 2004, 29, 251–254. [Google Scholar] [CrossRef]
- Musolin, D.L.; Numata, H. Timing of diapause induction and its life-history consequences in Nezara viridula: Is it costly to expand the distribution range? Ecol. Entomol. 2003, 28, 694–703. [Google Scholar] [CrossRef]
- Crozier, L. Warmer winters drive butterfly range expansion by increasing survivorship. Ecology 2004, 85, 231–241. [Google Scholar] [CrossRef]
- Crozier, L.G. Field transplants reveal summer constraints on a butterfly range expansion. Oecologia 2004, 141, 148–157. [Google Scholar] [CrossRef]
- Battisti, A.; Stastny, M.; Netherer, S.; Robinet, C.; Schopf, A.; Roques, A.; Larsson, S. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 2005, 15, 2084–2096. [Google Scholar] [CrossRef]
- Hickling, R.; Roy, D.B.; Hill, J.K.; Thomas, C.D. A northward shift of range margins in British Odonata. Glob. Chang. Biol. 2005, 11, 502–506. [Google Scholar] [CrossRef]
- Parmesan, C. Detection at multiple levels: Euphydryas editha and climate change. In Climate Change and Biodiversity; Lovejoy, T.E., Hannah, L., Eds.; Yale University Press: New Haven, CT, USA, 2005; pp. 56–60. [Google Scholar]
- Grewe, Y.; Hof, C.; Dehling, D.M.; Brandl, R.; Brändle, M. Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Glob. Ecol. Biogeogr. 2013, 22, 403–409. [Google Scholar] [CrossRef]
- Sunde, J.; Franzén, M.; Betzholtz, P.-E.; Francioli, Y.; Pettersson, L.B.; Pöyry, J.; Ryrholm, N.; Forsman, A. Century-long butterfly range expansions in northern Europe depend on climate, land use and species traits. Commun. Biol. 2023, 6, 601. [Google Scholar] [CrossRef] [PubMed]
- Fekete, J.; De Knijf, G.; Dinis, M.; Padisák, J.; Boda, P.; Mizsei, E.; Várbíró, G. Winners and losers: Cordulegaster species under the pressure of climate change. Insects 2023, 14, 348. [Google Scholar] [CrossRef] [PubMed]
- Crozier, L.; Dwyer, G. Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. Am. Nat. 2006, 167, 853–866. [Google Scholar] [CrossRef] [PubMed]
- Colwell, R.K.; Brehm, G.; Cardelús, C.L.; Gilman, A.C.; Longino, J.T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 2008, 322, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Warren, R.; Price, J.; Graham, E.; Forstenhaeusler, N.; VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 2018, 360, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Pélissié, M.; Johansson, F.; Hyseni, C. Pushed northward by climate change: Range shifts with a chance of co-occurrence reshuffling in the forecast for Northern European odonates. Environ. Entomol. 2022, 51, 910–921. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Qian, Q.; Liu, L.; Xu, D. Predicting the distribution of Sclerodermus sichuanensis (Hymenoptera: Bethylidae) under climate change in China. Insects 2023, 14, 475. [Google Scholar] [CrossRef]
- Hosni, E.M.; Al-Khalaf, A.A.; Nasser, M.G.; Abou-Shaara, H.F.; Radwan, M.H. Modeling the potential global distribution of honeybee pest, Galleria mellonella under changing climate. Insects 2022, 13, 484. [Google Scholar] [CrossRef]
- Liu, T.; Liu, H.; Wang, Y.; Yang, Y. Climate change impacts on the potential distribution pattern of Osphya (Coleoptera: Melandryidae), an old but small beetle group distributed in the Northern Hemisphere. Insects 2023, 14, 476. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.M.; Al-Khalaf, A.A.; El-Hawagry, M.S.A. Effects of climatic change on potential distribution of Spogostylum ocyale (Diptera: Bombyliidae) in the Middle East using Maxent modelling. Insects 2023, 14, 120. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Feng, J.; Zong, D.; Zhou, J.; Hu, X.; Wang, B.; Wang, T. Potential spread of desert locust Schistocerca gregagia (Orthoptera: Acrididae) under climate change scenarios. Diversity 2023, 15, 1038. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, D.; Liao, W.; Xu, Y.; Zhuo, Z. Predicting the current and future distributions of Frankliniella occidentalis (Pergande) based on the MaxEnt species distribution model. Insects 2023, 14, 458. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Duan, Q.; Shen, X.; Zhang, S. Climate Change influences the population density and suitable area of Hippotiscus dorsalis (Hemiptera: Pentatomidae) in China. Insects 2023, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.B.; Sparks, T.H. Phenology of British butterflies and climate change. Glob. Chang. Biol. 2000, 4, 407–416. [Google Scholar] [CrossRef]
- Sunday, J.M.; Bates, A.E.; Dulvy, N.K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2012, 2, 686–690. [Google Scholar] [CrossRef]
- Altermatt, F. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B Biol. Sci. 2010, 277, 1281–1287. [Google Scholar] [CrossRef]
- Betzholtz, P.-E.; Forsman, A.; Franzén, M. Increased abundance coincides with range expansions and phenology shifts: A long-term case study of two Noctuid moths in Sweden. Diversity 2023, 15, 1177. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Médail, F.; Myers, N. Mediterranean Basin. In Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions; Mittermeier, R.A., Gil, P.R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J., Da Fonseca, G.A.B., Eds.; CEMEX: Agrupación Sierra Madre, Mexico, 2004; pp. 144–147. [Google Scholar]
- Mittermeier, R.A.; Turner, W.R.; Larsen, F.W.; Brooks, T.M.; Gascon, C. Global biodiversity conservation: The critical role of hotspots. In Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas; Zachos, F.E., Habel, J.C., Eds.; Springer: Heidelberg, Germany, 2011; pp. 2–22. [Google Scholar]
- Birdlife International. Ecosystem Profile. Mediterranean Basin Biodiversity Hotspot. Available online: https://www.cepf.net/sites/default/files/mediterranean-basin-2017-ecosystem-profile-english_0.pdf (accessed on 25 November 2023).
- Cramer, W.; Guiot, J.; Marini, K. (Eds.) Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future. First Mediterranean Assessment Report; Union for the Mediterranean, Plan Bleu, UNEP/MAP: Marseille, France, 2020; pp. 1–632. [Google Scholar]
- Bouchard, P.; Bousquet, Y.; Aalbu, R.L.; Alonso-Zarazaga, M.A.; Merkl, O.; Davies, A.E. Review of genus-group names in the family Tenebrionidae (Insecta, Coleoptera). Zookeys 2021, 1050, 1–633. [Google Scholar]
- Lawrence, J.F.; Spilman, T.J. Tenebrionidae. In Immature Insects; Stehr, F.W., Ed.; Kendall Hunt Publishing: Dubuque, ID, USA, 1991; Volume 2, pp. 520–524. [Google Scholar]
- Dajoz, R. Les Coléoptères Carabidés et Ténébrionidés; Lavoisier: Paris, France, 2002; pp. 1–522. [Google Scholar]
- Matthews, E.G.; Lawrence, J.F.; Bouchard, P.; Steiner, W.E.; Ślipiński, S.A. 11.14. Tenebrionidae Latreille, 1802. In Handbook of Zoology. Arthropoda: Insecta. Part 38. Coleoptera, Beetles. Vol. 2. Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia Partim); Leschen, R.A.B., Beutel, R.G., Lawrence, J.F., Eds.; Walter de Gruyter: Berlin, Germany, 2010; pp. 574–659. [Google Scholar]
- Dajoz, R. Les Insectes et la Forêt: Rôle et Diversité des Insectes dans le Milieu Forestier(2e Éd.); Lavoisier: Paris, France, 2007; pp. 1–648. [Google Scholar]
- Carpaneto, G.M.; Baviera, C.; Biscaccianti, A.B.; Brandmayr, P.; Mazzei, A.; Mason, F.; Battistoni, A.; Teofili, C.; Rondinini, C.; Fattorini, S.; et al. A red list of Italian saproxylic beetles: Taxonomic overview, ecological features and conservation issues (Coleoptera). Fragm. Entomol. 2015, 47, 53–126. [Google Scholar] [CrossRef]
- Canzoneri, S.; Vienna, P. I Tenebrionidae della Padania (Coleoptera Heteromera). Boll. Mus. Civ. St. Nat. Venezia 1987, 36, 7–62. [Google Scholar]
- Villa, A.; Villa, G. Catalogo dei Coleotteri della Lombardia; Giuseppe Bernardoni di Giovanni: Milano, Italy, 1844; p. 47. [Google Scholar]
- Pilon, N.C. Tenebrionidae. In Atlante della Biodiversità nel Parco Ticino. Edizione 2002. Volume 1. Elenchi Sistematici; Furlanetto, D., Ed.; Consorzio Parco Lombardo della Valle del Ticino, Pontevecchio di Magenta: Milano, Italy, 2002; pp. 311–364. [Google Scholar]
- Scupola, A. Tenebrionidae. In Invertebrati di una Foresta della Pianura Padana. Bosco della Fontana. Centro Nazionale per lo Studio e la Conservazione della Biodiversià Forestale Bosco della Fontana; Mason, F., Cerretti, P., Tagliapietra, A., Speight, M.C.D., Zapparoli, M., Eds.; Gianluigi Arcari Editore: Mantova, Italy, 2002; p. 93. [Google Scholar]
- Grottolo, M. La Coleotterofauna della Valle del Carobbio (Lombardia, Brescia). Monografie di Natura Bresciana Mus. Civ. Sc. Nat. Brescia 2023, 34, 69–144. [Google Scholar]
- Scupola, A. I Tenebrionidi della regione veronese (Coleoptera). Boll. Mus. Civ. St. Nat. Verona 1982, 9, 91–120. [Google Scholar]
- Marcuzzi, G. Tenebrionidi conosciuti dal Friuli-Venezia Giulia ed entroterra nordadriatico limitrofo (Italia Nord-Orientale) (Coleoptera, Heteromera, Tenebrionidae). Gortania—Atti Mus. Friul. Stor. Nat. 1998, 20, 173–213. [Google Scholar]
- Gardini, G. Coleoptera Tenebrionidae. Notiziario Gruppo Entomolologico Ligure 1977, 12, 10. [Google Scholar]
- Roberti, D.; Frilli, F.; Pizzaghi, W. Contributo alla conoscenza dell’entomofauna del Piacentino (Specie raccolte nel decennio 1955–1964). Entomologica 1965, 1, 1–119. [Google Scholar]
- Zangheri, P. Repertorio sistematico e topografico della flora e fauna vivente e fossile della Romagna. Memorie Fuori Serie Mus. Civ. Stor. Nat. Verona 1969, 1, 1–2176. [Google Scholar]
- Cecconi, G. Contributo alla fauna vallombrosana. Bull. Soc. Entomol. Ital. 1897, 29, 145–224. [Google Scholar]
- Cecchi, B.; Bartolozzi, L. I coleotteri xilofagi e subcorticicoli del Parco Nazionale delle Foreste Casentinesi, Monte Falterona e Campigna (Insecta Coleoptera). Boll. Soc. Entomol. Ital. 1997, 129, 119–139. [Google Scholar]
- Zinetti, F.; Terzani, F. Coleotterofauna di due riserve naturali della provincia di Arezzo (Toscana) con particolare riguardo alle loro zone umide (Insecta, Coleoptera). Quad. Staz. Ecol. Civ. Mus. Stor. Nat. Ferrara 2009, 19, 5–48. [Google Scholar]
- Terzani, F.; Rocchi, S.; Cianfanelli, S.; Cianferoni, F.; Fabiano, F.; Mazza, G.; Zinetti, F. Invertebrati della Riserva naturale biogenetica di Camaldoli. In La Riserva Naturale Biogenetica di Camaldoli. 1012–2012. Mille Anni di Rapporto uomo Foresta; Bottacci, A., Ed.; CFS/UTB: Pratovecchio, Italy, 2012; pp. 285–316. [Google Scholar]
- Marcuzzi, G. I Tenebrionidi (Coleoptera Heteromera) conservati presso il Museo di Scienze Naturali di Bergamo. Riv. Mus. Sci. Nat. Bergamo 1985, 9, 117–125. [Google Scholar]
- Cavanna, C. Parte II. Catalogo dogli animali raccolti al Vulture, al Pollino ed in altri luoghi dell’Italia meridionale e centrale. Boll. Soc. Entomol. Ital. 1882, 14, 31–87. [Google Scholar]
- Canzoneri, S. Contributo alla conoscenza dei Tenebrionidi appenninici (XXXI Contributo allo studio dei Tenebrionidi). Bol. Mus. Civ. Stor. Nat. Verona 1977, 4, 227–285. [Google Scholar]
- Papi, R.; Ceccolini, F. Nuovi dati corologici per alcune specie italiane di Tenebrionidi (Coleoptera: Tenebrionidae). Onychium 2014, 10, 127–132. [Google Scholar]
- Gardini, G. Coleoptera Alleculidae, Tenebrionidae. In Gli Insetti di Roma; Zapparoli, M., Ed.; Fratelli Palombi: Roma, Italy, 1997; pp. 204–206. [Google Scholar]
- Fattorini, S.; Manganaro, A.; Piattella, E.; Salvati, L. Role of the beetles in raptor diets from a Mediterranean urban area. Fragm. Entomol. 1999, 31, 57–69. [Google Scholar]
- Fattorini, S.; Maltzeff, P. I Coleotteri Tenebrionidi della Tenuta Presidenziale di Castelporziano (Coleoptera, Tenebrionidae). Boll. Ass. Romana Entomol. 2001, 56, 245–300. [Google Scholar]
- Fattorini, S. The Tenebrionidae (Coleoptera) of a Tyrrhenian coastal area: Diversity and zoogeographical composition. Biogeographia Lav. Soc. Ital. Biogeogr. 2002, 23, 103–126. [Google Scholar] [CrossRef]
- Fattorini, S. I Coleotteri Tenebrionidi del Parco Nazionale del Circeo (Italia Centrale) (Coleoptera, Tenebrionidae). Boll. Ass. Romana Entomol. 2005, 60, 47–104. [Google Scholar]
- Fattorini, S. Effects of fire on tenebrionid communities of a Pinus pinea plantation: A case study in a Mediterranean site. Biodivers. Conserv. 2010, 19, 1237–1250. [Google Scholar] [CrossRef]
- Fattorini, S. Insect rarity, extinction and conservation in urban Rome (Italy): A 120-year-long study of tenebrionid beetles. Insect Conserv. Divers. 2011, 4, 307–315. [Google Scholar] [CrossRef]
- Fattorini, S. Regional insect inventories require long time, extensive spatial sampling and good will. PLoS ONE 2013, 8, e62118. [Google Scholar] [CrossRef] [PubMed]
- Fattorini, S. I Coleotteri Tenebrionidi di Roma (Coleoptera Tenebrionidae). Fragm. Entomol. 2013, 45, 87–142. [Google Scholar] [CrossRef]
- Fattorini, S. Urban biodiversity hotspots are not related to the structure of green spaces: A case study of tenebrionid beetles from Rome, Italy. Urban Ecosyst. 2014, 17, 1033–1045. [Google Scholar] [CrossRef]
- Fattorini, S. Island biogeography of urban insects: Tenebrionid beetles from Rome tell a different story. J. Insect Conserv. 2014, 18, 729–735. [Google Scholar] [CrossRef]
- Fattorini, S.; Porena, B.; Bernardini, F.; Di Giulio, A. Nuovi dati sui Coleotteri Tenebrionidi della città di Roma (Coleoptera Tenebrionidae). Boll. Soc. Entomol. Ital. 2014, 146, 137–142. [Google Scholar] [CrossRef]
- Fattorini, S.; Maltzeff, P.; Salvati, L. Use of insect distribution across landscape-soil units to assess conservation priorities in a Mediterranean coastal reserve: The tenebrionid beetles of Castelporziano (Central Italy). Rend. Fis. Acc. Lincei 2015, 26, 353–366. [Google Scholar] [CrossRef]
- Crucitti, P.; Brocchieri, D.; Bubbico, F.; Castelluccio, P.; Cervoni, F.; Di Russo, E.; Emiliani, F.; Giardini, M.; Pulvirenti, E. Checklist di alcuni gruppi selezionati dell’entomofauna del Parco Naturale Archeologico dell’Inviolata (Guidonia Montecelio, Roma): XlI contributo allo studio della biodiversità della Campagna Romana a nord-est di Roma. Boll. Soc. Entomol. Ital. 2019, 151, 65–92. [Google Scholar] [CrossRef]
- Fattorini, S.; Galassi, D.M.P. Role of urban green spaces for saproxylic beetle conservation: A case study of tenebrionids in Rome, Italy. J. Insect Conserv. 2016, 20, 737–745. [Google Scholar] [CrossRef]
- Crucitti, P.; Bombarda, F.; Brocchieri, D.; Bubbico, F.; Del Bove, E.; Doglio, S.; Emiliani, F.; Francioni, G.; Gnecchi, M.; Michelangeli, F.; et al. Checklist di gruppi selezionati dell’entomofauna di una area della campagna romana a nord-est di Roma (Lazio) (Insecta). Boll. Ass. Romana Entomol. 2016, 71, 207–233. [Google Scholar]
- Grimm, R. Zur Kenntnis der Tenebrioniden aus Süditalien (Insecta: Coleoptera). Stuttg. Beitr. Naturkd. A 1985, 379, 1–32. [Google Scholar]
- Luigioni, P. Quinto contributo alla conoscenza della fauna entomologica del Parco Nazionale d’Abruzzo. Coleotteri. Atti Pontif. Accad. Romana Nuovi Lincei 1933, 87, 3–35. [Google Scholar]
- Andreetti, A.; Di Gaetano, B.; Di Marco, C.; Osella, G.; Riti, M. Coleoptera Tenebrionidae (Insecta). In Ricerche sulla Valle Peligna (Italia Centrale, Abruzzo). Quaderni di Provincia oggi, 23/II; Osella, B.G., Biondi, M., Di Marco, C., Riti, M., Eds.; Amministrazione provinciale de L’Aquila: L’Aquila, Italy, 1997; Volume 2, pp. 425–443. [Google Scholar]
- Ceccolini, F.; Pizzocaro, L.; Cianferoni, F. Contributo alla conoscenza coleotterologica del Molise (Coleoptera: Staphylinidae Scydmeninae, Georissidae, Buprestidae, Tenebrionidae, Cerambycidae, Anthribidae, Brentidae, Curculionidae). Quad. Stud. Nat. Romagna 2020, 51, 265–276. [Google Scholar]
- Gridelli, E. Ricerche zoologiche sul massiccio del Pollino (Lucania-Calabria). XXIII. Coleoptera. 13. Tenebrionidae. Annu. Ist. Mus. Zool. Univ. Napoli 1956, 8, 1–6. [Google Scholar]
- Marcuzzi, G.; Turchetto Lafisca, M. Nuovi dati faunistici sulla coleotterofauna pugliese. Atti Ist. Veneto Sci. (Classe Sci. Mat. Nat.) 1981, 139, 59–79. [Google Scholar]
- Angelini, F. Coleotterofauna del Massiccio del Pollino (Basilicata-Calabria) (Coleoptera). Entomologica 1986, 21, 37–125. [Google Scholar]
- Angelini, F.; Montemurro, F. Coleotterofauna del bosco di Policoro (Matera) (Coleoptera). Biogeographia Lav. Soc. Ital. Biogeogr. 1986, 10, 545–604. [Google Scholar] [CrossRef]
- Angelini, F. Coleotterofauna della Riserva Naturale WWF Lago di Pignola, Basilicata, Potenza; Alfagrafica Volonnino: Lavello, Italy, 1996; p. 90. [Google Scholar]
- Angelini, F. Contribution to the knowledge of beetles (Insecta Coleoptera) of some protected areas of Apulia, Basilicata and Calabria (Italy). Biodivers. J. 2020, 11, 85–254. [Google Scholar] [CrossRef]
- Bertolini, S. Escursioni entomologiche nella Calabria. Bull. Soc. Entomol. Ital. 1876, 7, 1–7. [Google Scholar]
- Gardini, G. Col. Tenebrionidae. Notiziario Gruppo Entomologico Ligure 1976, 11, 8. [Google Scholar]
- Gardini, G. Coleotteri Tenebrionidi raccolti in Sicilia e in Calabria da F. Esposito, A. Rey. R. Eizzerio e S. Zoia. Notiziario Gruppo Entomologico Ligure 1986, 21, 7. [Google Scholar]
- Angelini, F. Coleotterofauna dell’Altipiano della Sila (Calabria, Italia) (Coleoptera). Mem. Soc. Entomol. Ital. 1991, 70, 171–254. [Google Scholar]
- Faggioli, D. Campagna di ricerche dell’Istituto di Entomologia dell’Università di Bologna nella “Foresta Umbra” (Gargano). II. Elenco delle specie raccolte (primo lotto). Boll. Ist. Entomol. Univ. Bologna 1955, 21, 167–177. [Google Scholar]
- Marcuzzi, G. Studi ecologici e faunistici sui Tenebrionidi della Puglia. Mem. Biogeogr. Adriat. 1962, 5, 1–78. [Google Scholar]
- Aliquò, V.; Leo, P. I Coleotteri Tenebrionidi delle Madonie (Sicilia). Nat. Sicil. 1996, 4, 281–304. [Google Scholar]
- Aliquò, V.; Aliquò, A. Terzo contributo alla revisione della collezione coleotterologica di Enrico Ragusa: Tenebrionidae (Coleoptera). Nat. Sicil. 2000, 24, 103–144. [Google Scholar]
- Aliquò, V.; Soldati, F. Coleotteri Tenebrionidi di Sicilia; Danaus: Palermo, Italy, 2010; pp. 63–64. [Google Scholar]
- Bazzato, E.; Sanna, F.; Cillo, D. Accanthopus velikensis (Piller & Mitterpacher, 1783) (Coleoptera, Tenebrionidae). Boll. Ass. Romana Entomol. 2012, 67, 87–89. [Google Scholar]
- Gardini, G. Materiali per lo studio dei Tenebrionidi dell’Arcipelago Toscano (Col. Heteromera). Lavori Soc. Ital. Biogeogr. 1976, 5, 637–723. [Google Scholar] [CrossRef]
- Lo Cascio, P.; Altadonna, G.; Ponel, P. Diversity and distribution of beetles in a Mediterranean volcanic archipelago: An updated checklist of the Coleoptera of the Aeolian Islands (Sicily, Italy). Biodivers. J. 2022, 13, 531–585. [Google Scholar] [CrossRef]
- Sainte-Claire Deville, J. Catalogue raisonné des Coléoptères de France. 3e part. L’Abeille 1937, 36, 265–372. [Google Scholar]
- Bonneau, P. Contribution à la rédaction d’un catalogue des Tenebrionidae de France. Deuxième partie. L’Entomologiste 1988, 44, 201–212. [Google Scholar]
- Bouffandeau, M. Sur la presence d’Enoplopus dentipes R. dans les Alpes-Maritimes (Col. Tenebrionidae). L’Entomologiste 1990, 46, 176. [Google Scholar]
- Soldati, F. Fauna of France and Corsica: Coleoptera Tenebrionidae (Alleculinae Excluded); Systematic Catalogue and Atlas, Mémoires de la Société Linnéenne de Bordeaux; Société Linnéenne de Bordeaux: Bordeaux, France, 2007; Volume 6, pp. 1–186. [Google Scholar]
- Soldati, F.; Coache, A. Faunistique des Coléoptères Tenebrionidae de Corse. Résultats d’une deuxième campagne de prospections. Bull. Soc. Linn. Bordeaux 2005, 33, 79–98. [Google Scholar]
- Müller, J. Tenebrionidae Dalmatiae. Verh. K.-K. Zool. Bot. Ges. Wien 1921, 70, 221–222. [Google Scholar]
- Fontana, P. Contribuzione alla fauna coleotterologica ticinese. Boll. Soc. Tic. Sc. Nat. 1974, 42, 16–94. [Google Scholar]
- Kaszab, Z. Ergebnisse der Albanien-Expedition 1961 des Deutschen Entomologischen Institutes. 70. Beitrag. Coleoptera: Tenebrionidae. Beitr. Ent. 1967, 17, 547–571. [Google Scholar]
- Mihajlo, S. Inventory of species diversity-industrial zone, east, in Sremska Mitrovica in order to assess the biological value of the area. In Proceedings of the International Conference Ecological Improvement of Devastated Locations for Sustainable Development, Belgrade, Serbia, 29–30 September 2014; pp. 198–206. [Google Scholar]
- Mihajlo, S. The amendment leaves species diversity of fauna invertebrata Special Nature Reserve Zasavica. In Proceedings of the XXIV International Conference “Ecological Truth” Eco-Ist’16, Bor, Serbia, 12–15 June 2016; pp. 48–54. [Google Scholar]
- Kühnelt, W. Catalogus Faunae Graeciae; Pars I. Tenebrionidae; To Wuno: Thessaloniki, Grece, 1965; p. 46. [Google Scholar]
- Geisthardt, M. Coleopterologische Ergebnisse eines Studienaufenthaltes in Nord-Griechenland. Entomol. Blätter 1975, 71, 1–25. [Google Scholar]
- Schawaller, W. Tenebrionidae (Coleoptera) aus Nord-Griechenland: Habitate, Artengesellschaften und Verbreitung. Entomol. Blätter 1996, 92, 3–18. [Google Scholar]
- Scupola, A. Contributo alla conoscenza dei Tenebrionidi della fauna di Grecia. I. (Coleoptera Tenebrionidae). Boll. Soc. Entomol. Ital. 1998, 130, 65–68. [Google Scholar]
- Angelov, P.; Medvedev, G. Tenebrionid beetles (Coleoptera, Tenebrionidae) of Bulgaria. Entomol. Obozr. 1981, 60, 302–315. (In Russian) [Google Scholar]
- Picka, J. Beitrag zur Kenntnis der Familie Tenebrionidae Bulgariens (Coleoptera). Acta Entomol. Musei Natl. Pragae 1983, 41, 297–312. [Google Scholar]
- Guéorguiev, B.V.; Ljubomirov, T. Coleoptera and Hymenoptera (Insecta) from Bulgarian Section of Maleshevska Planina Mountain: Study of an until recently unknown biodiversity. Acta Zool. Bulg. 2009, 61, 235–276. [Google Scholar]
- Guéorguiev, B. Biodiversity of beetles (Insecta: Coleoptera) in chestnut forests, Belassitsa Mountain. In State and Prospects of the Castanea Sativa Population in Belasitsa Mountain: Climate Change Adaptation; Maintenance of Biodiversity and Sustainable Ecosystem Management; Project BG 0031 EEA Report; Zlatanov, T., Velichkov, I., Nikolov, B., Eds.; Forest Research Institute: Sofia, Bulgaria, 2011; pp. 1–17. [Google Scholar]
- Guéorguiev, B. 2018 Coleoptera (Insecta) collected or observed around Chelopech Village, Western Bulgaria. Hist. Nat. Bulg. 2018, 34, 1–8. [Google Scholar] [CrossRef]
- Gîdei, P.; Popescu, I.E. Chidul Coleopterelor din România; Pim: Iaşi, Romania, 2014; Volume 2, p. 92. [Google Scholar]
- Stejskal, R. Enoplopus dentipes (=Accanthopus velikensis). Available online: http://www.meloidae.com/en/pictures/30550/ (accessed on 24 February 2024).
- Biological Museum, Lund University. Available online: https://ento.biomus.lu.se/search.php?taxa=Tenebrionidae&country=Romania (accessed on 24 February 2024).
- Burakowski, B.; Mroczkowski, M.; Stefańska, J. Chrząszcze—Coleoptera. Cucujoidea, Część 3. Katalog Fauny Polski, XXIII (14); Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1987; p. 220. [Google Scholar]
- Stebnicka, Z. Chrząszcze—Coleoptera, Czarnuchowate—Tenebrionidae, Boridae; Klucze do Oznaczania Owadów Polski, cz. XIX; PTE: Wroclaw, Poland, 1991; p. 44. [Google Scholar]
- Woźniak, A.; Byk, A. Ząbkonóg czarny Accanthopus velikensis (Piller et Mitterpacher, 1783) (Tenebrionidae: Tenebrioninae, Helopini)—“nowy” gatunek dla fauny Polski. Acta Entomol. Silesiana 2019, 27, 1–5. [Google Scholar]
- Kaszab, Z. Felemás lábfejízes bogarak I—Heteromera I.—Fauna Hungáriáé, Coleoptera IV; Akadémiai Kiadó: Budapest, Hungary, 1957; p. 64. [Google Scholar]
- Szalóki, D. Somogy megye lágytestű és felemás lábfejízes bogarainak katalógusa (Coleoptera: Elateroidea (részben), Lymexyloidea, Cleroidea, Tenebrionoidea). Natura Somogyiensis 2001, 1, 179–190. [Google Scholar] [CrossRef]
- Canpolat, D.; Lillig, M.; Hasbenli, A. Accanthopus velikensis (Piller & Mitterpacher, 1783)—New to the Turkish fauna (Coleoptera: Tenebrionidae). Zool. Middle East 2007, 42, 104–105. [Google Scholar]
- Şendoğan, D.; Gündoğan, B.; Nabozhenko, M.V.; Keskin, B.; Alpagut Keskin, N. Cytogenetics of Accanthopus velikensis (Piller et Mitterpacher, 1783) (Tenebrionidae: Helopini). Caryologia 2019, 72, 97–103. [Google Scholar]
- Köhler, F.; Klausnitzer, B. Verzeichnis der Käfer Deutschlands. Ent. Nachr. Ber. (Dresden) Beiheft 1998, 4, 1–185. [Google Scholar]
- Redtenbacher, L. Fauna Austriaca. Die Käfer. Nach der analytischen Methode bearbeitet. Zweite, gänzlich umgearbeitete, mit mehreren Hunderten von Arten und mit der Charakteristik sämmtlicher europäischen Käfergattungen versehene Auflage. 27; C. Gerolds Sohn: Vienna, Austria, 1858; pp. 617–618. [Google Scholar]
- Kaszab, Z. Tenebrionidae. In Die Käfer Mitteleuropas 8; Freude, H., Harde, K.W., Lohse, G.A., Eds.; Spektrum Akademischer Verlag: Heidelberg, Germany, 1969; p. 261. [Google Scholar]
- Iwan, D.; Löbl, I. Catalogue of Palaearctic Coleoptera. Vol. 5. Revised and Updated Second Edition. Tenebrionoidea; Brill: Leiden, The Netherlands, 2020; p. 325. [Google Scholar]
- Wanka, T. Coleopterologische Ergebnisse einer Reise in die Herzegowina. Entomol. Blätter 1908, 4, 209–214. [Google Scholar]
- Fattorini, S. Biotope prioritisation in the Central Apennines (Italy): Species rarity and cross-taxon congruence. Biodivers. Conserv. 2010, 19, 3413–3429. [Google Scholar] [CrossRef]
- Blasi, C. Fitoclimatologia del Lazio; Università “La Sapienza”-Roma, Regione Lazio: Roma, Italy, 1994; pp. 1–58. [Google Scholar]
- ISTAT. Annuario Statistico Italiano; Istituto Nazionale di Statistica: Roma, Italy, 2023; pp. 1–857. Available online: https://www.istat.it/storage/ASI/2022/ASI_2022.pdf (accessed on 10 December 2023).
- Pratesi, F.; Tassi, F. Guida alla Natura del Lazio e Abruzzo; Mondadori: Milano, Italy, 1972; pp. 1–288. [Google Scholar]
- Guidoni, E.; Petrucci, G.; Mazzanti, R.; Mongini, G.M.; Palagiano, C.; Arena, G. Guide d’Italia. Lazio; Fabbri Editori: Milano, Italy, 1985; pp. 1–348. [Google Scholar]
- Lucchese, F. Atlante della Flora Vascolare del Lazio, Cartografia, Ecologia e Biogeografia. Vol. 1. Parte Generale e Flora Alloctona; Regione Lazio, Direzione Capitale Naturale, Parchi e Aree Protette: Rome, Italy, 2017; pp. 1–356. [Google Scholar]
- Lucchese, F. Atlante della Flora Vascolare del Lazio, Cartografia, Ecologia e Biogeografia. Vol. 2. La Flora di Maggiore Interesse Conservazionistico; Regione Lazio, Direzione Capitale Naturale, Parchi e Aree Protette: Rome, Italy, 2018; pp. 1–400. [Google Scholar]
- Salvati, L.; Perini, L.; Bajocco, S.; Sabbi, A. Climate aridity and landuse change: A regional-scale analysis. Geogr. Res. 2012, 50, 193–203. [Google Scholar] [CrossRef]
- The World Bank Group. Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/country/italy/climate-data-historical (accessed on 14 February 2024).
- Brunetti, M.; Buffoni, L.; Mangianti, F.; Maugeri, M.; Nanni, T. Climate variations in Italy in the last 130 years. In Global Change and Protected Areas; Advances in Global Change Research; Visconti, G., Beniston, M., Iannorelli, E.D., Barba, D., Eds.; Springer: Dordrecht, The Netherlands, 2001; Volume 9, pp. 11–17. [Google Scholar]
- Polemio, M.; Casarano, D. Climate change, drought and groundwater availability in southern Italy. In Climate Change and Groundwater; Special Publications, 288, Dragoni, W., Sukhija, B.S., Eds.; Geological Society: London, UK, 2008; pp. 39–51. [Google Scholar]
- Toreti, A.; Desiato, F. Temperature trend over Italy from 1961 to 2004. Theor. Appl. Climatol. 2008, 91, 51–58. [Google Scholar] [CrossRef]
- Fattorini, S.; Salvati, L. Tenebrionid beetles as proxy indicators of climate aridity in a Mediterranean area. Ecol. Indic. 2014, 38, 256–261. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org/ (accessed on 15 March 2022).
- ESRI. ArcGis Desktop, Version 10.4; Environmental Systems Research Institute (ESRI): Redlands, CA, USA, 2016. [Google Scholar]
- Tarquini, S.; Isola, I.; Favalli, M.; Battistini, A.; Dotta, G. TINITALY, a Digital Elevation Model of Italy with a 10 Meters Cell Size, Version 1.1. Istituto Nazionale di Geofisica e Vulcanologia (INGV). 2023. Available online: https://tinitaly.pi.ingv.it/ (accessed on 3 October 2023).
- Forister, M.L.; Shapiro, A.M. Climatic trends and advancing spring flight of butterflies in lowland California. Glob. Clim. Chang. 2003, 9, 1130–1135. [Google Scholar] [CrossRef]
- Fattorini, S. The role of vegetation in elevational diversity patterns of tenebrionid beetles in Central Italy. Diversity 2024, 16, 110. [Google Scholar] [CrossRef]
- Fattorini, S.; Cardoso, P.; Rigal, F.; Borges, P.A.V. Use of arthropod rarity for area prioritisation: Insights from the Azorean Islands. PLoS ONE 2012, 7, e33995. [Google Scholar] [CrossRef]
- Nufio, C.R.; McGuire, C.R.; Bowers, M.D.; Guralnick, R.P. Grasshopper community response to climatic change: Variation along an elevational gradient. PLoS ONE 2010, 5, e12977. [Google Scholar] [CrossRef] [PubMed]
- Bartomeus, I.; Ascher, J.S.; Wagner, D.; Danforth, B.N.; Colla, S.; Kornbluth, S.; Winfree, R. Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc. Natl. Acad. Sci. USA 2011, 108, 20645–20649. [Google Scholar] [CrossRef]
- Diamond, S.E.; Frame, A.M.; Martin, R.A.; Buckley, L.B. Species’ traits predict phenological responses to climate change in butterflies. Ecology 2011, 92, 1005–1012. [Google Scholar] [CrossRef]
- Nufio, C.R.; Buckley, L.B. Grasshopper phenological responses to climate gradients, variability, and change. Ecosphere 2019, 10, e02866. [Google Scholar] [CrossRef]
- Jönsson, A.M.; Appelberg, G.; Harding, S.; Bärring, L. Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Glob. Chang. Biol. 2009, 15, 486–499. [Google Scholar] [CrossRef]
- Kerr, N.Z.; Wepprich, T.; Grevstad, F.S.; Dopman, E.B.; Chew, F.S.; Crone, E.E. Developmental trap or demographic bonanza? Opposing consequences of earlier phenology in a changing climate for a multivoltine butterfly. Glob. Chang. Biol. 2020, 26, 2014–2027. [Google Scholar] [CrossRef] [PubMed]
- Van Dyck, H.; Bonte, D.; Puls, R.; Gotthard, K.; Maes, D. The lost generation hypothesis: Could climate change drive ectotherms into a developmental trap? Oikos 2015, 124, 54–61. [Google Scholar] [CrossRef]
- Blois, J.L.; Williams, J.W.; Fitzpatrick, M.C.; Jackson, S.T.; Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl. Acad. Sci. USA 2013, 110, 9374–9379. [Google Scholar] [CrossRef]
- Brandmayr, P.; Pizzolotto, R. Climate change and its impact on epigean and hypogean carabid beetles. Period. Biol. 2016, 118, 147–162. [Google Scholar] [CrossRef]
Estimate | SE | t | p | |
---|---|---|---|---|
Intercept | 50.068 | 12.410 | 4.035 | 0.0001 |
Elevation (m) | −0.005 | <0.001 | −21.431 | <0.00001 |
Latitude (° N) | −0.756 | 0.255 | −2.963 | 0.004 |
Longitude (° E) | −0.182 | 0.162 | −1.125 | 0.263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fattorini, S. Upward and Poleward (but Not Phenological) Shifts in a Forest Tenebrionid Beetle in Response to Global Change in a Mediterranean Area. Insects 2024, 15, 242. https://doi.org/10.3390/insects15040242
Fattorini S. Upward and Poleward (but Not Phenological) Shifts in a Forest Tenebrionid Beetle in Response to Global Change in a Mediterranean Area. Insects. 2024; 15(4):242. https://doi.org/10.3390/insects15040242
Chicago/Turabian StyleFattorini, Simone. 2024. "Upward and Poleward (but Not Phenological) Shifts in a Forest Tenebrionid Beetle in Response to Global Change in a Mediterranean Area" Insects 15, no. 4: 242. https://doi.org/10.3390/insects15040242
APA StyleFattorini, S. (2024). Upward and Poleward (but Not Phenological) Shifts in a Forest Tenebrionid Beetle in Response to Global Change in a Mediterranean Area. Insects, 15(4), 242. https://doi.org/10.3390/insects15040242